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Introduction
M : an oriented closed 3-manifold
p:m (M) — PSL(2,C) : a rep. of the fund. group of M

Vol(M,p) € R and CS(M,p) € R/n?Z are invariants of the

representation p.

When p is a discrete faithful rep. of a hyperbolic mfd M, then
Vol and CS are the volume and the Chern-Simons invariant of

the hyperbolic metric.



The definition of Vol and CS are generalized to the case of

manifolds with torus boundary e.g. knot complements.

A formula of i(Vol 4+ iCS) € (C/T('QZ was given by Neumann in

terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the

quandle formed by parabolic elements of PSL(2,0C).

The quandle homology plays an important role in our descrip-

tion.



Quandle

The definition of quandles was introduced by Joyce in 1982.

A quandle X is a set with a binary operation * : X x X — X
satisfying
1. xxx =x for any x € X,

2. the map xy: X — X : x — x xy is bijective for any v,
3. (xxy)*xz2=(x*xz2)*x(yxz) for any z,y,z € X.

Example

G a group, S C (G : a subset closed under conju?ation.
S has a quandle structure by conjugation xxy =y~ ~xy.

(zxy)*x2z=zYy loyz = " ly 1) 122) 7 yz) = (2% 2) x (y x 2)



Relation with knot theory

Assign an element of a quandle X for each
arc of a knot diagram satisfying the following
relation at each crossing. Then the axioms

correspond to the Reidemeister moves:

T X
dzxx =y
Z

(D o (11) T Ey

T * Y



Relation with knot theory

e

(III) z yxz (r*xy)xz =z yxz (z*xz2)*(y*2z2)



Arc coloring

Let D be a diagram of a knot K.

We call a map A : {arcs of D} — X arc coloring if it satisfies

the following relation at each crossing.

X * Y

>y x,y and xxy € X




Arc coloring of the figure eight knot

. d
cxa=d,
b . axc=>b,
axb=d,

cxd=>.



Arc coloring of the figure eight knot

AN

cxa=d,
axc=>b,
axb=d,

cxd=>.



Arc coloring of the figure eight knot

. d
cxa=d,
b . a* c=b,
axb=d,

cxd=>.



Arc coloring of the figure eight knot

cxa=d,
axc=>b,
a*xb=d,

cxd=>b.

9-b



Arc coloring of the figure eight knot

. d
cxa=d,
b . axc=>b,
axb=d,

c x d=b.



Associated group

For a quandle X, define the group Gy by (z € X|zxy =y~ lzy).

This is called the associated group of X.

An arc coloring by X gives a representa- .
THY =Y TY
tion 71(S3\ K) — Gx which sends each

meridian to its color. This is a conse-

>y

quence of the Wirtinger presentation of a

Knot group.

When a quandle is given by a conjugation quandle S C G, an

arc coloring by S induces a representation into G.
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Quandle structure on c2\ {0}

Define a binary operation x on C2\ {0} by

o) (2 = (g o) 6

This satisfies the quandle axioms. Let P be the quandle
formed by parabolic elements of PSL(2,C). Define a map
c2\ {0} 2L P by

(o) (52" T
y T

This map induces a quandle isomorphism (C2\ {0})/+ & P.
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kabaya
1 + x_2 y_2

kabaya
1- x_2 y_2

kabaya


kabaya


kabaya


kabaya


kabaya
- y^2

kabaya
x^2


Arc coloring of the figure eight knot by P

This is the figure eight knot.

12



Arc coloring of the figure eight knot by P

Color two arcs by

(C*\{oh)/+.

12-2a



Arc coloring of the figure eight knot by P

of X0 \6

Consider the relation at this

Crossing.

12-b



Arc coloring of the figure eight knot by P



Arc coloring of the figure eight knot by P

( 1 ) Consider the relation at this

Crossing.

