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Notation

k : ground field, �k � k and ch�k� � 0
V : nonsingular proj. variety, dim V � n
D : very ample divisor
f � fD � V �� �

N : embedding by �D�
where N � 1 � dim H0�V ���D��

W : linear subvariety of �N , dim W � N � n� 1, W � f �V � � �
�W � �N

� � �W0 : projection with the center W
(where W0 linear subvariety, dim W0 � n and W �W0 � �)
� � �W � f � V �� W0

�� �n

K � k�V � : function field of V
K0 � k�W0� : function field of W0
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Galois embedding

�� � K0 �� K : finite extension, deg � d � degf �V � � Dn

The structure of this extension does not depend on W0, but on
W .
KW : Galois closure of K�K0

GW �� Gal�KW�K0�

Remark

GW is isomorphic to the monodromy group of � � V �� W0.

Definition

We call GW the Galois group at W . If K�K0 is Galois, W is said
to be Galois subspace.
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Galois embedding

Definition

The V is said to have a Galois embedding if there exists a very
ample divisor D s.t. the embedding by �D� has a Galois
subspace. In particular, if W is a point or line, we call it a Galois
point or Galois line respectively.

In this case we say that �V �D� defines a Galois embedding.

Remark

Similarly we can define the Galois embedding in the case
where W � f �V � 	� �.
We do not treat this case in this talk.
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Plane cubic

Example

E : smooth cubic in �2.
If there exists a Galois point,
then E is projectively equivalent to the curve defined by
Y 2Z � 4X 3 � Z 3

and it has just three Galois points
�X � Y � Z � � �1 � 0 � 0�� �0 � �
�3 � 1� and
�0 �


�3 � 1�. Then we have three projections
� � �2 � � � � �1

given by ��X � Y � Z � � �Y � Z �� �X � Y �

�3Z � and

�X � Y �
�3Z �,
which yield Galois coverings ��E � E �� �1.
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Space quartic

Example

For any elliptic curve E there exists a Galois embedding in �3

whose Galois group is isomorphic to V4.

Later we will see this in detail.

Example

The elliptic curve E with J�E� � 1728 has an embedding
C � �3

satisfying that C has four Z4-lines and three V4-lines.
Therefore C has seven Galois lines.
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Example

In fact, let C be the sapce curve defined by Z 2 � XY and
W 2 � 4YZ � XZ .
Then C has four Z4-lines and three V4-lines, the defining
equations are given as follows :

(I) Z4-liens :
1� �1 : X � Y � 0
2� �2 : Z � X � 4Y � 0
3� �3 : W � X � 4Y � 4iZ � 0, where i �

��1
4� �4 : W � X � 4Y � 4iZ � 0

(II) V4-lines :
5� �5 : X � 4Y � Z � 0
6� �6 : X � 4Y � X � 2Z � 0
7� �7 : X � 4Y � X � 2Z � 0

The arrangement of the lines are as follows:
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Remark

No divisor of degree five on elliptic curve has Galois
embedding.



Problems

Problem

(1) Find the structure of GW .

(2) Find the subset 
 of Pic�V � such that it consists of D which
gives the Galois embedding.

(3) Find the arrangement of Galois subspaces for f �V �.

(4) For an embedding �V �D� find the structure of Galois group
GW for each W � Grass�N � n� 1�N�.

(5) How is the set � W � Grass�N � n� 1�N� � GW
�� Sd� ? In

particular, is it true that the codimension of the
complement of the set is at least two ?

(6) Suppose that dim Lin�f �V �� � 0, W and W � are close and
W 	� W �. Then is it true that KW is not isomorphic to K �

W ?
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Results

The results change greatly whether

(A) ch�k� � 0 or � 0,

(B) W � f �V � � � or not.

We treat only the case where ch(k)=0 and W � f �V � � �.
First we show general results.
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Basic results

Hereafter we assume W is a Galois subspace.

Proposition

There exists an injective representation � � GW �� Aut�V �.

Corollary

If Aut�V � is trivial, then V has no Galois embedding.

Proposition

We have another injective representation � � GW �� PGL�N� k�.
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Criterion

Proposition

We have W0
�� V�GW

The projection � � V �� W0 turns out a finite morphism.
In particular the fixed loci of GW consists of divisors.

Theorem

�V �D� defines a Galois embedding iff

(1) There exsits a subgroup G of Aut�V � with �G� � Dn.

(2) There exsits a G-invariant linear subspace � of
H0�V ���D�� of dimension n � 1 such that, for any � � G,
the restriction ���� is a multiple of the identity.

