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Abstract

The purpose of this paper is to investigate the global topological mon-
odoromy of a certain fibration of the Fermat surface without using numerical
analysis by computer.

1 Introduction

Let M be a complex surface and let B be a complex curve. A holomorphic map
f : M → B is a degeneration map if f satisfies (1) f is proper and surjective, (2)
there exist finite number of critical values si ∈ B (i = 1, 2, . . . , r) and (3) if s 6= si

then f−1(s) is a compact Riemann surface.
We consider a simple loop γi ⊂ B\{si} surrounding only si with a base point s0.

Then f−1(γi) is a topological mapping torus and we obtain a self-homeomorphism
ρi : f−1(s0) → f−1(s0) of the reference fiber f−1(s0). We call it a local monodromy
of the singular fiber f−1(si). Choice of γi has ambiguity by isotopy and conjugation.
Hence a local monodromy ρi is determined up to isotopy and conjugation.

The local monodromy is well-studied from both of algebraic and topological
aspects. Matsumoto and Montesinos-Amilibia’s paper [9] is one of the most impor-
tant ones because they gave a perfect correspondence between local monodromies
and degeneration maps from a topological viewpoint.

On the other hand, if we fix the base point s0 (s0 6= si), then the monodromy
is given by a homomorphism

ρ : π1(B \ {si}, s0) →M(f−1(s0)),

where M(f−1(s0)) is a mapping class group of the reference fiber f−1(s0). This
ρ is called a global monodromy. For a given degeneration map f : M → B, we
are much interested in how to calculate ρ concretely, but it is difficult to do that.
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Simply because if B and/or f are given by high-degree polynomials, then we have
few idea to ‘solve’ the equations on f−1(s) generally.

Experimental trials of getting global monodromies were done for some exam-
ples. Ahara [1], [2] and Matsumoto [7] give the global monodromy of the degen-
eration map (1.1) from the Fermat surface of degree 5 (and 6) to CP 1. Kuno [6]
also determine the global monodromy of another degenaration map on the Fermat
surface of degree 4. In both examples, in order to obtain the global monodromies
they use numerical analysis by computer.

In this paper we give a way to get the global monodromy ‘by hand’, without
useing computer calculation. The recipe of calculation is the same as those of
Matsumoto, Ahara, and Kuno. In this paper, we use lots of tricks to pursue
solutions of high-degree equations and succeed in acquiring the results.

We fix a degenaration map f : Vn → CP 1 from the Fermat surface of degree
n to CP 1 and assume n is an odd number. Also in the case that n is an even
number, we have similar results but we omit these for simple description. See [4]
for detail.

This paper is organized as follows. In the remaining of this section, we prepare
some notations and introduce some basic results of the singular fibers. In section 2,
we define a branched covering map ps of each fiber f−1(s). In section 3, we obtain
the configuration of branch points of ps0 of the reference fiber f−1(s0). Finally in
section 4, we show our main results.

1.1 Preparation

We set
Vn := {[z0 : z1 : z2 : z3] ∈ CP 3 : zn

0 − zn
1 − zn

2 + zn
3 = 0}.

Then Vn is a complex projective hypersurface, and we call it the Fermat surface of
degree n. We regard CP 1 as C ∪ {∞} and define a fibration f : Vn → CP 1 by

f([z0 : z1 : z2 : z3]) :=





zn−1
2

zn−1
0

if z0 = z1 and z2 = z3,

z0 − z1

z2 − z3

otherwise.
(1.1)

We take an open covering

CP 3 = U1 ∪ U2 ∪ U3 ∪ U4,

where Ui := {[z0 : z1 : z2 : z3] ∈ CP 3 : z0 6= zi} (i = 1, 2, 3) and U4 is an open
neighborhood of [1 : 1 : 1 : 1]. Here Ui

∼= C3 (i = 1, 2, 3). Setting

X :=
z0

z0 − z1

, Y :=
z2

z0 − z1

, Z :=
z3

z0 − z1

,
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then
z1

z0 − z1

= X − 1.

Hence

Vn ∩ U1 = {(X, Y, Z) ∈ C3 : Xn − (X − 1)n − Y n + Zn = 0},

and f : Vn ∩ U1 → CP 1 is expressed as

f(X, Y, Z) =
1

Y − Z
.

For a nonzero s ∈ C, we can express f−1(s) ∩ U1 as

f−1(s) ∩ U1 = {(X, Y ) ∈ C2 : gs(X,Y ) = 0},

where

gs(X,Y ) := Xn − (X − 1)n − Y n +

(
Y − 1

s

)n

.

In order to know the positions of the singularities, we solve the system of
equations

∂gs

∂X
= 0,

∂gs

∂Y
= 0, gs(X, Y ) = 0.

First, from ∂gs

∂X
= 0, we solve the equation

∂gs

∂X
= nXn−1 − n(X − 1)n−1 = 0,

which is rewritten as
Xn−1 = (X − 1)n−1.

Then we obtain νkX = (X − 1) and

X =
1

1− νk

,

where νk = exp(2kπi
n−1

) (k = 1, 2, . . . , n− 2) is an (n− 1)st root of unity other than
1. We set

Xk :=
1

1− νk

(1.2)

. Next, from ∂gs

∂Y
= 0, we solve the equation

∂gs

∂Y
= −nY n−1 + n

(
Y − 1

s

)n−1

= 0,
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which is rewritten as

Y n−1 =

(
Y − 1

s

)n−1

.

Then we have τlY = (Y − 1/s) and

Y =
1

s(1− τl)
,

where τl = exp( 2lπi
n−1

) (l = 1, 2, . . . , n − 2) is an (n − 1)st root of unity other than
1. We set

Yl(s) :=
1

s(1− τl)
. (1.3)

Substituting Xk, Yl(s) into gs(X,Y ), then we have

gs(Xk, Yl(s)) =
1

(1− νk)n−1
− 1

sn(1− τl)n−1
.

We solve the equation gs(Xk, Yl(s)) = 0 in s. Then the critical values of f : Vn →
CP 1 other than 0 or ∞ are the solutions of

sn =

(
1− νk

1− τl

)n−1

.

We can rewrite the right hand side of this equation as

(−1)k−l

(
sin kπ

n−1

sin lπ
n−1

)n−1

by using Lemma 3.1.2. We denote the critical value by

s
(j)
k,l (j = 0, 1, . . . , n− 1 and k, l = 1, 2, . . . , n− 2).

The singular points are given by

(X,Y ) =

(
1

1− νk

,
1

s
(j)
k,l (1− τl)

)
.

For a regular value s0 ( 6= s
(i)
k,l, 0,∞), a general fiber f−1(s0) is defined by a

polynomial of degree n− 1. By Plücker’s formula, we obtain the following

Proposition 1.1.1. If s0 is a regular value of f : Vn → CP 1, then f−1(s0) is a
complex curve of genus (n− 2)(n− 3)/2.

We remark that the fibers have some symmetry like

f−1(s) ∼= f−1(e2πi/ns)

and
f−1(s) ∼= f−1(1/s).
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1.2 The shapes of singular fibers

Matsumoto [8] determined the topological types of all singular fibers of f : Vn →
CP 1.

