Versal S_5 -varieties of dimension two

Shinzo Bannai Tokyo Metropolitan University, shinzo.bannai@gmail.com

1 Introduction and Motivation.

X, Y: norm. proj. algebraic varieties over the complex numbers \mathbb{C} . $\pi \colon X \to Y$: surjective finite morphism.

C(X) (resp. C(Y)): function fields of X (resp. Y).

Definition 1.1

 $\pi: X \to Y$ is a Galois cover. $\Leftrightarrow \mathbf{C}(X)/\mathbf{C}(Y)$ is an Galois extension.

Note

 $\pi: X \to Y$ is a Galois cover $\Rightarrow \exists G \land X$ and $Y \cong X/G$. If $\operatorname{Gal}(\mathbf{C}(X)/\mathbf{C}(Y)) \cong G$, we say that π is a G-cover.

The Main Problem in Galois covers

The Inverse Galois Problem

Given G and a projective variety Y', construct a G-cover over Y'. i.e. construct a projective variety X' and a surjective finite morphism $\pi': X' \to Y'$ such that π' is a G-cover.

Namba's approach [6]: (c.f. T.Yasumura's poster)

Given a finite group G, a projective variety Y', and a G-cover $\pi:X\to Y$, and if a G-indecomposable rational map $\nu:Y'\dashrightarrow Y$ exists,

 \Rightarrow We obtain a G-cover over Y' by "pulling-back" the G-cover structure of $\pi:X\to Y$.

where \tilde{Y}' is a resolution of indeterminacies of ν and $\tilde{X}' = Y' \underset{Y}{\times} X$. This construction works only if ν exists. This leads to the following definition of a versal G-cover given in [11] and [9].

- Versal G-cover and versal G-variety

Let $\varpi: X \to Y$ be a G-cover.

Definition 1.2

 $\varpi: X \to Y$ is versal, if for any G-cover $\pi: Z \to W$,

- ullet $\exists \mu: Z \to X$ G-equivariant rational map such that
- $\bullet \mu(Z) \not\subset \operatorname{Fix}(X,G) := \{ x \in X | G_x \neq \{1\} \}$

If $\varpi:X\to Y$ is versal, we say that X is a versal G-variety.

Theorem 1.1 (Namba [6])

A versal G-cover exists for any finite group G.

Definition 1.3 (Buhler-Rehistein [2], Tokunaga [10])

The essential dimension $\operatorname{ed}_{\mathbf{C}}(G)$ of a finite group G is $\operatorname{ed}_{\mathbf{C}}(G) := \min \{ \dim X | \pi : X \to Y \text{ is a versal } G\text{-cover } \}$

– Problems in versal G-varieties

- Find versal G-varieties X such that $\dim X = \operatorname{ed}_{\mathbf{C}}(G)$.
- Classify versal *G*-varieties.
- Study the relation between two *G*-varieties.

2 The case $G = S_5$: the symmetric group of degree 5.

Fact

 $\bullet \operatorname{ed}_{\mathbf{C}}(S_5) = 2$

Theorem 2.1 (Tokunaga, [10])

If $\operatorname{ed}_{\mathbf{C}}(G) = 2$ and if $\varpi : X \to Y$ is a versal G-cover such that $\dim(X) = 2$, then X is rational.

Hence the classification is reduced to the case of rational S_5 surfaces.

The three birational equivalence classes of rational S_5 -surfaces. The classification of rational G-surfaces is given by Dolgachev and Iskovskikh in [3]. There are three distinct birational equivalence classes represented by:

- $\bullet P^1 \times P^1$.
- Dp_5 : Del Pezzo Surface of degree 5.
- Cb_3 :Clebsch cubic surface. [x_0, x_1, x_2, x_3, x_4]: hom. coord. of \mathbf{P}^4 $S_5 \curvearrowright \mathbf{P}^4$ by permutation of coordinates.

$$Cb_3: \sum_{i=0}^{4} x_i = \sum_{i=0}^{4} x_i^3 = 0$$

Then Cb_3 is a del Pezzo surface of degree 3 and

$$S_5 \wedge Cb_3$$

 $\mathbf{P}^1 \times \mathbf{P}^1$ is not versal by elementary arguments. Dp_5 is versal. This is shown in [1]. Cb_3 is versal. This is essentially equivalent to the following equivalent theorems by Hermite.

— Hermite's S_5 -covariant, and Normal Form for quintics —

Theorem 2.2 (Hermite [4])

Let L be any field. Let $S_5 \sim L^5$ by permutation of the coordinates. There exists a faithful S_5 -covariant

$$\phi:L^5\to L^5$$

such that

$$\phi(L^5) \subset \{(x_1, \cdots, x_5) \in L^5 | \sum_{i=1}^5 x_i = \sum_{i=1}^5 x_i^3 = 0 \}$$

Theorem 2.3 (Hermite [4])

Let L/K be a separable field extension of degree 5. Then there exists $\theta \in L$ such that $L = K(\theta)$ and

$$\theta^5 + b\theta^3 + d\theta + d = 0 \quad (b, d \in K)$$

Conclusion

- Main result

Theorem 2.4

There are exactly two distinct birational equivalence classes of versal S_5 surfaces represented by Dp_5 and Cb_3 with S_5 -action.

3 Wish List.

- Want to find more methods in determining whether a variety is versal or not!! Is there some kind of good invariant?
- Want to actually apply the construction of Namba using versal *G*-varieties!!
- Want to understand Hermite's covariant in geometric terms!!
- Want to know the relation between Dp_5 and Cb_3 .

References

- [1] S. Bannai and H. Tokunaga, A note on embeddings of S_4 and A_5 into the two-dimensional Cremona group and versal Galois covers, Publ. RIMS, Kyoto Univ. **43** (2007), 1111–1123
- [2] J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. **106** (1997), no. 2, 159–179
- [3] I. Dolgachev and V. Iskovskikh, Finite subgroups of the plane Cremona group, (available at http://www.math.lsa.umich.edu/idolga/torinofinal.pdf)
- [4] C. Hermite: Sur l'invariant du 18^e ordre des formes du cinquième degré et sur le rôle qu'il joue dans la résolution de l'équation du cinquième degré, extrait de deux lettres de M. Hermite à l'editeur. J. reine angew. Math. 59 (1861) 304–305.
- [5] H. Kraft, A result of Hermite and equations of degree 5 and 6, J. Algebra vol. 297 (2006), 234-253

- [6] M. Namba, On finite Galois Coverings of projective manifolds, *J. Math. Soc. Japan*, **41** (1989), 391-403.
- [7] M. Namba, Finite branched coverings of complex manifold, *Sugaku Expositions* **5** (1992), 193-211.
- [8] H. Tokunaga, Galois covers for \mathfrak{S}_4 and \mathfrak{A}_4 and their applications, *Osaka J. Math.* **39**(2002), 621-645.
- [9] H. Tokunaga: Note on a 2-dimensional Versal D_8 -cover, Osaka J. Math **41** (2004), 831–838.
- [10] H. Tokunaga, 2-dimensional versal G-covers and Cremona embeddings of finite groups, *Kyushu J. of Math*, **60**(2006), 439-456.
- [11] H. Tsuchihashi, Galois coverings of projective varieties for the dihedral groups and the symmetric groups, *Kyushu J. of Math.* **57**(2003), 411-427.