12-d



Arc coloring of the figure eight knot by P



Arc coloring of the figure eight knot by P

T he relation at this crossing
1 :
() o)
0 —t
(0) (av'o) =)
) AN
t(1+24+t%))
2 t+1D)E°—t+1)=0
* tt2+t+1)2—-t+1)=0

( —t ) t2_t4+1=0

o+

12-f



Arc coloring of the figure eight knot by P

T he relation at this crossing

@) E
| (-0
) (%) = lav'o)

t24+t+1=0
t(t2+t+1)=0

( —t ) 24 t4+1=0



Arc coloring of the figure eight knot by P

[ here are two relations
2 2 _
t“+t+1=0, t-—t+1=0

which do not have any common solution. But we have a
coloring by (C2\ {0})/+ = P.

t = +11y30 or $1=y3!
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Arc coloring of the figure eight knot by P

A parabolic representation
( 1 ) can be obtained by the map

T\ 1l —xy 2
J —y2 14y

13-a



Arc coloring of the figure eight knot by P

o

A parabolic representation

2) can be obtained by

x 1l —xy 2
— 2

Yy -y 14y

1+ ¢% 4t t2
—t?(1+t>)? 1 —t>—t*

13-b



Arc coloring of the figure eight knot by P

Evaluate at t2 = _1‘5\@75.

) We obtain a discrete faith-
ful representation of the fig-

ure eight knot complement.

13-c



AS we have seen, an arc coloring by P gives a representation
71(S3\ K) — PSL(2,C) which sends each meridian to the

corresponding parabolic element of PSL(2,C).

We call such a representation parabolic representation. E.g.
a discrete faithful representation of a hyperbolic knot comple-

ment.

From now on, we construct an invariant for parabolic rep-
resentations with values in quandle homology, then give a

description of the volume and the Chern-Simons invariant.
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Outline
1.

p:m(S3\ K) — PSL(2,C) | 1:1 | Arc colorings A

parabolic representations by the quandle P

2. Define a shadow coloring & and construct an invariant
[C(S)] with values in the quandle homology H?(P;Z[P]).

3.
Quandle general Simplicial Dupont Extended
homology theory quandle -Zickert Bloch
1 homology l group
HZ(P;Z[P]) 25  HEP) — B(C)
% R l Neumann
[C(S)] C/mZ

i(Vol 4+ iCS)
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Quandle homology (Carter-Jelsovsky-Kamada-Langford-
Saito, 2003)

Let CI(X) = spanZ[GX]{(xl, ..., xn)|x; € X}. Define the bound-
ary operator 9 : CLH(X) — CIt [ (X) by
n . .
o(x1,...yon) =Y (DY (x1,..., %5 ..., Tn)
i=1
— CBi(CL‘]_ K Lgy oo ey Lg—1 * Ly, Lj4-15 - - - 7xn)}

Let M be a right Z[G x]-module. The homology group of
M ®71c ] CA(X) is called the rack homology H}Y(X; M).

16



Factoring degenerate chains, we also define the quandle ho-

mology HZ(X; M).

Let
Cy (X) = spang g {(e1, ..., zn)|z; € X,

r; = x;41(for some 7)}.

This is a subcomplex of CL(X). Let G,?(X) be the quotient
CHH(X)/CP(X). The homology of M ®zq C9(X) is called
the quandle homology Hq?(X; M)

17



Geometric interpretation c(x) — cfi(X)

T *y Ty gy
s,
Yy y Y Y
T g gx g
5
g(x,y)
—g(y) + gz(y)

+g9(x) — gy(z *xy)

i:l(—l)i{(:vl, ey TGy, Tn)

—xi(Ty * Ty, X1 X TG Tijg 1,5 %n) }
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Geometric interpretation c(x) — cfi(X)

z * Y ory WY
o,
Y J — AY AY
x g g g
X
T\,
() —g(y) + gz (y)

+g9(x) — gy(z *xy)

i:l(—l)i{(:vl, ey TGy, Tn)

—xi(Ty * Ty, X1 X TG Tijg 1,5 %n) }

18-a



Geometric interpretation c(x) — cfi(X)

z*y oy 9
s,
Y Y — Yy Y
X g gr < g
(z,y) v
T CE‘,
—g(y) + gx(y)
+ — gy(x *y)

i:l(—l)i{(:vl, ey TGy, Tn)

—xi(Ty * Ty, X1 X TG Tijg 1,5 %n) }

18-b



Geometric interpretation c{(X) — C4(X)

((z xy) * 2)