Theorem 1.2.1 (Matsumoto [8]). We assume that the degree n is greater than
3. Then the singular fiber is as follows:

(I) If n is odd (and if n ≥ 13, then n 6≡ 1 (mod. 6)), then there appear four
types of singular fibers:

(1) For s0 = 0 or ∞, f−1(s0) consists of n − 1 projective lines. Each
projective line intersects the others projective lines at only one point.

(2) For s0 which is an nth root of unity, each fiber f−1(s0) consists of a
plane curve of degree n − 3 and two projective lines. Each projective
line intersects the plane curve at n − 3 points and intersects the other
line at one point.

(3) For an integer k (1 ≤ k < n−3
2

), letting s0 be an nth root of

(−1)
n−1

2
+k

(
sin

kπ

n− 1

)n−1

or

(−1)
n−1

2
+k

(
1

sin kπ
n−1

)n−1

,

then each fiber f−1(s0) is an irreducible plane curve of degree n−1 with
two nodes. Its vanishing cycles corresponding to the two nodes are non-
separating simple closed curves and they are not homologous to each
other.

(4) For an ordering pair of integers (k, l) (1 ≤ k, l ≤ n−3
2

), letting s0 be an
nth root of

(−1)k−l

(
sin kπ

n−1

sin lπ
n−1

)(n−1)

,

then each fiber f−1(s0) is an irreducible plane curve of degree n − 1
with four nodes. Its vanishing cycles corresponding to the four nodes
are non-separating simple closed curves and they are not homologous to
each other.

(II) If n is even, then there appear three types of singular fibers:
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(1) For s0 = 0 or ∞, each fiber f−1(s0) consists of n − 1 projective lines
and each projective line intersects the others projective lines at only one
point.

(2) For s0 which is a 2nth root of unity, each f−1(s0) consists of a plane
curve of degree n−2 and a projective line. The line intersects the plane
curve at n− 2 points.

(3) For an ordering pair of integers (k, l) (1 ≤ k, l ≤ n−2
2

), letting s0 be a
2nth root of (

sin kπ
n−1

sin lπ
n−1

)2(n−1)

,

then each fiber f−1(s0) is an irreducible plane curve of degree n−1 with
two nodes. Its vanishing cycles corresponding to the two nodes are non-
separating simple closed curves and they are not homologous to each
other.

Moreover, Matsumoto told us that he had a certain result about the singular
fibers in case n ≡ 1 (mod. 6) in a joint paper with K. Masuda but it is not
published yet.

2 Branched covering map

Is this section, we define a branched covering map ps from a fiber f−1(s) to CP 1

for a general s. This map plays an important role to describe the reference fiber
and to determine the topological monodromy around a singular fiber.

2.1 Definition of a branched covering map

Before we define the branched covering map, we note that the following lemma.

Lemma 2.1.1. If s is not zero nor infinity, then f−1(s) ∩ {z0 = z1} consists of
n− 1 points.

Proof. From the definition of the map f ;

f([z0 : z1 : z2 : z3]) =

{
0 if z2 6= z3,
(z2/z0)

n−1 if z2 = z3,

if s 6= 0, then the equation zn−1
2 = szn−1

0 has n−1 solutions. We solve the equation
as z2 = y1, y2, . . . , yn−1. Then we obtain

f−1(s) ∩ {z0 = z1} = {[z0 : z1 : y1 : y1], [z0 : z1 : y2 : y2], . . . , [z0 : z1 : yn−1 : yn−1]}.
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Now, we define a branched covering map ps : f−1(s) → CP 1 = C ∪ {∞} by

ps([z0 : z1 : z2 : z3]) :=
z0

z0 − z1

.

Since the inverse image p−1
s (∞) of the infinity point consists of n− 1 points from

Lemma 2.1.1,∞ is not a branch point of ps. Hence we consider a branched covering
map ps from f−1(s) \ {n− 1 points} to C defined by

ps : f−1(s) \ {n− 1 points} → C, ps(X, Y ) := X.

Here f−1(s)∩{z0 6= z1} = {(X, Y ) ∈ C2 : gs(X,Y ) = 0}. Let s0 be a regular value
of f : Vn → CP 1. Then this map is an (n− 1)-fold branched covering map from a
smooth complex curve f−1(s0) of genus (n − 2)(n − 3)/2 to CP 1 . Hereafter, for
simplicity, we denote f−1(s0) \ {n− 1points} by f−1(s0).

2.2 Branch points and ramification points

We determine the branch points of ps0 : f−1(s0) → C. For a general point X0 ∈ C,
the number of the solutions of the equation in Y

Xn
0 − (X0 − 1)n − Y n +

(
Y − 1

s0

)n

= 0 (2.1)

is n− 1. The Y -coordinate of the ramification points are the multiple roots of the
equation (2.1). Solving

∂gs0

∂Y
= 0, then we have

Yl = Yl(s0) =
1

s0(1− τl)
, l = 1, 2, . . . , n− 2.

The branch points of ps0 : f−1(s0) → C is the solutions of the equation in X

Xn − (X − 1)n − Y n
l +

(
Yl − 1

s0

)n

= 0, l = 1, 2, . . . , n− 2. (2.2)

Let X
(l)
j (j = 1, 2, . . . , n − 1) be the solution of (2.2). That is, the branch points

are the solutions of the equation in X

n−2∏

l=1

{
Xn − (X − 1)n − Y n

l +

(
Yl − 1

s0

)n}
= 0.
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As in Lemma 3.1.2.

Y n
l − (Yl − 1

s0
)n =

1

sn
0 (1− τl)n−1

=
in−1(−1)l

2n−1sn
0 (sin(lπ/(n− 1)))n−1

.

If l′ = n−1− l, then Y n
l −(Yl−1/s0)

n = Y n
l′ −(Yl′−1/s0)

n and {X(l)
j }j = {X(l′)

j }j.
Hence we can reduce the running number l and obtain

[(n−1)/2]∏

l=1

{
Xn − (X − 1)n − 1

sn
0 (τl − 1)n−1

}
= 0, (2.3)

where [·] is Gauss symbol. Generally in order to identify X
(l)
j to X

(l′)
j , we need to

permute the index j. But if l′ = n− 1− l, then the equations (2.2) coincide for l

and l′, so we may identify X
(l)
j to X

(l′)
j naturally.

Hence if s0 is a regular value of f : Vn → CP 1, the number of the branch points
is {

(n− 1)2/2 if n is odd,
(n− 1)(n− 2)/2 if n is even.

Lemma 2.2.1. For a general fiber f−1(s0), the ramification index of each ramifi-
cation point of the branched covering map ps0 : f−1(s0) → C is two.

Proof. There exist no solutions of the system of equations




gs0(X0, Y ) = Xn
0 − (X0 − 1)n − Y n +

(
Y − 1

s0

)n

= 0,

∂gs

∂Y
= 0,

∂2gs

∂Y 2
= 0.

This leads to the assertion.

¥

It is easy to check that if s0 is a regular value of f : Vn → CP 1, then the equation
(2.3) does not have any multiple roots. If s is a critical value of f : Vn → CP 1,
then the equation (2.3) has multiple roots. (Precisely speaking, they are double
roots from Lemma 2.2.1.)