(3) The linear system � has no base points.
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abelian variety

Let us apply the above method to abelian varieties.
k � � : field of complex numbers
A : abelian variety, dim A � n
G : subgroup of Aut(A)
� � G has the analytic representation ��z � M���z � t���
where M��� � GL�n� � �, z � � n , t��� � � n

G0 � � � � G � M��� � 1n�,
H � � M��� � � � G�
We have the following exact sequence of groups:

1 �� G0 �� G �� H �� 1	
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Basic property 1

Assume A has the Galois embedding and let G be the Galois
group.
B � A�G0 is abelian variety.
H �� G�G0 is a subgroup of Aut�B�.
We determin the structures of G and H in the cases where
d � 1 and 2 respectively.



Basic property 1

Assume A has the Galois embedding and let G be the Galois
group.
B � A�G0 is abelian variety.
H �� G�G0 is a subgroup of Aut�B�.
We determin the structures of G and H in the cases where
d � 1 and 2 respectively.



Basic property 1

Assume A has the Galois embedding and let G be the Galois
group.
B � A�G0 is abelian variety.
H �� G�G0 is a subgroup of Aut�B�.
We determin the structures of G and H in the cases where
d � 1 and 2 respectively.



Basic property 2

Suppose �A�D� defines Galois embedding.
Let R be the ramification divisor for � � A �� W0.
Then, each component of R is a translation of an abelian
survariety of dimension n� 1.
R � �n � 1�D
R is very ample and Rn � �n � 1�n�G�.
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Corollary

Simple abelian variety A does not have Galois embedding if
dim A � 2.



elliptic curve

Let us apply the above method to elliptic curves.
A � E : elliptic curve

Lemma

A finite subgroup G of Aut�E� can be a Galois group of some
Galois embedding of E iff �G� � 3 and �G0� 	� 1.

So the question is to find all finite subgroups of Aut�E�.
As a direct consequence the following assertion holds:

Corollary

For any smooth elliptic curve E there exists a Galois
embedding whose Galois group is isomorphic to Dn.
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Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by
the elements a�b and c s.t.
(1) a2 � bm � cn � id � aba � b�1� aca � c�1�bc � cb
(2) n � m � 2 and n � 3

We denote this group by BDmn or BD
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Exceptional elliptic group

Definition

A finite non-abelian group G of order m2kl is called an
exceptional elliptic group
if it satisfies the following conditions (1), (2) and (3).

(1) l � 3�4 or 6

(2) G is the semi-direct product H � K with some action of K
onto H ,
where K is a cyclic group of order l and H is the normal
abelian subgroup of G of order m2k with one or two
generators such that the orders of them are m and mk
respectively.

(3) In case H has one generator we regard m � 1.
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Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite group G can be a subgroup of A�E� for some E if and
only if G is isomorphic to one of the following:
(1) abelian case:

(1.1) Zm (m � 1) or Zm � Zmk (m � 2� k � 1)

(1.2) Z2, Z2
�2, Z2

�3, Z3, Z3
�2, Z4, Z2 � Z4 or Z6

(2) non-abelian case:

(2.1) Dn or BDmn (n � 3)

(2.2) E�k � l� or E�m� k � l�

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the
cases
where �G0� � 1� �G0� � 1� �G0� � 2 and �G0� � 2 respectively.



Theorem

A finite subgroup G of Aut�E� can be a Galois group of some
Galois embedding of E iff G is one of the following:
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Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace
into the plane, we get a singular elliptic curve with Galois point.
Let us make examples of plane elliptic curve with a Galois
point. Let G be the group in the above theorem
and suppose � �x � y�G � � �s�.
Then, taking an affine coordinate s, we have a morphism
p � E �� E�G �� �1.
Let D be the polar divisor of s on E.
Next, find an element t � � �x � y� satisfying that div�t� � D � 0
and � �x � y� � � �s� t�.
Then, the curve C defined by s and t has the Galois point at �
with the Galois group G.
Of course C is birational to E.
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Z2
�2

Example

Let E � y2 � x�x �1��x �b� be an elliptic curve, where b 	� 0�1.
Take the automorphisms � and 
 of � �x � y� such that
the complex representations are ���z� � �z and �
�z� � z � �,
where 2� � � and � �� �.
The point �b�0� � E is of order 2 and we have

�x � y� � �b�0� �
�

b�x � 1�
x � b

�
b�b� 1�y
�x � b�2

�
.

Then the translation 
 of order two can be expressed as


�x� �
b�x � 1�

x � b
and 
�y� �

b�b � 1�y
�x � b�2

.
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Z2
�2 (Continuation)

Example

Since � is the zero element and is fixed by �, we see ��x� � x ,
��y� � �y .

Let G � ��� 
�. Crealy x �
b�x � 1�

x � b
�

x2 � b
x � b

is invariant by 
 .

so put s �
x2 � b
x � b

.