((z*xy) * 2) ///7(/// § y;i57////
: Txz
Y * 2z i Y * 2

A —
zi z <
f z
L EY 4 z Z
. /// P Y €T *k Yy Yy
Y Yy 9y
o T
g g
T g g
Yy
g(z,y, z) .
g

9(x,y,2) — —g(y,2) + 9z(y, 2) + g9(z,2) — gy(z * y, 2)
—g(z,y) + gz(x * 2,y * 2)
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Geometric interpretation c{(X) — cf(X)

((z xy) * 2)
* 2
. Txz
Y * 2z | Y * z
T xz
A\
Z < o
,___37__’5_3/_< _________ z
% z r*y
1Ay Y 9y
‘ x
x g J
Y
9(z,y,2) .
g

9(x,y,2) — —g(y,2) + 9z(y, 2) + g9(z,2) — gy(z * y, 2)
—g(z,y) + gz(x * 2,y * 2)

19-a



Geometric interpretation c{(X) — cf(X)

((z xy) * 2)

* 2
| €T * z 9z
Y * z | Y * z
E Tr*xZz

A — =
! z
! z
//,'___a:__*__y_< _________ VA
o /FTy Y
’ g
L g gx
Yy
9(z,y, 2) -
g

9(x,y,2) — —g(y,2) + 9z(y,2) + g(z, 2) — gy(z *x y, 2)
—g(z,y) + gz(x * 2,y * 2)

19-b



Geometric interpretation c{(X) — cf(X)

((z xy) * 2)

((z xy) * z)

Y * 2z Y * z

/,:___37__’5_3/_< _________ % Z
s . Yy T *xy Yy
1Y Y gy
g
L g gx
g(z,y,2)
g

9(z,y,2) — —g(y,2) + gz(y,2) + g(z,2) — gy(z * y, 2)

—g(z,y) + gz(x * 2,y * 2)



Region coloring

Let D be a diagram and A be an arc coloring by X. A map

D : {regions of D} — X is called an region coloring if it satisfies

the following relation:

dh >y x,y and xxy € X

We call a pair § = (A, R) (A: arc coloring, R: region coloring)

a shadow coloring.

20



Shadow coloring of the figure eight knot

r1

rTo*a —Tq, r3 *xC =— T9,
r3ka =7rT4, T2*xb=rs5,

rg *x d = rg,

21



Shadow coloring of the figure eight knot

r1

d
a
o *a— T, r3 * C = T9,

r3*xa =r1ryq, TO*xb=rg,

rg * d = rg,

21-a



Shadow coloring of the figure eight knot

r1

7“2*&:7“1, 7“3*627“2,
r3*xa =ryq, To*xb=rg,

rg *x d = rg,

21-b



Shadow coloring of the figure eight knot

r1

rTo*a —Tq, r3 *xC =— T9,
r3*a=ry4, To*xb=rsg,

rg *x d = rg,

21-c



Shadow coloring of the figure eight knot

r1

rTo*a —Tq, r3 *xC =— T9,
r3*xa =ryq, To*xb=rg,

rg *x d = rg,

21-d



Shadow coloring of the figure eight knot

T1
d
a

3

rTo*a —Tq, 7“3*027“2,
T2 Ta
r3*xa =r1ryq, To*xb=rg,
b c
s rg *x d= rg,

e

21-e



Shadow coloring of the figure eight knot

r1

r3 If we fix a color of one re-
T2 T4 gion, then the colors of other

b c regions are uniquely deter-

mined.

e

21-f



Remark

Region colorings give no information on the representation of
knot group, but it is useful to compute volume and Chern-

Simons.
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Cycle [C(S)] associated with a shadow coloring

A quandle X itself has a right G xy-action defined by
zx (xtz? .. 25) = (. (@1 2q) %52 25) .. L) 5 oy,

So the free abelian group Z[X] is a right Z[G x]-module.