Moreover, we can determine the positions of all branch points. See Figure 6.
In order to draw the positions of branch points, we need more discussions. Hence
we leave the conclusion to subsection 3.3.
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In order to determine the topology of a reference fiber f−1(s0), we want to
know the permutation of the solutions of gs0(X, Yl) = 0 when we move X from X0

to the branch point X
(l)
j . We investigate the branched covering map ps0 in detail

and determine the permutation in section 3. In order to determine the monodromy
around the singular fiber f−1(s

(j)
k,l ), we want to know the trace of the branch points

X
(l)
j when s moves from s0 to the singular value s

(j)
k,l and we determine it in section

4.

3 Determination of the reference fiber

We keep the notation as above. In order to determine topological structure of the
reference fiber f−1(s0), we need some technical theorems. We have to separate
into two cases that (i) n is odd and (ii) n is even. In this article, we only state the
case that n is odd, but we can get similar results for even n. See [4].

3.1 Technical theorems

For “good” s0 and X0, we want a good configuration of the solutions of the equation
gs0(X0, Y ) = 0 and that of the branch points of ps0 . The key theorem is

Theorem 3.1.1. Let X0 = 1/2 and let Y (1), Y (2), . . . , Y (n−1) be the solutions of
gs0(X0, Y ) = 0. If s0 is a sufficiently small positive real number, then Y (1), Y (2), . . . , Y (n−1)

lie on a line {Y ∈ C | Re Y = 1/2s0} (Im Y (1) > Im Y (2) > · · · > Im Y (n−1)).
Moreover, there exists Yl between Y (l) and Y (l+1) on the line. See Figure 1.

Before we proceed the proof of Theorem 3.1.1, we show technical lemmas.

Lemma 3.1.2. Let θ = π/(n− 1). The following equalities hold:

(i) τl + 1 = 2elθi cos lθ.

(ii) 1− τl = −2ielθi sin lθ.

(iii) Yl(s)
n −

(
Yl(s)− 1

s

)n

=
1

sn(1− τl)n−1
.

(iv) Yl(s) =
1

s(1− τl)
=

1

2s
+ i

sin 2lθ

2s(1− cos 2lθ)
.

Proof.

(i) τl + 1 = e2lθi + 1

= elθi{elθi + e−lθi}
= 2elθi cos lθ.
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(ii) 1− τl = 1− e2lθi

= elθi{e−lθi − elθi}
= −2ielθi sin lθ.

(iii) Yl(s)
n −

(
Yl(s)− 1

s

)n

=

(
1

s(1− τl)

)n

−
(

τl

s(1− τl)

)n

=
(1− τl)

sn(1− τl)n
=

1

sn(1− τl)n−1
.

(iv)
1

s(1− τl)
=

1

s(1− cos 2lθ − i sin 2lθ)

=
1− cos 2lθ + i sin 2lθ

2s(1− cos 2lθ)

=
1

2s
+ i

sin 2lθ

2s(1− cos 2lθ)
.

¥

Corollary 3.1.3. The real part of 1/(1− τl) is 1/2.

From Corollary 3.1.3, if we take s a real number, then not only the real part
of Yl(s) is 1/2s but also the real part of Xk is 1/2. (We note that Yl(s) is the
Y -coordinate of the ramification point of ps.) We remark that the real part of
Yl(s) is independent of n. It depends only on s.

Let s0 be a regular value of f and let X0 be a regular value of ps0 , that is, X0

is not a branch point. We investigate the solutions of the equation

Xn
0 − (X0 − 1)n − Y n +

(
Y − 1

s0

)n

= 0. (3.1)

Lemma 3.1.4. The equation (3.1) has solutions of the form

Y =
1

2s0

± βj,

where βj ∈ C (j = 1, 2, . . . , (n− 1)/2).

Remark 3.1.5. This lemma implies that the configuration of the solutions of (3.1)
has symmetry on 1/2s0. If all βj are purely imaginary numbers and s0 is a real
number, then the solutions of (3.1) lie on the line {Y ∈ C | Re Y = 1/2s0}. (See
Figure 1. )
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Proof. We set Y ′ := Y − 1/2s0. Then the equation (3.1) is rewritten as

Xn
0 − (X0 − 1)n −

(
Y ′ +

1

2s0

)n

+

(
Y ′ − 1

2s0

)n

= 0.

The left hand side of this equation is

−2nC1(Y
′)n−1

(
1

2s0

)
− 2nC3(Y

′)n−3

(
1

2s0

)3

− · · · − 2nCn−2(Y
′)2

(
1

2s0

)n−2

−2

(
1

2s0

)n

+ Xn
0 − (X0 − 1)n.

(3.2)
Since n is odd (and n− 1 is even), the polynomial (3.2) has only the terms of even
degree. Hence there exist some complex numbers βj (j = 1, 2, . . . , (n − 1)/2), we
have solutions as

(Y ′)2 = β2
j ,

and we have
Y ′ = ±βj.

Substituting this into Y = Y ′ + 1/2s0, we can solve

Y =
1

2s0

± βj, βj ∈ C, j = 1, 2, . . . ,
n− 1

2
.

¥

We set
Ψ(X) := Xn − (X − 1)n

and

φ(Y ′) := Ψ(X0)−
(

Y ′ +
1

2s0

)n

+

(
Y ′ − 1

2s0

)n

.

Expanding φ(Y ′), we have

φ(Y ′) = −2nC1(Y
′)n−1

(
1

2s0

)
− 2nC3(Y

′)n−3

(
1

2s0

)3

− · · · − 2nCn−2(Y
′)2

(
1

2s0

)n−2

−2

(
1

2s0

)n

+ Ψ(X0).

Now, we prove that all solutions of φ(Y ′) = 0 are purely imaginary numbers
for X0 = 1/2 and a sufficiently small positive number s0. We obviously obtain

Lemma 3.1.6. Let Y ′ = vi be a purely imaginary number and let s0 be a real
number. If Ψ(X0) ∈ R, then φ(Y ′) ∈ R.
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Under the assumption of Lemma 3.1.6, we can define a function φ(v) : R→ R
by φ(v) := φ(vi). That is,

φ(v) := −(−1)(n−1)/22nC1v
n−1 − (−1)(n−3)/22nC3v

n−3

(
1

2s0

)2

− · · ·

−(−1)2nCn−2v
2

(
1

2s0

)n−2

− 2

(
1

2s0

)n

+ Ψ(X0).

We draw a graph of w = φ(v). In order to know the extreme points of w = φ(v),

we solve dφ
dY ′ (Y

′) = 0. (Equivalently
dgs0 (X0,Y )

dY
= 0.) From (1.3),

Y ′ = Yl − 1

2s0

=
τl + 1

2s0(1− τl)
, l = 1, 2, . . . , n− 2.

We denote this by Y ′
l . From Lemma 3.1.2, we obtain

Y ′
l =

i cot lθ

2s0

. (3.3)

We set bl := Im Y ′
l = (cot lθ)/2s0. Then the following inequalities hold:

Lemma 3.1.7. b1 > b2 > · · · > b(n−1)/2 = 0 > b(n+1)/2 > · · · > bn−2.

We note that φ(bl) is the extremum. Now we investigate the sign of φ(bl). We
compute φ(bl):

φ(bl) = φ(Y ′
l ) = gs0(X0, Yl) = Ψ(X0)− 1

sn
0 (1− τl)n−1

.

From Lemma 3.1.2 (ii), we have

φ(bl) = Ψ(X0)− 1

sn
0 (2ielθi sin lθ)n−1

= Ψ(X0)− (−1)(n−1)/2+l

sn
02n−1(sin lθ)n−1

.

