Resolution of singularities of certain 4-fold covers in dimension 2

Tokyo Metropolitan University
Taketo Shirane

In Hiroshima, 2009

§1. Introduction

- Horikawa introduced a method of resolving singularities of double covers over a smooth surface (1975).
- Ashikaga generalized this method to triple covers over a smooth surface (1992).

In this talk, we will discuss resolution of singularities of certain 4-fold covers of surfaces over $\mathbb C$ by using $\mathfrak S_4$ -covers.

 (\mathfrak{S}_4) : the symmetric group of degree 4)

§2. Definitions

Def. (Galois covers)

Let $\pi: X \to Y$ be a finite surjective morphism of normal varieties. Note that we can regard $\mathbb{C}(Y)$ as a subfield of $\mathbb{C}(X)$.

 π : a Galois cover $\stackrel{\mathsf{def}}{\Longleftrightarrow} \mathbb{C}(X)/\mathbb{C}(Y)$: a Galois extension

If $Gal(\mathbb{C}(X)/\mathbb{C}(Y)) \cong G$, we simply call π a G-cover. (G : a finite group)

Def. (good resolutions)

Let $\nu: X' \to X$ be a resolution of singularities of X.

 ν : a good resolution $\stackrel{\rm def}{\Longleftrightarrow}$ the exceptional set is a divisor with only simple normal crossings.

Example.

In dimension 2, the exceptional set is as follows, and its dual graph is the following:

$\S 3.$ 4-fold covers and \mathfrak{S}_4 -covers

Let $\pi: X \to Y$ be a 4-fold cover. There is an element z of $\mathbb{C}(X)$ such that $\mathbb{C}(X) = \mathbb{C}(Y)(z)$, and

$$z^4 + g_1 z^2 + g_2 z + g_3 = 0$$

for some $g_1, g_2, g_3 \in \mathbb{C}(Y)$.

Let

 \widetilde{K} : the Galois closure of $\mathbb{C}(X)/\mathbb{C}(Y)$.

Assume $\operatorname{Gal}(\widetilde{K}/\mathbb{C}(Y)) \cong \mathfrak{S}_4$.

By Lagrange's method to solve quartic equations, we have the following diagram of field extensions, as well as the following diagram of normalizations of Y:

where

 $\tilde{\pi}$: an \mathfrak{S}_4 -cover, φ : an \mathfrak{S}_3 -cover,

 ψ_1 : a double cover, ψ_2 : a cyclic triple cover, and

 ψ_3 : a V_4 -cover

 $(V_4 := \{id, (12)(34), (13)(24), (14)(23)\} \subset \mathfrak{S}_4$, the Klein group).

Let $\pi:V\to W$ be a 4-fold cover of surfaces. Let $\mu:W_0\to W$ be a composition of blowing-ups. To have the $\mathbb{C}(V)$ -normalization V_0 of W_0 , we construct the \mathfrak{S}_4 -cover over W_0 . We have V_0 as the quotient of \widetilde{V} by \mathfrak{S}_3 . Then we have a morphism $\nu:V_0\to V$ by Stein factorization.

But V_0 may be singular for any μ . So we need to improve this strategy.

§5. Resolution of singularities of certain 4-fold covers

In this section, we resolve singularities of certain 4-fold covers. We introduce some notations.

Let

W: a surface which is smooth at a point $P \in W$, and

 $\pi:V\to W$: a 4-fold cover.

To analyze the singularities of the surface V, we will work locally on W.

In this talk, we consider the following 4-fold covers:

We put

$$f := z^4 + 4x^n z + 3y^m,$$

where $\{x,y\}$ is a system of local parameters at $P\in W$, and $n\geq 1$ and $m\geq 2$ are integers. Let

 $V_f \subset \mathbb{A}^1 \times W$: the subvariety defined by the equation f = 0.

Then we have a 4-fold cover π by restricting the projection $\mathbb{A}^1 \times W \to W$ to V_f :

$$\pi: V_f \to W$$
.

In fact, there is an isolated singularity on V_f over P.

Let

 D_f : the divisor on W defined by $x^{4n} - y^{3m} = 0$.

Since $x^{4n}-y^{3m}$ is the discriminant of f w.r.t. z, π is branched at D_f . We define integers as follows to describe our resolution of V_f :

 $d := \mathsf{GCD}(4n, 3m),$

 n_1 : $4n = dn_1$,

 m_1 : $3m = dm_1$,

 $0 \le e < m_1 : n_1 e + 1 \equiv 0 \pmod{m_1}$,

 $0 \le e_1 < n_1 : m_1 e_1 + 1 \equiv 0 \pmod{n_1}$.

We let

$$[a_1, \dots, a_r] := a_1 - \frac{1}{a_2 - \frac{1}{a_r}}$$

$$\vdots$$

for integers $a_1, \ldots, a_r \geq 2$.

Let $\{a_i\}_{1\leq i\leq r}$ and $\{b_i\}_{1\leq i\leq s}$ be sets of bigger integers than 2 such that

$$\frac{m_1}{e} = [a_1, \dots, a_r],$$

$$\frac{n_1}{e_1} = [b_1, \dots, b_s].$$

Proposition.

