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Notation

In this poster, all varieties are defined over the field of complex

numbers C.

Y : a smooth projective surface.

X : a normal projective surface.

π : X → Y : a 4-fold cover (i.e. a finite surjective morphism with deg π = 4).

∆(π) : the branch locus of π. (∆(π) 6= ∅, in general.)

C(X), C(Y ) : the rational function fields of X and Y , respectively.

KY , e(Y ) : a canonical divisor, topologically Euler number of Y , respectively.

Si : the symmetric group of degree i.

4-fold covers and S4-covers

C(X) is a finite extension of C(Y ) with [C(X) : C(Y )] = 4.

Hence there is z ∈ C(X) such that its minimal polynomial over

C(Y ) is

f := z4 + g1z
2 + g2z + g3.

Based on Lagrange’s method of solving f = 0, we canonically

obtain the following diagram:

Y

X1

X2

X̃

X π̃ ψ2

ψ3

ψ1
π

ϕ

C(Y )

K1

K2

K̃

C(X)
Normalization

(Z/2Z)⊕2

S3

4 : 1
2 : 1

3 : 1
cyclic

S4

K1 := C(Y )(θ1), K2 := K1(θ2,1) = K1(θ2,2),

K̃ := K2(θ3,1, θ3,2) = K2(θ3,2, θ3,3) = K2(θ3,3, θ3,1),

where θ1, θ2,i and θ3,j are elements such that

θ2
1 = δf , θ3

2,1 = −h2

2
+ θ1, θ3

2,2 = −h2

2
− θ1,

θ2
3,1 = θ2,1 + θ2,2, θ2

3,2 = ζ3θ2,1 + ζ2
3θ2,2, θ2

3,3 = ζ2
3θ2,1 + ζ3θ2,2.

Here h1, h2 ∈ C(Y ) and ζ3 = exp
(
2π

√
−1

3

)
.

We define four distinct algebraic subsets of ∆(π̃) as follows:

A := {P ∈ Y | ]ψ−1
1 (P ) = 1, ](ψ1 ◦ ψ2)−1(P ) = 3, ]π̃−1(P ) = 12},

B := {P ∈ Y | ]ψ−1
1 (P ) = 1, ](ψ1 ◦ ψ2)−1(P ) = 3, ]π̃−1(P ) = 6, P 6∈ A},

C := {P ∈ Y | ]ψ−1
1 (P ) = 2, ](ψ1 ◦ ψ2)−1(P ) = 2, ]π̃−1(P ) = 8},

D := {P ∈ Y | ]ψ−1
1 (P ) = 2, ](ψ1 ◦ ψ2)−1(P ) = 6, ]π̃−1(P ) = 12}.

Note that
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
∆(π) = A + B + C + D.

Generic 4-fold covers
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Def. Let π : X → Y be a 4-fold cover.

π : generic def⇐⇒ ∆(π) = A (i.e. B = C = D = 0)

Let π : X → Y be a generic 4-fold cover, which ∆(π) ⊂ Y is a

reduced curve with at worst simple singularities. Let
γ : Z1 → X1 : the minimal resolution of X1,

ψ̂2 : Z2 → Z1 : the K2-normalization of Z1,

ψ̂3 : Z̃ → Z2 : the K̃-normalization of Z2.

We put

δ1 : the number of connected components of ∆(ψ̂2) ⊂ Z1,

δ2 : the number of connected components of ψ̂2(∆(ψ̂3)) ⊂ Z1.

Then our main theorem is the following:

'

&

$

%

Main Thm. Let π : X → Y be a generic 4-fold cover as

above, and X the minimal resolution of X. Then

K2
X = 4K2

Y + 2A.KY +
1

2
A2 − δ1 − δ2,

e(X) = 4e(Y ) + A.KY + A2 − 3δ1 − 2δ2.

Resolution of 4-fold covers

We summatise resolution of any 4-fold covers, which is used in

our proof of Main Theorem.

For any integer i > 0, let σ(i) : Y (i) → Y (i−1) be a blowing-up

of Y (i−1) (Y (0) := Y ). Then we obtain the following diagram

by normalizing Y (i):

Y (i)

X
(i)
1

X
(i)
2

X̃ (i)

X (i) π̃(i) ψ
(i)
2

ψ
(i)
3

ψ
(i)
1

π(i)

φ(i)

Let A(i), B(i), C(i) and D(i) be the reduced divisors as A, B, C

and D.
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Thm. Let π : X → Y be a 4-fold cover. Then there is a

resolution X ′′ of X such that it is constructed by the fol-

lowing diagram:

Y

X

Y (r)

X (r)

X
(r)
1

X
(r)
2

X̃ (r)

X ′
2

X̃ ′

X ′′

π

σ

ψ
(r)
2

ψ
(r)
1

ψ
(r)
3

ϕ(r)

π(r)

σ2

ψ′
3

ϕ′′

ν′′
ν(r)

X̃ ′′σ3

where σ := σ(1) ◦ · · · ◦ σ(r) is blowing-ups, and π(r) is a

certain 4-fold cover. If π is generic, then

K2
X ′′ = 4K2

Y + 2A.KY +
1

2
A2−

r−1∑
i=0

ai(ai − 4)

2
−

r−1∑
i=0

3bi(3bi − 8)

4

−
r−1∑
i=0

4ci(ci − 3)

3
−

r−1∑
i=0

di(di − 4) −
r−1∑
i=0

di(ai + 3bi) − 4r,

e(X ′′) = 4e(Y ) + A.KY + A2−
r−1∑
i=0

ai(ai − 1) −
r−1∑
i=0

3bi(bi − 1)

−
r−1∑
i=0

2ci(ci − 1) −
r−1∑
i=0

2di(di − 1) −
r−1∑
i=0

di(2ai + 3bi) + 4r − 3s,

where ai, bi, ci, di and s are as follows:

For any reduced divisor H and P ∈ Y , we denote the mul-

tiplicity of H at P by µP (H). Let P (i) be the center of the

blowing-up σ(i+1) for i ≥ 0.

Then we put ai, bi, ci and di as follows;

ai :=

 µP (i−1)(A(i−1)) − 1 (if E(i) ⊂ A(i))

µP (i−1)(A(i−1)) (otherwise)

bi :=

µP (i−1)(B(i−1)) − 1 (if E(i) ⊂ B(i))

µP (i−1)(B(i−1)) (otherwise)

ci :=

µP (i−1)(C(i−1)) − 1 (if E(i) ⊂ C(i))

µP (i−1)(C(i−1)) (otherwise)

di :=

µP (i−1)(D(i−1)) − 1 (if E(i) ⊂ D(i))

µP (i−1)(D(i−1)) (otherwise)

Let s be the number of singular points of D(r).