For X0 = 1/2, Ψ(X0) = Xn
0 − (X0 − 1)n = 1/2n−1 and we have

φ(bl) =
1

2n−1
− (−1)(n−1)/2+l

sn
02n−1(sin lθ)n−1

.

Obviously, for any n and l, there exists an small positive real number s0 such that
the following inequalities hold:

0 < sn
0 < 1. (3.4)

Therefore we deduce
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Lemma 3.1.8. Suppose that X0 = 1/2 and s0 is sufficiently small positive real
number satisfying (3.4). Then

(I) If (n− 1)/2 is even, then

φ(bl) =

{
negative if l is even,
positive if l is odd.

(II) If (n− 1)/2 is odd, then

φ(bl) =

{
positive if l is even,
negative if l is odd.

From this lemma, it follows that the graph w = φ(v) is as Figure 2. Since φ(v)
is a polynomial of degree n− 1, the number of solutions of the equation φ(v) = 0
is n− 1 and we obtain

Proposition 3.1.9. Let s0 be a positive real number satisfying (3.4). Setting
X0 := 1/2, then any solution of the equation φ(Y ′) = 0 is a purely imaginary
number.

We denote the solutions of φ(v) = 0 by v(j) (j = 1, 2, . . . , n − 1) such that
v(1) > v(2) > · · · > v(n−1). Then φ(v(j)i) = 0 and hence the solution Y (j) of
φ(Y ) = 0 is expressed as

Y (j) =
1

2s0

+ v(j)i,

By Lemma 3.1.4 and Proposition 3.1.9, we conclude

Corollary 3.1.10. Let s0 and X0 be as in Proposition 3.1.9. Then Y (1), Y (2), . . . , Y (n−1)

lie on the line defined by Re Y = 1/2s0. See Figure 1.

As seen in Figure 2, the inequalities

v(n−1) < bn−2 < v(n−2) < bn−1 < · · · < v(2) < b1 < v(1)

hold. Then we conclude Theorem 3.1.1 for the case n is odd.

3.2 The curve C defined by Im Ψ(X) = 0

In order to investigate the permutation of Y (l)’s when we move X from the base
point X0 to the branch points X

(l)
j , we find a “good” path from X0 to X

(l)
j . In

this section, we assume that s0 is a real number.

13



We set

φX(v) := gs0(X, 1
2s0

+ vi)

= −(−1)(n−1)/22nC1v
n−1

(
1

2s0

)
− (−1)(n−3)/22nC3v

n−3

(
1

2s0

)3

− · · · − (−1)2nCn−2v
2

(
1

2s0

)n−2

− 2

(
1

2s0

)n

+ Ψ(X).

We remark that φX0
= φ. If X = X

(l)
j , then φX(bl) = 0. It follows that the graph

w = φ
X

(l)
j

(v) is tangent to the v-axis at (bl, 0). If X moves along a path satisfying

that Ψ(X) is a real number, that is Im Ψ(X) = 0, then we can see the movement
of the graph w = φX(v) and how the intersection points v(l) and v(l+1) converse to
bl. Here we consider v(j) as a continuous function of X, whenever they exist. In
this subsection, we investigate a curve defined by Im Ψ(X) = 0.

We set X := x + iy. Then Ψ(X) = (x + iy)n − (x + iy− 1)n. We often denote
Ψ(X) by Ψ(x, y) and we define the curve

C := {X ∈ C : Im Ψ(X) = 0}(= {(x, y) ∈ R2 : Im Ψ(x, y) = 0}).
Proposition 3.2.1. The notation is as above. Then the imaginary part of Ψ(x, y)
is factorized as Im Ψ(x, y) = y(x − 1/2)h(x, y). Moreover the curve C passes

through the points X
(l)
j and Xk = 1/(1− νk).

We remark that h(x, y) is a polynomial of degree n− 3 in y.
In order to show this proposition, we need three lemmas.

Lemma 3.2.2. If x = 1/2, then Ψ(1/2, y) is a real number.

Proof. Substituting X = 1/2 + iy into Ψ(X), then

Ψ

(
1

2
+ iy

)
=

(
1

2
+ iy

)n

−
(

1

2
+ iy − 1

)n

=

(
iy +

1

2

)n

−
(

iy − 1

2

)n

.

Since n is odd, this is a polynomial of (iy)2. Hence Ψ(1/2 + iy) is a real number.

¥
Lemma 3.2.3. If y = 0, then Ψ(x, 0) is a real number.

Proof. Let X be a real number. Then

Ψ(x, 0) = xn − (x− 1)n,

and it is obviously a real number.

14
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From Lemma 3.2.2 and 3.2.3, it follows that Im Ψ(x, y) factorize as Im Ψ(x, y) =

y(x− 1/2)h(x, y). Moreover all the branch points X
(l)
j and Xk are on the curve C

from the next lemma.

Lemma 3.2.4. (i) Ψ(X
(l)
j ) ∈ R and (ii) Ψ(Xk) ∈ R.

Proof. (i) Since X
(l)
j is a solution of the equation

gs0(X,Yl) = Ψ(X)− 1

sn
0 (1− τl)n−1

= 0,

Ψ(X
(l)
j ) = 1/sn

0 (1− τl)
n−1. Now from Lemma 3.1.2,

Ψ(X
(l)
j ) =

(−1)(n−1)/2+l

sn
02n−1(sin lθ)n−1

.

Clearly, Ψ(X
(l)
j ) is a real number.

(ii) Since the real part of Xk is 1/2 from Lemma 3.1.3, Ψ(Xk) ∈ R from Lemma
3.2.2.

¥

Therefore we obtain Proposition 3.2.1.
For convenience, we set

L :=

{
(x, y) ∈ R2 : x =

1

2

}
⊂ R2 = C

and
H := {(x, y) ∈ R2 : yh(x, y) = 0}.

We note that C = L ∪H. We next show

Proposition 3.2.5. The line L and the curve H intersect at Xk. Moreover, the
number of the intersection points is n− 2.

In order to show Proposition 3.2.5, we first show

Lemma 3.2.6. Let yk be a solution of h(1/2, y) = 0. Then 1/2 + iyk = Xk, a
solution of dΨ

dX
= 0.

15



Proof. We separate the holomorphic function Ψ(X) into the real part and the
imaginary part: Ψ(X) := u(x, y) + iv(x, y) where X = x + iy. Since Ψ(X) is a
holomorphic function, Cauchy-Riemann formula is followed:

∂Ψ

∂X
=

∂v

∂y
+ i

∂v

∂x
. (3.5)

From Proposition 3.2.1, the imaginary part v(x, y) = y(x− 1/2)h(x, y). We com-
pute the derivatives ∂v

∂x
and ∂v

∂y
:

∂v

∂x
= y

{
h(x, y) +

(
x− 1

2

)
∂h

∂x

}
, (3.6)

∂v

∂y
=

(
x− 1

2

){
h(x, y) + y

∂h

∂y

}
. (3.7)

The conditions h(1/2, yk) = 0 and x = 1/2 imply that ∂v
∂x

= ∂v
∂y

= 0. Hence
dΨ
dX

(1/2, yk) = 0.

¥

Next we show the converse.

