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§1. Introduction

• Horikawa introduced a method of resolving singularities of double

covers over a smooth surface (1975).

• Ashikaga generalized this method to triple covers over a smooth

surface (1992).

In this talk, we will discuss resolution of singularities of certain 4-fold

covers of surfaces over C by using S4-covers.

(S4 : the symmetric group of degree 4)
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§2. Definitions

Def. (Galois covers)

Let π : X → Y be a finite surjective morphism of normal varieties.

Note that we can regard C(Y ) as a subfield of C(X).

π : a Galois cover
def⇐⇒ C(X)/C(Y ) : a Galois extension

If Gal(C(X)/C(Y )) ∼= G, we simply call π a G-cover.

(G : a finite group)
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Def. (good resolutions)

Let ν : X ′ → X be a resolution of singularities of X.

ν : a good resolution
def⇐⇒ the exceptional set is a divisor with

only simple normal crossings.

Example.

In dimension 2, the exceptional set is as follows, and its dual graph is

the following:
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§3. 4-fold covers and S4-covers

Let π : X → Y be a 4-fold cover. There is an element z of C(X) such

that C(X) = C(Y )(z), and

z4 + g1z2 + g2z + g3 = 0

for some g1, g2, g3 ∈ C(Y ).

Let

K̃ : the Galois closure of C(X)/C(Y ).

Assume Gal(K̃/C(Y )) ∼= S4.
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By Lagrange’s method to solve quartic equations, we have the following

diagram of field extensions, as well as the following diagram of normal-

izations of Y :

ψ2

ψ3

π

ϕ

π̃

X̃

X2

X1

Y

X

ψ1

K̃

K2

K1

C(Y )

C(X)
Normalization

where

π̃ : an S4-cover, ϕ : an S3-cover,

ψ1 : a double cover, ψ2 : a cyclic triple cover, and

ψ3 : a V4-cover

(V4 := {id , (12)(34), (13)(24), (14)(23)} ⊂ S4, the Klein group).
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§4. Our strategy to resolve a singularity

Let π : V → W be a 4-fold cover of surfaces. Let µ : W0 → W be a

composition of blowing-ups. To have the C(V )-normalization V0 of W0,

we construct the S4-cover over W0. We have V0 as the quotient of Ṽ

by S3. Then we have a morphism ν : V0 → V by Stein factorization.

But V0 may be singular for any µ. So we need to improve this strategy.
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§5. Resolution of singularities of certain 4-fold covers

In this section, we resolve singularities of certain 4-fold covers.

We introduce some notations.

Let

W : a surface which is smooth at a point P ∈ W , and

π : V → W : a 4-fold cover.

To analyze the singularities of the surface V , we will work locally on W .
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In this talk, we consider the following 4-fold covers:

We put

f := z4 + 4xnz + 3ym,

where {x, y} is a system of local parameters at P ∈ W , and n ≥ 1 and

m ≥ 2 are integers. Let

Vf ⊂ A1 × W : the subvariety defined by the equation f = 0.

Then we have a 4-fold cover π by restricting the projection

A1 × W → W to Vf :

π : Vf → W.

In fact, there is an isolated singularity on Vf over P .
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Let

Df : the divisor on W defined by x4n − y3m = 0.

Since x4n − y3m is the discriminant of f w.r.t. z, π is branched at Df .

We define integers as follows to describe our resolution of Vf :

d := GCD(4n,3m),

n1 : 4n = dn1,

m1 : 3m = dm1,

0 ≤ e < m1 : n1e + 1 ≡ 0 (mod m1),

0 ≤ e1 < n1 : m1e1 + 1 ≡ 0 (mod n1).
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We let

[a1, . . . , ar] := a1 −
1

a2 −
1

.. . −
1

ar

for integers a1, . . . , ar ≥ 2.

Let {ai}1≤i≤r and {bi}1≤i≤s be sets of bigger integers than 2 such that

m1

e
= [a1, . . . , ar],

n1

e1
= [b1, . . . , bs].
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Proposition.

For each case (1),. . . ,(6), there is a good resolution of the singularity of

Vf over P such that the dual graph of the exceptional curves is as follows,

and all exceptional curves except for the (−c)-curve are isomorphic to

P1:

(1) If d ≡ 0 (mod 12),

−ar −a2 −a1

−c
−ar −a2 −a1

−ar −a2 −a1

−ar −a2 −a1

−bs−b2−b1

−bs−b2−b1

−bs−b2−b1

−bs−b2−b1

where c = 4, and g = d/2 − 3

(g : the genus of the central (−c)-curve).
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(2) If d ≡ 0 (mod 3) and d ≡ 2 (mod 4),

−ar −a2 −a1

−c
−ar −a2 −a1

−ar −a2 −a1

−ar −a2 −a1

−b′s′−b′2−b′1

−b′s′−b′2−b′1

where c = 4 − 2q′, and g = d/2 − 1.

e′1, q′ : e1 = q′
n1

2
+ e′1 (0 ≤ e′1 <

n1

2
),

b′1, . . . , b′s′ :
n1

2e′1
= [b′1, . . . , b′s′].
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(3) If d ≡ 0 (mod 3) and d ≡ 1 (mod 2),

−b′′s′′−b′′2−b′′1

−ar −a2 −a1

−c
−ar −a2 −a1

−ar −a2 −a1

−ar −a2 −a1

where c = 4 − q′′, and g = (d − 3)/2.