For each case (1),...,(6), there is a good resolution of the singularity of V_f over P such that the dual graph of the exceptional curves is as follows, and all exceptional curves except for the (-c)-curve are isomorphic to \mathbb{P}^1 :

(1) If $d \equiv 0 \pmod{12}$,

where c = 4, and g = d/2 - 3

(g : the genus of the central (-c)-curve).

(2) If $d \equiv 0 \pmod{3}$ and $d \equiv 2 \pmod{4}$,

where c = 4 - 2q', and g = d/2 - 1.

$$e'_1, q'$$
 : $e_1 = q' \frac{n_1}{2} + e'_1$ $(0 \le e'_1 < \frac{n_1}{2}),$
 $b'_1, \dots, b'_{s'}$: $\frac{n_1}{2e'_1} = [b'_1, \dots, b'_{s'}].$

(3) If $d \equiv 0 \pmod{3}$ and $d \equiv 1 \pmod{2}$,

where c = 4 - q'', and g = (d - 3)/2.

$$e_1'', q''$$
 : $e_1 = q'' \frac{n_1}{4} + e_1''$ $(0 \le e_1'' < \frac{n_1}{4}),$
 $b_1'', \dots, b_{s''}''$: $\frac{n_1}{4e_1''} = [b_1'', \dots, b_{s''}''].$

(4) If $d \not\equiv 0 \pmod{3}$ and $d \equiv 0 \pmod{4}$,

where c = 4 - p', and g = d/2 - 2.

$$e', p' : e = p' \frac{m_1}{3} + e' \quad (0 \le e' < \frac{m_1}{3}),$$

 $a'_1, \dots, a'_{r'} : \frac{m_1}{3e'} = [a'_1, \dots, a'_{r'}]$

(5) If $d \not\equiv 0 \pmod{3}$ and $d \equiv 2 \pmod{4}$,

where c = 4 - p' - 2q', and g = d/2 - 1.

$$e = p' \frac{m_1}{3} + e',$$
 $e_1 = q' \frac{n_1}{2} + e'_1,$ $\frac{m_1}{3e'} = [a'_1, \dots, a'_{r'}],$ $\frac{n_1}{2e'_1} = [b'_1, \dots, b'_{s'}].$

(6) If $d \not\equiv 0 \pmod{3}$ and $d \not\equiv 0 \pmod{2}$,

where c = 4 - p' - q'', and g = (d - 1)/2.

$$e = p' \frac{m_1}{3} + e', \qquad e_1 = q'' \frac{n_1}{4} + e''_1,$$

$$\frac{m_1}{3e'} = [a'_1, \dots, a'_{r'}], \qquad \frac{n_1}{4e''_1} = [b''_1, \dots, b''_{s''}].$$

Example (n = 10, m = 30).

If n = 10 and m = 30, then

$$d := GCD(40, 90) = 10,$$

$$n_1 = 4, \qquad m_1 = 9.$$

So this example is in the case (5).

Since $4 \cdot 2 + 1 \equiv 0 \pmod{9}$, and since $9 \cdot 3 + 1 \equiv 0 \pmod{4}$,

$$e = 2,$$
 $e_1 = 3.$

Recall that the branch divisor of $\pi: V_f \to W$ is $D_f: x^{40} - y^{90} = 0$. Since 9/2 = [5,2], and since 4/3 = [2,2,2], by toric blowing-up,

 $\exists \mu: W' \to W$: a resolution of singularity of D_f (as a curve)

such that the dual graph of the exceptional divisor of μ is the following:

 $\begin{array}{c} \hbox{10 verticies} \\ \hbox{corresponding to} \\ \hbox{the strict transform of } D_f \end{array}$

Note that the $\mathbb{C}(V_f)$ -normalization of W' may be singular over neighborhood of the exceptional set of μ . So let

 $\mu':W'\to W_0$: the contract of the exceptional divisor except for the (-1)-curve.

Note that W_0 is singular at P_0 and Q_0 , and E is isomorphic to \mathbb{P}^1 .

And note that

the singularity at P_0 is $A_{9,2}$, and

the singularity at Q_0 is $A_{4,3}$.

Here

 $A_{a,b}$: the cyclic quotient singularity $(\mathbb{C}^2/G,\mathbf{0})$,

where GCD(a, b) = 1, and

$$G = \left\langle \begin{pmatrix} \zeta_a & 0 \\ 0 & \zeta_a^b \end{pmatrix} \right\rangle \quad (\zeta_a : \text{ a primitive } a\text{-th root of unity}).$$

Now we construct the \mathfrak{S}_4 -cover over W_0 corresponding the Galois closure \widetilde{K} .

Note that E is not a branch divisor, and it depends on only d whether ψ_i is ramified over P_0 and Q_0 for each i=1,2,3. In this case $(d \not\equiv 0 \pmod 3)$ and $d \equiv 2 \pmod 4)$,

 ψ_1 is ramified over the strict transform of D_f ,

 ψ_2 is ramified over P_0 , and

 ψ_3 is ramified over Q_0 .

V_1

Finally, let

 $\tilde{\mu}: \widetilde{V} \to V_0$: the resolution of quotient singularities on V_0 .

Then we have the following dual graph:

This is a resolution of V_f , and the genus of the (-3)-curve is equal to 4 by Hurwitz's formula.