Lemma 3.2.7. Let Xk = 1/2 + iyk. Then ykh(1/2, yk) = 0.

Proof. We note that Xk = 1/2+ iyk is a solution of dΨ
dX

= 0. Then from (3.5),

∂v

∂x
(
1

2
, yk) = 0.

From (3.6), we obtain

ykh(
1

2
, yk) = 0.

¥

Moreover, we have

Proposition 3.2.8. The curve C is symmetric about the line L and the x-axis.

Proof. Easily we can show that

Im Ψ(x, y)
= y{nC1[x

n−1 − (x− 1)n−1]− nC3[x
n−3 − (x− 1)n−3]y2

+ · · ·+ (−1)(n−3)/2
nCn−2[x

2 − (x− 1)2]yn−3}.
Therefore we have Im Ψ(x, y) = −Im Ψ(x,−y) and Im Ψ(x, y) = −Im Ψ(1−x, y).
These are followed by the conclusion.
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We can move X from X0 to X
(l)
j along the curve C by the following theorem.

Theorem 3.2.9. The branch points X
(l)
j , the base point X0 = 1/2 and Xk are on

the same connected component of the curve C for any l, j, k.

In order to show Theorem 3.2.9, we need following two lemmas. For simplicity,
We denote

al(s) :=
(−1)(n−1)/2+l

2n−1sn(sin lθ)n−1
.

Lemma 3.2.10. If sn is a real number, then the solutions of Ψ(X) − al(s) = 0
are on the curve C.

Proof. Let X be a solution of Ψ(X) − al(s) = 0. Then Ψ(X) = al(s) and
Ψ(X) is a real number. It follows that the solution X is on the curve C.

¥

Lemma 3.2.11. There exists a positive real number s such that the solutions of
Ψ(X)− al(s) = 0 are on the line L.

Proof. We denote X = x + iy. If al(s) ∈ R, then (1) the solutions of Ψ(X)−
al(s) = 0 are on the curve C, and (2) if X = 1/2+ iy ∈ L, then Ψ(X)− al(s) ∈ R.
Therefore we can define the function ψ : R→ R defined by

ψ(y) := Ψ(
1

2
+ iy)− al(s).

We set yk := Im Xk as in Lemma 3.2.6. Then ψ(yk) is an extremum.

ψ(yk) =
1

2n−1(−1)(n−1)/2+k

{
1

(sin kθ)n−1
− (−1)k−l

sn(sin lθ)n−1

}
.

If s is enough large, then
∣∣∣∣

1

(sin kθ)n−1

∣∣∣∣ >

∣∣∣∣
1

sn(sin lθ)n−1

∣∣∣∣ .

Hence the sign of ψ(yk) is determined whether (n − 1)/2 and k are odd or even.
Therefore, we summarize

(I) If (n− 1)/2 is odd, then

ψ(yk) =

{
positive k is odd,
negative k is even.
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(II) If (n− 1)/2 is even, then

ψ(yk) =

{
negative k is odd,
positive k is even.

In the same way as in the proof of Proposition 3.1.9, there exist n− 1 zero points
of ψ(y). The function ψ(y) = Ψ(1/2 + iy)− al(s) is a polynomial of degree n− 1
in y. Hence all solutions of Ψ(X)− al(s) = 0 lie on the line L.

¥

Proof of Theorem 3.2.9
Let s1 be a real number satisfying the condition of Lemma 3.2.11. When we

move s from s0 to s1 along the real axis, the solutions of Ψ(X) − al(s) = 0 move

from X
(l)
j to the point on the line L along the curve C from Lemma 3.2.10 and

3.2.11. Hence we obtain the assertion.

¥

From Theorem 3.2.9, we can choose a path γ from X0 to X
(l)
j such that Ψ(X)

is a real number. If we move X along the path γ, then we can see the movement
of the Y -coordinate Y (l) of the ramification points of ps0 : f−1(s0) → CP 1.

3.3 The positions of the branch points

We determine the positions of the branch points of ps0 : f−1(s0) → CP 1. In this
subsection, we assume that (n − 1)/2 is odd. In the case that (n − 1)/2 is even,
similar discussion holds. Hence we omit the case that (n− 1)/2 is even. We keep
notation and take s0 a sufficiently small positive real number satisfying (3.4)

We recall that

φX0
(bl) =

1

2n−1
− (−1)(n−1)/2+l

sn
02n−1(sin lθ)n−1

is an extremum of the graph w = φX0
(v). Then we obvious obtain

Lemma 3.3.1. The following inequalities hold: If (n− 1)/2 is odd, then

(i) φX0
(b1) < φX0

(b3) < · · · < φX0
(b(n−1)/2) < 0, and

(ii) φX0
(b2) > φX0

(b4) > · · · > φX0
(b(n−3)/2) > 0.

Hence the graph w = φX0
(v) is concretely drawn as Figure 2. Now we investi-

gate increase (or decrease) of the value Ψ(X) on the curve C.
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Lemma 3.3.2. Let X(t) ∈ C = {Im Ψ(X) = 0} be a path such that (i) X(t) is of
class C1, (ii) | d

dt
X(t)| 6= 0 and (iii) for each t, X(t) 6= Xk. Then d

dt
Ψ(X(t)) 6= 0.

Proof. Since the condition (ii) means d
dt

X(t) 6= 0 for any t and the condition
(iii) means d

dX
Ψ(X) 6= 0,

d

dt
Ψ(X(t)) =

d

dX
Ψ(X)× d

dt
X(t) 6= 0.

¥

From Lemma 3.3.2, Ψ(X(t)) ∈ C is monotone increase or monotone decrease on
the path X(t) which does not pass through Xk.

If X = 1/2 + iy, then Ψ(X) ∈ R. Hence we can define the function

Ψ : R→ R, Ψ(y) := Ψ(
1

2
+ iy).

The function Ψ(y) has extremums at yk (= Im Xk). The function Ψ(y) is a
degree (n − 1) polynomial in y and there exist n − 2 extreme points. Then the
increase/decrease table of Ψ(y) is as follows:

y · · · yn−2 · · · yn−3 · · · · · · · · · y3 · · · y2 · · · y1 · · ·
Ψ(y) ↗ ↘ ↗ ↗ ↘ ↗ ↘ (3.8)

Hence we have

Lemma 3.3.3. The direction of increase of Ψ(y) on the line L is as Table (3.8)
and Figure 3.

From the maximum principle of a holomorphic function, we have

Lemma 3.3.4. Around the point Xk, the direction of increase is either of two
cases in Figure 4.

From Lemma 3.3.3 and 3.3.4, we deduce

Proposition 3.3.5. The direction of the increasing of Ψ(X) around the line L is
as Figure 5.

We investigate the positions of the branch points X
(l)
j on C. First, we show

that for small s0 > 0, there exists no branch point X
(l)
j on the segment from X1

to Xn−2. In order to show this, we assume that X
(l)
j is on the segment from X1 to

Xn−2. Since

Ψ(Xk) =
(−1)(n−1)/2+k

2n−1(sin kθ)n−1
,
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we have

|Ψ(X
(l)
j )| < |Ψ(X1)| = 1

2n−1(sin θ)n−1
.

On the other hand, φ
X

(l)
j

(bl) = Ψ(X
(l)
j )− al(s0) = 0 is followed by

|Ψ(X
(l)
j )| = |al(s0)| = 1

2n−1|s0|n(sin lθ)n−1
>

1

2n−1|s0|n .