Let & be a shadow coloring by a quandle X. Assign

Yy
+r® (x,y) for and —r®(x,y) for 7

Let

CE) = Y ere® (me,ye) € CL(X; Z[X]).

c.Crossing

23



Example: C(S) for the figure eight knot

r1

T3
c(S) =

r3® (¢,a) +r3® (b, ¢)
s —ra2® (a,b) =14 ® (¢, d)

T2 Ta

24



Example: C(S) for the figure eight knot

1
. BN
r3
T2 Ta
b c
rs

C(S) =
r3® (c,a) +r3® (b, c)
— 1 ® (aab) — T4 & (Cad)

24-23



Example: C(S) for the figure eight knot

r1

r3

T2 Ta

C(S) =
r3® (c,a)+r3® (b, c)
—7“2@(&,[)) _T4®(Cad)

24-b



Example: C(S) for the figure eight knot

r1

r3

T2 Ta

C(S) =
r3® (c,a) + r3® (b, c)
—ro® (a,b) —ra ® (c,d)

24-c



Example: C(S) for the figure eight knot

r1

r3

T2 Ta

C(S) =
r3® (c,a) + r3® (b, c)
—ro® (a,b)—rs ® (c,d)

24-d



C(S) is a cycle. The homology class [C(S)] in H?(X;Z[X]) is
invariant under the Reidemeister moves. The invariance under

the Reidemeister III move is shown in the following figure.

x Y z

\
xz\yz

z yxz (x*y)xz

o(r @ (z,y,2)) =(r@(z,y) +r*xy@ (@*y,2) +r® (y,2))
—(r(@,z2))+r*xx(y,z)+trxzx(x*xz,y*xz))

25



We can show that the homology class [C(S)] does not depend
on the region coloring. Moreover it only depends on the con-
jugacy class of the representation 7r1(S3\K) — Gy induced by
the arc coloring. When X = P (quandle formed by parabolic
elements of PSL(2,C)),

Prop (Inoue - K.) The homology class [C(S)] in H?(P,Z[P])
only depends on the conjugacy class of the parabolic repre-
sentation m1(S3\ K) — PSL(2,C) induced by the arc coloring
A.

26



Simplicial quandle homology H2(X)

Let C2(X) = spany{(zgq,...,zn)|z; € X}. Define the boundary
operator 9 : CA(X) — C2 {(X) by

n .
Nz, ..., xn) = > (—1)(zqg,..., %5, ..., Tn).
1=0

CA(X) has a natural right action by Z[Gx]. Denote the ho-
mology of C&(X) Q716 <] L by HA(X). We can construct a

map
ot HE(X, ZIX]) — HEy 1 (X)

n

in the following way:

27



n=2 o 1 CH(X,Z[X]) — C5(X) ®z164 L

r*(xy) xT*vy r*(xy) xT*vy
r kX
e (o) /
p p
e Ty
re(ey)fl e .
p/// —~
J 7y
r %k QX x r

(p,?“,a:‘,y) T (p,"“*CU,ZU,y)
—(p,rxy,x*xy,y) + (p,r*(zy),z*y,y)

28



For general case, let I, be the set of maps ¢ : {1,2,--- ,n} —
{0,1}. Let || denote the cardinality of the set {k | (k) =
1,1 < k <n}. For r® (z1,20, - ,zn) € CE(X:Z[X]) and

L € I, define
r(0) = rx (24D 2t
2(1,8) = @ (e (T U2 )y
Fix p e X. Define ¢ : C;UX; Z[X]) — Ci1(X) ®zi6,] Z by
o(r ® (z1,z2, - ,n))
= Y (DM@, r@), 2, 1),2(,2), -+, 2(,, n)).

LE 1y

29



Thm o : CHX;Z[X]) — O 1(X) ®z6, Z is a chain map.

Proof.
P p
r*x(x T * T ox :
(zy) Yy Y r*(my)/. _________ > Tk Yy
y y —_— -y/
o P / ’

30



Thm o : CHX;Z[X]) — O 1(X) ®z6, Z is a chain map.

Proof.
D cancel D
rx(zxy) T*xy Ty rx (zy) % ) rx(zy) T*xy r*y
e P
Tk T x r rTkT T r Tk T x r

V? V?

/ /7%

30-a



Txy

T * Y

T he result after gluing

T *xX

r~rxxr~rxy~71x*x(xY)

31



T he result

T *xX

after gluing

Txy

€I *

~
- O E W OE W OEOm m W om o
.

