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Relaxation to Equilibrium Can Be Hindered by Transient Dissipative Structures
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Relaxation processes in a closed chemical reaction-diffusion system which can potentially form
Turing-like patterns during the transient are investigated to address the question given by the title. We
find that when certain conditions are fulfilled the relaxation process is indeed drastically hindered, once
the pattern is formed. This slowing down is shown to be due to stepwise relaxation, where each plateau
in the relaxation process corresponds to residence at a certain spatial pattern. Mechanism and
universality of the phenomena are discussed.
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sidering the limiting case kAB � 1 � kBA, the evolution
of the chemical concentrations is given by

This Turing instability of the uniform states is straight-
forwardly obtained by linear stability analysis.
In open systems far from equilibrium, organized struc-
tures are well-known phenomena [1]. Such ‘‘dissipative
structures’’ include temporal rhythms and spatial pat-
terns in chemical reaction-diffusion systems, hydrody-
namical systems, optical systems, and so forth [1,2,10].
Among others, biologically complex structures can also
be maintained by nonequilibrium conditions [3,4].

In the study of dissipative structures, systems are gen-
erally prepared in far-from-equilibrium states by impos-
ing certain constraints. For example, concentrations of
some chemicals are fixed at higher or lower levels by
supplying or removing them from the outside. On the
other hand, in biological systems, nonequilibrium con-
ditions are maintained autonomously, at least when con-
sidering long time spans. As a first step for understanding
the autonomous sustainment of biological nonequilib-
rium conditions, it is of interest to investigate the possi-
bility that the longevity of the conditions for dissipative
structures is extended by the formation of the structures
themselves.

In closed systems, of course, equilibrium states without
any structures are reached eventually. However, oscilla-
tory behaviors or spatial pattern formations can be ob-
served as transient phenomena during the course of
relaxation to equilibrium [5–9,11,12]. Here, we address
the following question: Can the formation of (transient)
dissipative structures make far-from-equilibrium condi-
tions last significantly longer by slowing down the relaxa-
tion process to equilibrium? To answer this question, we
study the relaxation behaviors of a closed coupled chemi-
cal reactor that can potentially form transient Turing-like
patterns during the relaxation process.

Here, in contrast to most studies in reaction-diffusion
systems, we need to take the changes in the concentra-
tions of all chemicals into account, instead of keeping the
concentrations of some chemicals constant. Thus we con-
sider the following reaction-diffusion system consisting
of the reactions (I) A� v� 2u �

kAB
kBA

B� 3u, (II) u �
kuv
kvu

v, and (III) A� u �
kuv
kvu

A� v, and also diffusion. Con-
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_uu i � Aiviu2i � �1� Ai��ui � vi�; (1)

_vv i � �Aiviu
2
i � �1� Ai��vi � ui�

�Dv�vi�1 � vi�1 � 2vi�; (2)

_AA i � �Aiviu
2
i �DA�Ai�1 � Ai�1 � 2Ai�: (3)

Here, ui, vi, and Ai denote the concentrations of
the chemical components (activators, inhibitors, and re-
sources) and i denotes the index of each site in a one-
dimensional space (N sites), where periodic boundary
conditions are adopted for i. Here we use kuv � kvu �
1, but the behaviors to be reported are preserved even if
kuv � kvu, and for a wide range of parameter values. Each
chemical diffuses to neighboring sites with a diffusion
coefficient DX (X � u, v, or A). Although we adopt a
spatially discrete system for simplicity, the conclusions
drawn do not change even when the continuum-limit
(partial differential equation) is taken. The diffusion
coefficient Du is assumed to be slow, and we mostly study
the case with Du � 0 as in Eq. (1) since this will not
affect our findings qualitatively as long as Du � Dv.