Hence if s0 satisfies
|s0|n < (sin θ)n−1 , (3.9)

then

|Ψ(X
(l)
j )| > 1

2n−1|s0|n >
1

2n−1(sin θ)n−1
> |Ψ(X

(l)
j )|

and this is a contradiction.
We fix s0 > 0 satisfying (3.9). Let Bk be a divisor of the curve H = {yh(x, y) =

0} intersecting L = {x = 1/2} at Xk and set Bk,+ := {X ∈ Bk : Re X > 1/2},
Bk,− := {X ∈ Bk : Re X < 1/2}, B+ := {X ∈ L : Im X > Im X1} and
B− := {X ∈ L : Im X < Im Xn−2}. We call Bk, Bk,+, Bk,−, B+ and B− branches
of the curve C. If k is odd, then when X moves from Xk along the branch Bk,+ or
Bk,−, Ψ(X) is positive and is monotone increasing. On the other hand, if k is even,
then when X moves from Xk along the branch Bk,+ or Bk,−, Ψ(X) is negative and
is monotone decreasing. (See Figure 5.)

Lemma 3.3.6. Each branch Bk,+, Bk,− B+ or B− of the curve C does not intersect
with other branches.

Proof. In the case (n− 1)/2 is odd, from Proposition 3.3.5,

Ψ(Bk) ⊂
{ {w ∈ R : Ψ(Xk) ≤ w} (k : odd)
{w ∈ R : Ψ(Xk) ≥ w} (k : even).

The value Ψ(Xk) is positive (resp. negative) when k is odd (resp. even). Hence
Bk and Bk+1 never intersect. From Proposition 3.3.5 again,

Ψ(B±) ⊂ {w ∈ R : Ψ(X1) ≥ w}.
(Remark that Ψ(X1) = Ψ(Xn−2).) Therefore B± and B1 (B± and Bn−2) never
intersect.

Around the line L, the curve H intersects to L at Xk. Then there exist at
least n− 2 divisors in yh(x, y) = 0. Since the degree of yh(x, y) = 0 in y is n− 1,
yh(x, y) = 0 is factorized into a product of analytic functions:

∏
k(y− hk(x)) = 0.

¥
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We assume that (n− 1)/2 is odd. For any l,

Ψ(X
(l)
j ) =

(−1)l+1

2n−1sn
0 (sin lθ)n−1

.

Hence
Ψ(X

(1)
j ) > Ψ(X

(3)
j ) > · · · > Ψ(X

((n−1)/2)
j ) > 0

and
Ψ(X

(2)
j ) < Ψ(X

(4)
j ) < · · · < Ψ(X

((n−3)/2)
j ) < 0.

From the assumption (3.9),

Ψ(X
((n−1)/2)
j ) > Ψ(X1) (> Ψ(X3) > · · · > Ψ(X(n−1)/2) > 0)

and
Ψ(X

((n−3)/2)
j ) < Ψ(X2) (< Ψ(X4) · · · < Ψ(X(n−3)/2) < 0).

Hence for each odd k, X
((n−1)/2)
j , X

((n−5)/2)
j , · · · , X

(3)
j , X

(1)
j lie on Bk,± in this or-

der and for each even k, X
((n−3)/2)
j , X

((n−7)/2)
j , · · · , X

(4)
j , X

(2)
j lie on Bk,± in this

order. Similarly, X
((n−3)/2)
j , X

((n−7)/2)
j , · · · , X

(4)
j , X

(2)
j lie on B± in this order. We

renumber the indices j and we summarize as follows:

Proposition 3.3.7. The position of branch points X
(l)
j and Xk is as follows:

(I) If k is odd, then X
((n−3)/2)
k , X

((n−7)/2)
k , . . . , X

(3)
k , X

(1)
k (resp. X

((n−3)/2)
k+1 ,

X
((n−7)/2)
k+1 , . . . , X

(3)
k+1, X

(1)
k+1) is on the kth branch Bk,+ (resp. Bk,−) in this

order.

(II) If k is even, then X
((n−1)/2)
k , X

((n−5)/2)
k , . . . ,X

(4)
k , X

(2)
k (resp. X

((n−1)/2)
k+1 ,

X
((n−5)/2)
k+1 , . . . , X

(4)
k+1, X

(2)
k+1 ) is on the kth branch Bk,+ (resp.Bk,−) in this

order.

(III) X
((n−1)/2)
1 , X

((n−5)/2)
1 , . . . , X

(4)
1 , X

(2)
1 (resp. X

((n−1)/2)
n−1 , X

((n−5)/2)
n−1 , . . . , X

(4)
n−1,

X
(2)
n−1 ) on B+ (resp. B−) in this order.

And the outline of the curve C is as Figure 6.

3.4 The monodromy permutations of the branch covering
map ps0

In subsection 3.3, we get the configuration of the branch loci of ps0 . Next we
determine its monodromy permutations.
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Let π := π1(C \ {X(l)
j }, X0) be the fundamental group of non-branched locus

domain of ps0 . The map

ps0 : p−1
s0

(C \ {X(l)
j }) → C \ {X(l)

j }
is a covering map and any path [γ] ∈ π gives a permutation of p−1

s0
(X0) =

{Y (1), Y (2), . . . , Y (n−1)} through the liftings of γ. We denote this permutation
by γ and we call it the monodromy permutation.

For l = 1, 2, . . . , (n− 1)/2, j = 1, 2, . . . , n− 1, we define a path γ
(l)
j as follows:

The path γ
(l)
j starts at X0 and goes (almost) along C toward near X

(l)
j and turns

around X
(l)
j once and goes back on the coming path. See Figure 7. Here, around

the the branch points X
(l′)
j′ and X

(l)
j , the path γ

(l)
j goes along ε-circles.

Theorem 3.4.1. The monodromy permutation γj
(l) is as follows:

(I) For 1 ≤ l < (n− 1)/2, γj
(l) = (l, l + 1)(n− 1− l, n− l).

(II) For l = (n− 1)/2, γj
(l) = ((n− 1)/2, (n− 1)/2 + 1).

Proof. We assume that l, k are odd integers other than l = (n − 1)/2. If we

move X from X0 via Xk to X
(l)
k , strictly along the curve C, then we can strictly

pursue the movement of Y (l). Indeed a real solution v of φX(v) = 0 gives a solution
Y = 1/2s0 + iv of gs0(X, Y ) = 0. The function

φX(v) = Ψ(X)−Ψ(X0) + φ(v)

has extreme points bl′ and extremums Ψ(X)−al′(s0) (l′ = 1, 2, . . . , n−2). We note
that while we move X from X0 to Xk, the number of real solutions of φX(v) = 0
does not change, because of the discussion around the condition (3.9). On the

other hand, while we move from Xk to X
(l)
j , on the branch Bk,+, Ψ(X) is monotone

increasing, and the extremum

Ψ(X
(l)
k )− al(s0) = 0 (also Ψ(X

(n−1−l)
k )− an−1−l(s0) = 0).

This means if we pursue the movement of Y (l)’s when we make X at X
(l)
j , Y (l) meets

Y (l+1) at a point Yl, and Y (n−1−l) meets Y (n−l) at a point Yn−1−l. This is the result

of the halfway of γ
(l)
j with ε → 0. This means that γ

(l)
j = (l, l +1)(n− 1− l, n− l).