~

\ \
N \
N \
S N
~ \
~
=~ O\

r~rxxr~rxy~71x*x(xY)

31-a



T he result after gluing

p

p p 0

g ooy
rx(zyY N ]

T*y
P p
Y Yy
9

T XX A r

\ /
N /
N
~ /
~ . ,
~

re~rxre~rky~7rk(ry)

31-b



T he result after gluing

____________________________

T *xX

Txy

r~rxxr~rxy~71x*x(xY)

31-c



T he result after gluing

I )
I | // \
T * (xy) ———————————————————————————— : 'l // E
Py rx Y L
* ®, | I, 1
‘0 R ﬂ | ,’In E
.. L | ;) i
p ....-I“ p ': :! : ‘ T * 1
1 ! : :
y y \ | : [
e \ \ ‘!
-7 \ \ | /
\ \ :
i |
l
= |
|
T *xXT r :
|

r~rxxr~rxy~7T*(TY)

31-d



T he result after gluing

1

I
I
I

'/

I/
/|
!
\

\

~
- M M OO OEOEOE O Emom o
.~
~

T*xXT r

\ \
N \
AN \
\\ \
~ \
~
Y

r~rxxr~rxy~71x*x(xY)

31-e



T he result after gluing

p

p p

| Y Y

i T kY
re(xy) N ]

rxy
p D
’.:*y y

\\ z

Tk r

/
/
/
/
/

re~rxr~rxy~71* (1Y)

31-f



The result after gluing

r~rxxr~r*y~71* (1Y)

We obtain a triangulation of the knot complement.

31-g



The map ¢ induces a homomorphism

HE(X; ZIX]) — HE 1 (X).

n

So we can construct a quandle cocycle from a cocycle of
HZ2 1 (X). If we have a function f from X**1 to some abelian

group A satifying

1. Zi(—l)if(xo,. ey Ly ,Clik_|_1) = 0 and

2. f(xo*y,...,zpxy) = f(x0,...,xr) and
3. f(zo,...,zx) =0 if x; = x;4.1 for some ¢,

then f gives a cocycle of HkA(X) and a cocycle of H,?_l(X; 71X]).

32



If X has a ‘geometric structure’, we can construct a cocycle
for HA(X).

Let P,, be the quandle formed by parabolic elements of
Isom™T (H"). For z € Pp, let (z)so be the unique fixed point at
infinity 8H"™ of z. The function (P,)"t1 — R defined by

(o, x1,...,2n) — Vol(ConvHUll((zg) oo, (£1)oo, - -, (n)oo))

satisfies the previous three conditions.

Thm (Inoue-K.) The n-dimensional hyperbolic volume is a

quandle cocycle of Py,.

33



We further study three dimensional case. In this case, Chern-

Simons invariant is also a quandle cocycle.

We will construct a map from H3A(7>) to the extended Bloch

group B(C) along with the work of Dupont and Zickert.

34



Bloch group

Recall that an ideal tetrahedron in H3 is parametrized by C \
{0,1}. Let P(C) be the abelian group generated by C\ {0, 1}

and factored by the following five term relation:

1—g1 1l —=x
]~ 9]+ /2] = [ — ]+ [ 1 =0

A ]
The Bloch group B(C) is
the kernel of the map 0 Y

7
P(C) - C* Ay C*: ﬂ
[z] — z Ay (1 — 2). o

1—y-1




Extended Bloch group

The extended pre-Bloch group P(C) is, in some sense, a uni-
versal abelian cover of P(C). P(C) is generated by the element
[z; p,q] with z € C\ {0,1} and p,q € Z. The integers p, q repre-
sents branches at O and 1 respectively. 7/5(<C) Is the quotient

by lifted five term relation.

We can define a map P(C) — C Ay C. The kernel of this map
is the extended Bloch group B(C).

36



Neumann defined the extended Bloch group B(C) and showed

that B(C) = H5(BPSL(2,C)%;Z). He also defined the Rogers’
dilogarithmic function R : B(C) — C/n?Z.

R(:ip.0) = R(:) + 7 (qLoa() —plog () ) = =

R(z) = _ /Oz Log(; — 1)

dt + %Log(z)Log(l —z)

When a closed hyperbolic 3-manifold M is given, the fun-
damental class [M] defines an element of H3(BPSL(2,C)?; 7).
Under the isomorphism, we obtained an element of B(C). Neu-

mann showed that the image of this element by R is equal to
i(Vol 4+ iCS).