This model is a variant of the Gray-Scott [9,10] or
Brusselator [1,11] models so that changes of the resources
Ai are included. Note that the value 1

2N

P
i�ui � vi� � S is

conserved due to the system being closed.
While relaxation to a unique equilibrium state satisfy-

ing A � 0 and ui � vi � S is assured for t ! 1 in this
model, if we fix Ai � Ao � 1 in order to maintain the
nonequilibrium condition, this system shows the follow-
ing bifurcation of the attractor, depending on S. (I) If S �
0:75, a unique uniform state with ui and vi constant over i
and time exists that is stable against small perturbations.
(II) If S > 0:75, the uniform state is unstable against
perturbations with some range of wave number. With
this Turing instability, the attractor is replaced by a non-
uniform pattern of ui and vi, which is constant in time.
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In order to study the relaxation process from a non-
equilibrium state to the homogeneous equilibrium state,
we now investigate the effects of changing Ai as in Eq. (3)
for the case S > 0:75. Here, depending on the initial
configurations of ui, spatial patterns can be formed during
relaxation to the homogeneous equilibrium state. We
study typical relaxation behaviors by varying initial con-
figuration of ui � u0i and the initial condition Ai � Aini

and vi � S. We control spatial inhomogeneity of u0i by
taking an initial condition S� �� rndi, with rndi as a
uniform random number over �1; 1� (0 � � � S).

Two sets of typical temporal evolutions of ui and Ai
with S � 4 and Aini � 100 are displayed in Figs. 1(a) and
1(b), where � � 0:1 in (a) and � � 4:0 in (b) with Dv �
250 and DA � 0. The pattern is plotted at time 0:05n (n
are integer numbers) until it has nearly reached the equi-
librium state. The corresponding time evolution of hAi
( � 1

N

P
N
i Ai) is plotted in Fig. 1(c).

When � is small, ui remains almost flat with only
minor fluctuations, and no structure is formed as in
Fig. 1(a). In this case, hAi decreases smoothly with time
as the solid curve in Fig. 1(c). On the other hand, when �
is large, the initial inhomogeneity in ui is amplified
leading to the formation of a nonuniform spatial pattern
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FIG. 1. Typical temporal evolutions of Ai (left) and ui (right)
for Dv � 250, DA � 0, and S � 4. The patterns are plotted
through the time course, until hAi becomes smaller than
0:001Aini per �t � 0:05. (a) � � 0:1 and (b) � � 4:0 plotted.
(c) The time evolutions of hAi corresponding to (a) and (b).
(d) Three typical snapshots of the spatial patterns of ui in (b)
which are plotted at the time step shown by the arrows.
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that is sustained over some time span until it is reorgan-
ized into a different pattern, as shown in Figs. 1(b) and
1(d). In this case, the relaxation of hAi exhibits some
plateaus, as shown in Fig. 1(c), and requires much more
time as compared to the case when � is small. Each
plateau corresponds to a specific spatial pattern as shown
in Fig. 1(d) [13]. Such plateaus in relaxation always
appear for � larger than a critical value as mentioned
after.

Hence, we have found an explicit example in which the
formation of a dissipative structure slows down the re-
laxation process. This behavior is rather general in our
model, as long as S and Dv are large enough to allow for
the formation of spatial patterns [14].

In order to obtain insight into the relationship between
pattern and relaxation, we have measured the spatial
inhomogeneity of ui defined by F�t� � 1

N

P
N
i jui�1 �

uij
2. In Fig. 2, we plot the decay rate of hAi defined by

hAi0 � d loghAi
dt , as a function of F�t�. As can be seen, the

system alternates between structure formation where Ai is
consumed and residence at the formed nonuniform struc-
ture where consumption of Ai is suppressed. Indeed, the
decrease of hAi0 is highly correlated with the increase of
F. Thus, the slowing down of the relaxation process by
the spatial structure is confirmed.

Next, we study the conditions for this slowing down of
the relaxation process. We investigate the dependence of
the relaxation time on the initial inhomogeneity.
Figure 3(a) shows the sample average of the relaxation
time T as a function of the initial heterogeneity �, com-
puted up to the time when hAi has decreased to 0:1Aini.
Here, the parameters are set to Dv � 250, S � 4, Aini �
100, and N � 200, while the diffusion constant DA is
chosen to be 0, 0.25, and 25. As can be seen, there is a
critical inhomogeneity �c (�0:5), beyond which the re-
laxation time increases, when DA is small. Indeed, �c is
nothing but a threshold for the inhomogeneity above
which the reorganization of the spatial structure is pos-
sible. For large DA, however, the reorganization of the
structure is even then not possible, and the relaxation time
is insensitive to the initial fluctuations. The threshold �c
F
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FIG. 2. Time course of hAi0�t�; F�t�� obtained from the
same simulation of Fig. 1(b). See the text for the definition of
hAi0 and F.
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FIG. 3. (a) The average relaxation time T, plotted as a func-
tion of �, for DA � 0, 0.25, and 25, and (b) T as a function of
DA for � � 0:1 and 4. Dv � 250.
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exists for DA & 20, while the value of �c itself is insen-
sitive to the value of DA within this range.