For other l, k, the statements are shown in the same way.

¥

From Theorem 3.4.1, the reference fiber f−1(s0) is obtained by the following
way: (I) Prepare n−1 projective lines with (n−1)(n−2) holes and (n−1)(n−2)/2
annuli. (II) Paste projective lines and annuli along the hole with rules in Theorem
3.4.1. We can construct a smooth complex curve of genus (n− 2)(n− 3)/2.
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4 Determination of the global monodromy

In this section, we determine the global monodromy. We investigate the movement
of branch points of ps : f−1(s) → CP 1 when we move s from s0 to the singular

value s
(j)
k,l .

4.1 Recipe for the global monodromy

We set Ψ(X) := Xn − (X − 1)n and consider the equation

gs(X, Yl(s)) = Ψ(X)− al(s) = 0,

where al(s) := 1/sn(1 − τl)
n−1. First we note that the solutions of gs(X,Yl(s)) =

Ψ(X) − al(s) = 0 (l = 1, 2, . . . , (n − 1)/2) give all branch points of the branched
covering map ps : f−1(s) → C. We investigate the movement of the solutions of
gs(X, Yl) = 0 when we move s. In the case that n is odd, if al(s) ∈ R then the
solutions of Ψ(X) − al(s) = 0 lie on the curve C = {Im Ψ(X) = 0}. Since n − 1
is even, (1 − τl)

n−1 is a real number by Lemma 3.1.2 and al(s) is a real number
precisely when s is an nth root of a real number. Hence we obtain

Lemma 4.1.1. If n is an odd number and sn is a real number, then every solution
of the equation gs(X, Yl) = 0 is on the curve C. That is, all branch points of ps

are on the curve C.

We recall that X
(l)
j (j = 1, 2, . . . , n − 1) are all solutions of gs0(X,Yl(s0)) = 0

and Xk satisfies g
s
(j)
k,l

(Xk, Yl(s
(j)
k,l )) = 0 (See subsection 1.1). For every s, there

exist solutions of gs(X,Yl(s)) = 0 and X is continuous with respect to s. Then we
conclude

Proposition 4.1.2. We fix k and l. If we move s from s0 to s
(0)
k,l along the real

axis, then some of the branch points X
(l)
j of ps0 move to Xk along the curve C.

Proof. Since X
(l)
j (resp. Xk) is a solution of gs0(X, Yl) = 0 (resp. g

s
(j)
k,l

(X, Yl) =

0), we obtain the assertion from Lemma 4.1.1.

¥

For simplicity, we put S = 1/sn and set Al(S) := S/(τl − 1)n−1, gS(X, Yl) :=

Ψ(X)− Al(S), S0 := 1/sn
0 and Sk,l := 1/(s

(j)
k,l )

n.
We discuss how to obtain the global monodromy. For details, see [2], [6], [7].

In our case, we know that there occur single nodes except on f−1(0) or f−1(∞).
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Each single node is correspondent to a vanishing cycle, so it is sufficient to know
how to obtain the vanishing cycles.

Let γ be a path in s-plane as in Figure 8. Our goal is getting vanishing cycles
with respect to γ. We push out γ into S-plane as in Figure 9 (Note: S = 1/sn).
We denote by γ the path in S-plane induced from γ. Let δ be a half path of γ
in S-plane, that is, δ is a path from S0 to Sk,l almost along γ. We set the end
point of δ as Sk,l itself (Figure 10). We move the parameter S along the path δ
and observe movement of solutions of

∏

l

(Ψ(X)− Al(S)) = 0.

For example, we suppose that X
(l)
k1

meets X
(l)
k2

at Xk and other X
(l′)
k′ ’s never meet

together (Figure 11). We draw a loop ζ surrounding the trace of X
(l)
k1

and X
(l)
k2

(Figure 12), and let ζ1, ζ2, . . . , ζr be non-zero-homologous liftings of ζ over ps0 .
The liftings ζ1, ζ2, . . . , ζr are the vanishing cycles at Sk,l with respect to the loop
γ. Using this procedure, in order to obtain the global monodromy, it is sufficient

for us to know movement and meetings (encounters) of X
(l′)
k′ ’s for any half path δ

in S-plane.
In S-plane, critical value Sk,l are on the real axis, hence we consider a half

path δk,l to Sk,l consisting of some segments on the real axis and of some half (or
full) circles of radius ε > 0 (Figure 13). The equation

∏
l(Ψ(X)− Al(S)) = 0 has

multiple solutions if and only if S = 0,∞, Sk,l. We denote by {X(l)
j } the set of

the solutions of
∏

l(Ψ(X)−Al(S0)) = 0. These facts are followed that there exist

unique liftings (traces) of δk,l with start point X
(l)
j for each l and j.

When the parameter S goes to the end point Sk,l of δk,l (as in Figure 13), there

happens an encounter of X
(l)
k1

and X
(l)
k2

at Xk for some k1 and k2 (from Proposition
4.1.2). On the other hand, if ε > 0 is very small, then the liftings (traces) of

X
(l)
k ’s are almost on the curve C (from Lemma 4.1.1). In the next subsection,

we determine k1 and k2 for each δk,l, and pursue the movement of X
(l)
k1

and X
(l)
k2

(almost) on the curve C.

4.2 Behavior of the solutions of gs(X,Yl) = 0 around the
critical value 0 and Sk,l

Let Q1, Q2, . . . , Qn−1 be the solutions of the equation Ψ(X) = 0. Then we have
the following lemma.

Lemma 4.2.1. The points Q1, Q2, . . . , Qn−1 are on the line L = {Re X = 1/2}.
Moreover on the line L, there are Q1, X1, Q2, X2, . . . , Xn−2, Qn−1 in this order.
(See Figure 14).
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Proof. The value Ψ(yk) (k = 1, 2, . . . , n − 2) are extremums of Ψ and
Ψ(yk)Ψ(yk+1) < 0 for any k. Hence there exist n−1 real solutions for Ψ(y) = 0 and
they give n − 1 solutions of Ψ(X) = 0 on the line L. Recalling that yk = Im Xk,
it is clear that Q1, X1, Q2, X2, . . . , Xn−2, Qn−1 are in this order.

¥

From Lemma 4.2.1, if S goes near 0, then X
(l)
j ’s go toward the points Q1, Q2, . . . , Qn−1

on the line L since Al(0) = 0 for any l. We remark that for one point Qj, there

are just (n− 2)/2 of X
(l)
j ’s that converge to Qj. If a path δk,l contains a half circle

of radius ε > 0 around 0, the movement of X
(l)
j ’s are given by Figure 15, since a

lifting map S 7→ X
(l)
j is a holomorphic (and conformal) map.

When the parameter S goes near Sk′,l′ , it is sufficient for us to pay attention

to the branch points X
(l′)
j (j = 1, 2, . . . , n− 1) (and also X

(n−1−l′)
j = X

(l′)
j ). Since

any singularities are single nodes, just two of X
(l′)
j ’s converge to Xk′ . Therefore,

if a path δk,l contains a half circle of radius ε > 0 around Sk′,l′ , the movement of

the two of X
(l′)
j ’s looks like in Figure 16. This behavior is just the same as in the

case y2 = x2 − s, standard single node.