37



Dupont and Zickert’s work

Let Cr(C2) = spanyz{(vg,...,vn)|v; € C2\ {0}} and define the
boundary operator of C,,(C2) by

n .
O(vg,...vn) = > (—1)(vg,---,05...,0n).
1=0

Thm (Dupont-Zickert) There is an explicit map C5(C?) —
P(C) which induces

H3(C4(C?)psy (2.0y) — B(C)

Remark In their paper, they studied for SL(2,C) not PSL(2,C).
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Since P £ (C2\ {0}) /£, CA(P) is nearly equal to C«(C?). So

we can “construct” a map from H(P) — B(C).

Thm (Inoue-K.) There is a homomorphism
HS(P; Z[P]) — B(C).

The image of [C(S)] by this map gives the extended Bloch

invariant of the parabolic representation.

39



Since P £ (C2\ {0}) /£, CA(P) is nearly equal to C«(C?). So

we can “construct” a map from H(P) — B(C).

Thm (Inoue-K.) There is a homomorphism
HS(P; Z[P]) — B(C).

The image of [C(S)] by this map gives the extended Bloch

invariant of the parabolic representation.

Our work is based on the quandle homology theory, but we

do not have to use it for actual calculation.
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Fix an element pg of C2\ {0}.

/

At a corner colored by / Ji
’

(z < under arc, y < over arc), we let

det(pg,y) det(r, x)
A
det(r,y) det(pg, )
pmi =Log(det(pg,y)) + Log(det(r,x))

— Log(det(r,y)) — Log(det(pg,z)) — Log(z)
gmi =Log(det(pg, z)) + Log(det(r,y))
~ Log(det(po, 7)) — Log(det(s, 1)) — Log(-——)

where Log(z) = log|z| +iarg(z) (—m7 < arg(z) < )

40



Then define the sign in the following rule:

AN AN AN
NN N N

+[z; p, 4] —[2;p, q]

(in-out or out-in) (in-in or out-out)

41



Thm (Inoue-K.)

Y. eclzei pe,qe] € B(C)

c.corners

IS the extended Bloch invariant.

Let R : B(C) — C/n?Z be the Rogers dilogarithmic function
defined by Neumann. When the arc coloring corresponding

to the faithful discrete representation of a hyperbolic knot K,

then we have

> ecR(zei pe, ge) = i(VOI(S> \ K) +iCS(S°\ K)).

c.corners

42



Application to dihedral quandles

Let R, ={0,1,...,p—1}(=Fp) and zxy = 2y —x mod p for
x,y € Rp. This is called the dihedral quand]e.

Let f be a group 3-cocycle of Z/p defined by
f:lalblc] —a(b+c—b—¢) modp

where @ is a lift to Z. In homogeneous notation, we have

fi(wzyz)—mz—wlyy—z+z—y—y—z+z—y).

Let g(wa LyY, Z) — f(wa LyY, Z)_l_f(_w) —L, Y, _Z) for w,T,Y,z C
Rp.
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The function g satisfies the following properties:

1. >,(—=Dg(zo, ..., %5, ..., xq) = O,

2. g(xgxy,...,v3%xy) = g(x0,...,T3),

3. 9g(zo,...,23) =0 if x; = ;4 1.

By our construction, this gives a cocycle on H?(RP;Z[RP]).
Since there exists a map Hg(Rp;Z[Rp]) — H?(RP;Z), g gives
a quandle 3-cocycle in H3(Rp; Z/p).
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On the other hand, there is a non-trivial quandle 3-cocycle of

Ry given by

(z,y,2) = (x —y)((2z —y)P +yP —22P)/p modp

This is called the Mochizuki’s 3-cocycle. Our cocycle g must
be a constant multiple of the Mochizuki's 3-cocycle up to
coboundary, because dimeHg’z(Rp;Z/p) = 1. By computer

calculation, we have:

(Our cocycle) = ¢ - (Mochizuki's cocycle)

 —
SRENNC ROLS

S S R S
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T hank you
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