The dependence of the relaxation time on DA, on the
other hand, is plotted in Figure 3(b) where � � 0:1 or 4.
When � is smaller than �c, the relaxation time remains
short. In contrast, it shows a peak around DA � 0:3, when
� is larger than �c, while for smaller and larger DA, it
approaches constant values. The relaxation time for
smaller DA remains large, while it is quite small for larger
DA [see Fig. 3(a)].

Now, we study the mechanism for the observed drastic
enhancement of the relaxation time. When Ai is initially
large, the Turing instability can introduce an inhomoge-
neous pattern for ui with some wavelength. However, if
initial inhomogeneity in ui is not large, Ai is consumed
before such a pattern is formed, and then the Turing
instability is lost. As shown in Fig. 1(a), Ai is then con-
sumed almost uniformly through the entire system.

On the other hand, if ui has large spatial variations, the
Turing instability amplifies the spatial fluctuations soon,
leading to some pattern in ui, before Ai is consumed, as
shown in Fig. 1(d). Now we discuss how such a pattern
formation slows down the relaxation of A.

First, we discuss the time regime during pattern for-
mation. In this regime, for sites with growing ui, Ai is
consumed rapidly, since the reaction progresses with the
rate �Aiviu2i . Soon, however, this consumption of Ai at
the sites stops since Ai therein is consumed out. On the
other hand, at sites with small ui, the reaction between u
and v consuming A (whose rate is Aiviu

2
i ) is always

highly suppressed, even if Ai therein is large, because
u2i is much smaller. Then Ai at such sites is always con-
sumed only little by little.

When Ai at sites with large ui is almost consumed, the
plateau in the relaxation appears, because, the consump-
tion of Ai no longer progresses there, while for other sites
with small ui, the consumption of Ai is slow as mentioned
above. Hence, in this regime the consumption of Ai is
suppressed for all sites. The suppression of the decrease of
hAi here gives a plateau that appears in the relaxation of
hAi. Here, the decrease of ui there mainly progresses by
the reaction ui � vi, whose rate is given by �ui, which is
much smaller than Aiui, when hAi � 1 [15].
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This hindrance of relaxation continues until the de-
crease of ui at the site with large ui is completed. Then, ui
at some other site that still keeps large Ai starts to be
amplified, by the Turing instability, and starts to con-
sume Ai. During this fast relaxation process, Ai at such a
site is again consumed, and then the relaxation is hin-
dered, leading to another plateau in the relaxation. This
process corresponds to the reorganization of the spatial
structure of ui as described in Figs. 1(b) and 1(d). In this
way, several plateaus appear successively.

Once the initial inhomogeneity is large enough to
assure the pattern formation before the consumption of
Ai, then the the consumption is suppressed by the above
mechanism. Hence there appears threshold initial inho-
mogeneity beyond which the relaxation is hindered dras-
tically. This is nothing but �c.

Next, we explain the DA dependence of the relaxation
time in Fig. 3. With the above mechanism, ui increases at
a certain site i, and Ai is consumed at such site. Then, the
resource A diffuses into this site from adjacent sites if
DA > 0. This fact leads to the further acceleration of the
increase of ui, by consuming Aj at the sites adjacent to i.
Consequently, the peak height of ui can be much higher
than that of the case with DA � 0. Then, it takes more
time before ui at such a site is consumed by the slow
reaction process ui � vi. Thus, the time intervals be-
tween reorganizations of ui become larger, resulting in
the increase of the relaxation time.

On the other hand, if DA � 1, the resource A is con-
sumed faster due to the diffusion of A. In this case, the
speed of the flow of Ai is higher than that due to
the reaction ui � vi for sites with large ui. Therefore,
the resource Ai is consumed continuously by sites with
large ui, and a reorganization of the spatial structure ui no
longer occurs. In this case, the consumption speed of Ai
goes up to the level for the relaxation from a homoge-
neous pattern. Hence, the relaxation time to equilibrium
for the case DA � 1 is much smaller than for the case
with DA < 1, even when � > �c. The peak of the relaxa-
tion time in Fig. 3(b) is thus explained.