e′′1, q′′ : e1 = q′′
n1

4
+ e′′1 (0 ≤ e′′1 <

n1

4
),

b′′1, . . . , b′′s′′ :
n1

4e′′1
= [b′′1, . . . , b′′s′′].
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(4) If d 6≡ 0 (mod 3) and d ≡ 0 (mod 4),

−bs−b2−b1

−c

−ar −a2 −a1

−a′r′ −a′2 −a′1

−bs−b2−b1

−bs−b2−b1

−bs−b2−b1

where c = 4 − p′, and g = d/2 − 2.

e′, p′ : e = p′
m1

3
+ e′ (0 ≤ e′ <

m1

3
),

a′1, . . . , a′r′ :
m1

3e′
= [a′1, . . . , a′r′]
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(5) If d 6≡ 0 (mod 3) and d ≡ 2 (mod 4),

−c

−b′s′−b′2−b′1

−b′s′−b′2−b′1

−ar −a2 −a1

−a′r′ −a′2 −a′1

where c = 4 − p′ − 2q′, and g = d/2 − 1.

e = p′
m1

3
+ e′, e1 = q′

n1

2
+ e′1,

m1

3e′
= [a′1, . . . , a′r′],

n1

2e′1
= [b′1, . . . , b′s′].
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(6) If d 6≡ 0 (mod 3) and d 6≡ 0 (mod 2),

−c

−ar −a2 −a1

−a′r′ −a′2 −a′1

−b′′s′′−b′′2−b′′1

where c = 4 − p′ − q′′, and g = (d − 1)/2.

e = p′
m1

3
+ e′, e1 = q′′

n1

4
+ e′′1,

m1

3e′
= [a′1, . . . , a′r′],

n1

4e′′1
= [b′′1, . . . , b′′s′′].
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Example (n = 10, m = 30).

If n = 10 and m = 30, then

d := GCD(40,90) = 10,

n1 = 4, m1 = 9.

So this example is in the case (5).

Since 4 · 2 + 1 ≡ 0 (mod 9) , and since 9 · 3 + 1 ≡ 0 (mod 4),

e = 2, e1 = 3.
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Recall that the branch divisor of π : Vf → W is Df : x40−y90 = 0. Since

9/2 = [5,2], and since 4/3 = [2,2,2], by toric blowing-up,

∃µ : W ′ → W : a resolution of singularity of Df (as a curve)

such that the dual graph of the exceptional divisor of µ is the following:

−5−2 −2 −2−2−1

10 verticies
corresponding to

the strict transform of Df
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Note that the C(Vf)-normalization of W ′ may be singular over neigh-

borhood of the exceptional set of µ.

So let

µ′ : W ′ → W0 : the contract of the exceptional divisor except

for the (−1)-curve.

−2

−5

−2

−2−2

−1

P ′

Q′

P0

Q0

E

µ′

Note that W0 is singular at P0 and Q0, and E is isomorphic to P1.
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And note that

the singularity at P0 is A9,2, and

the singularity at Q0 is A4,3.

Here

Aa,b : the cyclic quotient singularity (C2/G, 0),

where GCD(a, b) = 1, and

G =

〈(
ζa 0
0 ζb

a

)〉
(ζa : a primitive a-th root of unity).
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Now we construct the S4-cover over W0 corresponding the Galois clo-

sure K̃.

ψ2

ψ3

π

ϕ

π̃

Ṽ

V2

V1

W0

V0

ψ1

K̃

K2

K1

C(W )

C(Vf)
Normalization

C(W0)
Note that E is not a branch divisor, and it depends on only d whether

ψi is ramified over P0 and Q0 for each i = 1,2,3.

In this case (d 6≡ 0 (mod 3) and d ≡ 2 (mod 4)),

ψ1 is ramified over the strict transform of Df ,

ψ2 is ramified over P0, and

ψ3 is ramified over Q0.
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P0

Q0

10 components of the

A9,2

A4,3

W0

V1

ψ1

strict transform of Df
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P0

Q0

A9,2

A4,3

10

A9,2

A4,3

W0

V1

V2

ψ1

ψ2

10 components of the
strict transform of Df
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P0

Q0

A9,2

A4,3

10

30

A9,2

A4,3

A4,3

A3,2

W0

V1

V2

6 points

Ṽ

ψ1

ψ2

ψ3

10 components of the
strict transform of Df
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P0

Q0

A9,2

A4,3

10

30

120

A9,2

A4,3

A4,3

A3,2

A3,2

A2,1

W0

V1

V2
8 points

12 points

6 points

Ṽ

V0

ψ1

ψ2

ψ3

ϕ

π̃0

10 components of the
strict transform of Df
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P0

Q0

A9,2

A4,3

10

30

120

30

A9,2

A4,3

A4,3

A3,2

A3,2

A2,1

A3,2

A9,2

A2,1

W0

V1

V2
8 points

12 points

6 points

Ṽ

V0

ψ1

ψ2

ψ3

ϕ

π0

π̃0

10 components of the
strict transform of Df
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Finally, let

µ̃ : Ṽ → V0 : the resolution of quotient singularities on V0.

Then we have the following dual graph:

−3

−2

−2

−2 −5

−2 −2

This is a resolution of Vf , and the genus of the (−3)-curve is equal to

4 by Hurwitz’s formula.
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