4.3 The global monodromy for Sk,l

From now on, we assume that n is odd and (n−1)/2 is odd. In other cases, similar
results hold. We determine how a branch point encounters another one. Recall
that

Sk,l = (−1)l−k

(
sin lθ

sin kθ

)n−1

,

where θ = π/(n− 1), and Sk,l = Sk,n−1−l, Sk,l = Sn−1−k,l. Then we obtain

Lemma 4.3.1. For a fixed k, the following inequalities hold:

(I) If l is odd, then

(i) 0 < S(n−1)/2,l < S(n−5)/2,l < · · · < S3,l < S1,l.

(ii) S2,l < S4,l < · · · < S(n−3)/2,l < 0.

(II) If l is even, then

(i) 0 < S(n−3)/2,l < S(n−7)/2,l < · · · < S4,l < S2,l.

(ii) S1,l < S3,l < · · · < S(n−1)/2,l < 0.
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The condition (3.4) and (3.9) are followed by

S0 >
1

(sin θ)n−1
= |S1,(n−1)/2| = max

k,l
|Sk,l|.

We indexing of X
(l)
j is as in Figure 6. Let δk,l (resp. δ0) be a half path from S0

to Sk,l (resp. 0) such as in Figure 13. Our final goal is the following theorem.

Theorem 4.3.2. The encounter of X
(l)
j ’s with respect to δk,l or δ0 is as follows:

(I) If Sk,l > 0, that is k and l are both odd (or both even), then two branch points

X
(l)
k and X

(l)
k+1 ( resp. X

(l)
n−1−k and X

(l)
n−2−k) on the branches Bk,+ and Bk,−

(resp. Bn−1−k,+ and Bn−1−k,−) converge to Xk (resp. Xn−1−k). See Figure
17.

(II) If k (6= 1, 6= n − 2) is odd and l is even (Sk,l < 0), then two branch points

X
(l)
k+1 and X

(l)
k (resp. X

(l)
n−k and X

(l)
n−1−k) on the branches Bk+1,+ and Bk−1,−

(resp. Bn−k,+ and Bn−k−2,−) converge to Xk (resp. Xn−k−1). See Figure 18.

(III) If k is even and l is odd then the branch points X
(l)
k+1 and X

(l)
k (resp. X

(l)
n−k

and X
(l)
n−1−k) on the branches Bk+1,+ and Bk−1,− (resp. Bn−k,+ and Bn−k−2,−)

converge to Xk (resp. Xn−k−1). See Figure 18.

(IV) If k = 1 (resp. n − 2) and l is even then the branch points X
(l)
1 and X

(l)
2

(resp. X
(l)
n−2 and X

(l)
n−1) on the branches B+ and B2,+ (resp. Bn−3,− and B−)

converge to X1 (resp. Xn−2 ). See Figure 19.

(V) If S = 0, then the movement of the branch points is as Figure 20.

Proof. Let k and l be odd numbers and let k′ be an even number. If we move
S from S0 to Sk,l, then there exists no singular value Sk′,l between S0 and Sk,l from
Lemma 4.3.1. The solutions of the equation

∏
l(Ψ(X)−Al(S)) = 0 on the branch

other than Bk do not go to Xk, because if X
(l)
k′′ on another branch Bk′ for even

k′ goes to Xk, then it must pass through Xk′ . The solutions on Bk are X
(l)
k and

X
(l)
k+1, and they must encounter each other when S goes to Sk,l. When X

(l)
k meets

X
(l)
k+1, X

(l′)
k and X

(l′)
k+1 (l′ > l) move on Bk toward Xk, turn right at Xk, and finally

go to a point on L. The other X
(l′)
k and X

(l′)
k+1 (l′ < l) move on Bk toward Xk and

finally go to a point on Bk. (See Figure 21.) From the definition of Sk,l, we have

Sk,l = Sn−1−k,l. Hence if S goes to Sk,l, then X
(l)
n−1−k (on Bn−1−k,+) encounters

X
(l)
n−k (on Bn−1−k,−) at Xn−1−k.
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Similarly, let k and l be even numbers and let k′ be an odd number. If we
move S from S0 to Sk,l, then there exists no singular value Sk′,l. The solutions of
the equation

∏
l(Ψ(X)−Al(S)) = 0 on the branch other than Bk do not go to Xk

Thus we have (I).
Suppose that k is odd, l is even, k 6= 1 and k 6= n − 2. Then Sk,l is negative

and δk,l pass near 0 once before arriving at Sk,l. Hence if X
(l)
j goes to Xk, then

it must pass the points Qk or Qk+1 once (Figure 22). Thus X
(l)
j must be on the

branch Bk−1 or Bk+1 at the start. As in Figure 16, X
(l)
j turns right when it visit

a crossroad Xk−1 (or Xk+1). This means that X
(l)
j must be on Bk−1,− or Bk+1,+

at the start. It follows that X
(l)
k (on Bk−1,−) encounters X

(l)
k+1 (on Bk+1,+) at Xk.

Thus we have (II).
Suppose that k is even and l is odd. Then Sk,l is negative and Sk,l pass near

0 once. In the same reason as (II), X
(l)
j must pass the solution Qk−1 or Qk, and

hence X
(l)
k (on Bk−1,−) encounters X

(l)
k+1 (on Bk+1,+) at Xk. Thus we have (III).

Suppose that k = 1 and l is even. Then Sk,l is negative and X
(l)
j must pass the

solution Q1 or Q2. Hence X
(l)
1 (on B+) encounters X

(l)
2 (on B2,+) at X1. In case

that k = n− 2 and l is even, we can show in the same way. Thus we have (IV).

In case (V), as in Figure 15, X
(l)
k turn right at Xk−1 or Xk. Therefore every

X
(l)
k (l = 1, 2, . . . , n− 2) meet together at Qk.

¥
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Figure 1: The solutions Y (j) of gs0(X0, Y ) = 0 and the solutions Yl of
∂gs0

∂Y
= 0 in

the case that n = 7.
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Figure 2: The graph w = φX0
(v) in the case n = 11: The extremums decrese in

order.
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Figure 3: The direction of increase of Ψ(X) on L

Xk Xk
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Figure 4: The direction of increase of Ψ(X) around Xk

30



L
H

((n− 1)/2: odd)

Figure 5: The direction of increase of Ψ(X) on C around L
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Figure 6: The curve C and the positions of the branch points of ps0
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Figure 7: The path γ
(l)
k along the curve C
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Figure 8: The path γ starting point s0 such that go around s
(j)
k,l .
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0
S0

γ
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Figure 9: The path γ starting point S0 such that go around Sk,l.
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Figure 10: The path δ starting point S0 to Sk,l.
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Figure 11: The movement of the branch points
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Figure 12: The path ζ surrouding the trace

Sk,l 0 S0
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Figure 13:
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L

Figure 14: Q1, Q2, . . . , Qn−1 are the solutions of Ψ(X) = 0 in the case that n = 6.
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Figure 16: The movement of S and X
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Figure 17: (I) The movement of the branch points: The bold arrow lines are
homotopically rearranged.
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Figure 18: (II), (III) The movement of the branch points
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Figure 19: (IV) The movement of the branch points
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Figure 20: (V) The movement of the branch points: Qk and Qk+1 are the solutions
of Ψ(X) = 0.
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