The mechanism for the slowing down of relaxation
processes proposed here is general. Take any reaction-
diffusion system in which dissipative structures are
formed by constraining the concentrations of some re-
source chemicals in such a way that their values are larger
than their equilibrium values. [i.e., (0) the presence of
Turing instability when the nonequilibrium condition is
fixed to a high level]. Now consider the corresponding
closed system, where the dynamics of the resource
chemical(s) is incorporated. The proposed mechanism
for slowing down the relaxation is possible if the follow-
ing two conditions are fulfilled.

(1) The reaction-diffusion processes of the chemicals
that give the nonequilibrium conditions are not too fast
compared to those of the other chemicals. The diffusion
constants as well as the reaction rates for the consumption
258302-3
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of the resource chemicals should be smaller than the
others. This leads to differences in the time scales of the
concentration changes and thus, when the pattern forma-
tion progresses fast enough, the consumption of resource
chemicals to support the nonequilibrium conditions
slows. The resource chemical concentrations work as
slow variables (or parameters) of the system.

(2) The consumption of resources slows down due to
feedback from the spatial structure. In the example here,
the consumption of resources is completed soon at sites
with higher ui, while for other sites it progresses only
slowly. Hence the overall depletion of resources slows
down by the spatial pattern. In general, it is not so difficult
to satisfy these two conditions, and indeed we have con-
firmed the present mechanism by studying some variants
of the present reaction-diffusion system.

If only the second condition is satisfied but not the first,
some increase in the relaxation time is still observed, but
the relaxation does not have several plateaus. As an ex-
ample, consider the reaction systems (i) ai � vi � 2ui �1

k
a0i � 3ui, (ii) bi � ui � b0i � vi, (iii) ei � ui � e0i � ci,
and (iv) fi � vi � f0i � di, with diffusion. If we set ei �
e0i � 0 and ci � c�� const�, this model is equivalent to a
Brusselator [1,11] with the reversible reactions, while it
corresponds to the Gray-Scott model [9,10] with the
reversible reactions, if bi � b0i � 0 and di � d�� const�.
In this model, Turing patterns are formed if the concen-
trations ai of resource and waste chemicals are suitably
fixed with k � 1. By including the dynamics of ai and by
choosing a large ai initially, a structure is formed if the
initial inhomogeneity � is not too small, in the same way
as for our model above. Again, some amplification of the
relaxation time is observed. However, since the ratio
among bi, b0i, and ai determining the growth speed of
spatial fluctuations changes drastically in time, the con-
dition (1) cannot remain to be satisfied. Once the initially
formed structures are destroyed, the reorganization of
novel structures is not easy [though it is still possible if
bi and b0i are highly correlated to ai as in Eqs. (1)–(3)].
Hence, the enhancement of the relaxation time in this
case is not as significant as in the previous case.

In this Letter, the relaxation process to equilibrium is
investigated through a closed coupled chemical reactor
system. Under certain conditions, we have found that the
relaxation is drastically hindered once a Turing-like pat-
tern is formed. In addition, we have observed repeated
formations of patterns, with which the relaxation is fur-
ther slowed down as compared to the case without the
structure formation. Extension of the present result to
other dissipative structures such as oscillatory or excitable
states is an important future problem.

In experimental studies of dissipative structures, the
system under consideration is usually set to be open in
order to sustain the nonequilibrium condition. Still, even
in closed systems, dissipative structures are often ob-
served as transients which may last for rather long time
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spans (recall, for example, the Belousov-Zhabotinsky
reaction in a petri dish). By choosing a suitable reaction
system, it is possible to demonstrate the present enhance-
ment of the relaxation time due to the transient dissipative
structure. In an experiment, the initial inhomogeneity can
be introduced, for example, by a perturbation or transient
process before the system is closed [16].

In complex reaction systems, with more chemical com-
ponents, the relaxation process could further be slowed
down. For example, assume that A and B in our model are
synthesized by lower-level resources A0 and B0, and that
these reactions also satisfy the mechanism demonstrated
here. By a hierarchy of such reactions, the relaxation time
is expected to be further increased. This may provide
some insight into why a cell system can maintain a
nonequilibrium state over a huge time span.
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