Let Q1 and Q2 be the points �b � 0 � 1� and �0 � 1 � 0� on E
respectively,
where �X � Y � Z � are homogeneous coordinates satisfying
x � X�Z and y � Y�Z .
Then put D � 2Q1 � 2Q2 as a divisor.

It is easy to see that the pole divisor of
x2 � b
x � b

is D.

Putting t �
y � a
x � b

, where a 	� 0��1, we have div�t� � D � 0.
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x � b

.

Let Q1 and Q2 be the points �b � 0 � 1� and �0 � 1 � 0� on E
respectively,
where �X � Y � Z � are homogeneous coordinates satisfying
x � X�Z and y � Y�Z .
Then put D � 2Q1 � 2Q2 as a divisor.

It is easy to see that the pole divisor of
x2 � b
x � b

is D.

Putting t �
y � a
x � b

, where a 	� 0��1, we have div�t� � D � 0.
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�2 (Continuation)

Example

Using the equations s �
x2 � b
x � b

� t �
y � a
x � b

and

y2 � x�x � 1��x � b�,
we infer by some computations that � �s� t� � x if a 	� 0��1.
Therefore we have � �x � y� � � �s� t�.
Thus we have the defining equation

a4 � a3�4b � 2s�t � abt��4b � 4b2 � 2s � 2bs � 4b2s � 2s2 �
2bs2 � 4bt2 � 4b2t2 � 2st2 � 2bst2� � a2�2b � 2b2 � 6bs �
2b2s � s2 � 4bs2 � s3 � 2bt2 � 6b2t2 � 4bst2 � s2t2� �

b2��1 � 2b� b2 � 2s � 4bs � 2b2s � s2 � 2bs2 � b2s2 � 2t2 �

4bt2 � 2b2t2 � 2st2 � 4bst2 � 2b2st2 � t4 � 2bt4 � b2t4�
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Very ampleness

Lemma

Now, return to the case of abelian surface.
we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite
automorphism group of A
satisfying that A�G is isomorphic to �2

and let � � A �� �2 be the quotient morphism.
If deg� � 10, then ����� � D is very ample for each line � in �2.

Corollary

Under the same assumption and notation of the above lemma,
the pair �A�D� defines a Galois embedding.
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Theorem

Theorem

If an abelian surface A has the Galois embedding, then
H � G�G0 is isomorphic to one of the following:

(1) D3

(2) D4

(3) the semi-direct product of groups: Z2 �H �, where H � �� D4

or Zm � Zm �m � 3�4�6�
To state case (3) more precisely, we put Z2 � �a�
and H � � �b� c�. Then the actions of Z2 on H � are as
follows:
In the former case H � �� D4, we have
aba � bc2� aca � c� c4 � 1� b2 � 1 and bcb � c�1.
In the latter case H � �� Zm � Zm, we have
aba � b�1� aca � c�1� bm � cm � 1 and bc � cb.
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Corollary

If A has a Galois embedding, then the abelian surface
B � A�G0 is isomorphic to E � E for some elliptic curve E.



Example 1

Example

Let A be the abelian surface with the period matrix

� �

� �1 �2 �
 
�2

1 � 
 
�

�
�

� �1 �2

1 �

��
1 0 
 0
0 1 0 


�
�

where �
 � 0 and � � exp�2�

�1�6�. Clearly we have

A �� E � E where E � � ��1� 
�.
Letting z � � 2 and v i be the i-th column vector of � (1 � i � 4),
we define ti to be the translation on A such that ti z � z�v i�m,
where m is an integer � 2.
Let a and b be the automorphism of A such that the complex
representations are
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�
0 1
1 0

�
and

� �� 0
0 �2

�
respectively. Put G0 � �t1� 	 	 	 � t4� and G � �G0�a�b�.
Then G0 is a normal subgroup of G and G�G0

�� D3.
Clearly we have �G� � 6m4. Looking at the fixed loci of H, we
infer that A�G is smooth.
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Example 2

Example

Let E be the elliptic curve � ��,
where � � �1� 
� is a period matrix such that �
 � 0.
Let a and b be the automorphisms of E defined by a�z� � �z
and b�z� � z � 1�m respectively,
where z � � and m is a positive integer � 2.
Let G be the subgroup of Aut�E� generated by a�b. Then
G � �a� b� �� Dm; the dihedral group of order 2m.
Let y2 � 4x3 � px � q be the Weierstrass normal form of E and
K � � �x � y�.
Then the fixed field of K by G is rational � �t�, where t � � �x�.
Putting D � �t�� ; the divisor of poles of t , we infer readily that
deg D � 2m and �E �D� defines a Galois embedding for each
m.
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Continuation

Example

Let E be the elliptic curve E in the example above such that

 � em� m � 3� 4 or 6.
Let A be the abelian surface E � E . We define automorphisms
on A as follows:
let a, b and c be the homomorphisms whose complex
representations are�

0 1
1 0

�
�

�

 0
0 1

�
�

�
1 0
0 


�
respectively. Let G � �a�b� c�.
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Clearly we have a2 � bm � cm � 1� bc � cb� ca � ab and
ba � ac, and �G� � 2m2.
Moreover we have G �� Z2 � �Zm � Zm�.
Put E1 � E � �0� and E2 � �0� � E , where 0 is the zero
element of E ,
then put D � n�E1 � E2�, clearly we have D2 � 2n2.
It is well known that D is very ample if n � 3.
We see from the criterion that �A�D� defines a Galois
embedding whose Galois group is isomorphic to G.
Let us examine the case m � 3 in a different point of view.
Since E is defined by the Weierstrass normal form
y2 � 4x3 � 1,
we have that � �A� � � �x � y � x � � y ��, where y �2 � 4x �3 � 1.
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The automorphisms a, b and c induce the ones of � �A� as
follows:

(1) a� interchanges x and x �, y and y �.

(2) b��x� � �2x and b� fixes y � x � and y �.

(3) c��x �� � �2x � and c� fixes x � y and y �.

Therefore, the fixed field � �A�G is � �y � y �� yy ��,
and we have �y � y �� � D � 0 and �yy �� � D � 0.
Embedding by 3�E1 � E2� is the composition of the embedding
E � E �� �2 � �2
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followed by the Segre embedding �2 � �2 �� �8.
Using homogeneous coordinates �X �Y �Z � [resp. �X ��Y ��Z ��]
satisfying that x � X�Z � y � Y�Z [resp.
x � � X ��Z �� y � � Y ��Z �],
we can express this embedding as

f �X �Y �Z �X ��Y ��Z �� � �XX ��YX ��ZX ��XY �� 	 	 	 �ZZ ��	

Letting �T0� � � � �T8� be a set of homogeneous coordinates of
�8,
we can express the Galois subspace by T5 � T7 � T4 � T8 � 0.
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Remark

In case f �V � �W 	� �, H can be abelian, in fact, in the situation
above
let W be the linear subspace defined by T5 � T7 � T8 � 0.
Consider the projection �W with the center W.
Then f �A� �W consists of nine points.
The projection induces the Galois extension whose Galois
group is isomorphic to
�3 � �3
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Minimal embedding

If an abelian surface is embedded into �N , then N � 4, and in
case N � 4 the abelian surface has a special structure.
Reider’s Theorem

Theorem

Suppose L is an ample line bundle of type �1�d� with d � 5 and
does not split.
Then the morphism fL � A �� �d�1 is an embedding
if and only if there is no elliptic curve E on A with �E �L� � 2.

Similarly let us find the least number N that the abelian surface
A has the Galois embedding into �N .
In the case of elliptic curve such a curve is unique and defined
by Y 2Z � 4X 3 � Z 3.
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Minimal embeddig

Theorem

Suppose �A�D� defines the Galois embedding. Then the least
number N is seven, i.e., A is embedded into �7. Moreover H is
isomorphic to D4 or Z2 � D4.
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Example

A � � 2��, � is the period matrix�
1 0 
 0
0 1 0 


�
� where �
 � 0	

�g1
z � 
z � 1
2

�
n1 � n3

n2 � n4


�
�

�g2
z �

�
0 1
1 0

�

z �

�
�1

�2

�
�

�g3
z �

�
0 �1
1 0

�

z

where �n1�n2�n3�n4� � �0�0�1�1�� �1�1�0�0�� �1�1�1�1���
�1 � �2

�1 � �2

�
� �A and

�
2�1

0

�
� �A�



Example(continuation)

Example

Then we have g1
2 � g2

2 � g3
4 � id , g2g3g2 � g3

�1

and gig1 � g1gi �i � 2�3� on A.
Putting G � �g1�g2�g3�, we have G1 � �g1� and G � G1 �G2

where G2 � �g2�g3�.
Clearly G2

�� D4.
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Example

A � � 2��, � is the period matrix�
1 0 i �1 � i��2
0 1 0 �1 � i��2

�
� where i �



�1	

Let g1, g2 and g3 be the automorphisms defined by

�g1
z �

��1 0
0 1

�

z �

�
�11

�12

�
�

�g2
z �

�
0 1
1 0

�

z �

�
�21

�22

�
�

�g3
z �

�
i 0
0 �i

�

z	



Example(continuation)

Example

Then we have
g1

2 � g2
2 � g3

4 � 1� g1g2g1 � g2g3
2� g1g3g1 � g3 and

g2g3g2 � g3
�1.

Putting G � �g1�g2�g3�, we see that G is isomorphic to
the semidirect product Z2 �D4

and G becomes a subgroup of Aut�A� and A�G �� �
2.
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