Non-Galois triple coverings of projective plane branched along quintic curves and cubic surfaces in projective space

Tadasuke Yasumura

Department of Mathematics and Information Sciences, Tokyo Metropolitan University

Definition

Let X and Y be normal projective varieties. We denote the function fields of X and Y by $\mathbf{C}(X)$ and $\mathbf{C}(Y)$, respectively. We call a finite surjective morphism $\pi:X\to Y$ with the non-Galois cubic extension $\mathbf{C}(X)/\mathbf{C}(Y)$ of these function fields induced by π a non-Galois triple covering. Then

- $\Delta_{\pi} := \{ y \in Y \mid \sharp(\pi^{-1}(y)) < 3 \}$: the branch locus of π .
- $D \subset \Delta_{\pi}$: an irreducible component.
- $\star \pi$: totally branched along $D \iff \forall p \in D, \sharp \pi^{-1}(p) = 1$.
- $\star \pi$: simply branched along $D \iff \exists U \subset D$: Zariski open set s.t. $\forall p \in U, \, \sharp \pi^{-1}(p) = 2$.
- $\pi: X \to \mathbf{P}^2$: non-Galois triple covering of QL-type (for simply QL-type) $\stackrel{\text{def}}{\Longleftrightarrow} \exists Q$: a quartic and $\exists L$: a line such that $\Delta_{\pi} = Q + L$ and π is totally (resp. simply) branched along L (resp. Q).

QL-type

Form H. Tokunaga [1], we obtain that the branch locus of a non-Galois triple covering of QL-type falls into one of the following:

Δ_{π}	Q	$Q \cap L$	Δ_{π}	Q	$Q \cap L$
Δ_1	Q_1	(i)	Δ_{10}	Q_5	(ii)
Δ_2	Q_2		Δ_{11}	Q_6	$(iii), a_3$
Δ_3	Q_3		Δ_{12}	Q_{12}	()) 0
Δ_4	Q_4		Δ_{13}	Q_7	$(iii), a_6$
Δ_5	Q_5		Δ_{14}	Q_8	$(v), a_4$
Δ_6	Q_9		Δ_{15}	Q_{10}	$(iv), 2a_3$
Δ_7	Q_1		Δ_{16}	Q_{13}	(
Δ_8	Q_2	(ii)	Δ_{17}	Q_{11}	$(v), a_7$
Δ_9	Q_4		Δ_{18}	Q_{14}	(v), ordinary 4-ple point

Q	irreducible components	singular points
Q_1	irreducible	$2a_2$
Q_2	irreducible	$a_1 + 2a_2$
Q_3	irreducible	$3a_2$
Q_4	irreducible	a_5
Q_5	irreducible	e_6
Q_6	irreducible	$a_2 + a_3$
Q_7	irreducible	a_6
Q_8	irreducible	$a_2 + a_4$
Q_9	two conics	$a_1 + a_5$
Q_{10}	two conics	$2a_3$
Q_{11}	two conics	a_7
Q_{12}	a cuspital cubic and a line	$a_1 + a_2 + a_3$
Q_{13}	a conics and two lines	$2a_3 + a_1$
Q_{14}	four lines	ordinary 4-ple point

- (i) L is a bitangent line of Q at two smooth points.
- (ii) L is a tangent line of Q at a smooth point with multiplicity four.
- (iii) L is tangent to Q at one smooth point and passes through one singular point of Q.
- (iv) L passes through two distinct singular points of Q.
- (v) L meets Q at just one singular point.

Let $\pi_i: X_i \to \mathbf{P}^2$ be a non-Galois triple covering such that Δ_{π_i} is of type Δ_i ($1 \le i \le 18$). Let $\gamma: \overline{X_i} \to X_i$ be the minimal resolution of X_i . If $1 \le i \le 17$ (resp. i = 18), then we see that the topological Euler number $\chi_{top}(\overline{X_i})$ is 9 (resp. 0) and that the self intersection number of the canonical divisor $K_{\overline{X_i}}$ of $\overline{X_i}$ is 3 (resp. 0).

Facts

Using the following three facts, we obtain that X_i ($1 \le i \le 17$) are cubic surfaces in \mathbf{P}^3 .

Lemma 0.1. Let $\pi: X \to \mathbf{P}^2$ be a triple covering of QL-type and $\gamma: \overline{X} \to X$ the minimal resolution of X. If $\chi_{top}(\overline{X}) = 9$ and $K_{\overline{X}}^2 = 3$ then

$$-K_{\overline{X}} \sim (\gamma \circ \pi)^* l,$$

where l is a line on \mathbf{P}^2 .

Proposition 0.1. Under the assumption of Lemma 0.1, $|-K_{\overline{X}}|$ induces a morphism $\varphi_{|-K_{\overline{X}}|}: \overline{X} \to \mathbf{P}^3$ such that \overline{X} is birationally equivalent to the image $\operatorname{Im} \varphi_{|-K_{\overline{X}}|}$ and $\operatorname{Im} \varphi_{|-K_{\overline{X}}|}$ is a normal cubic surface whose singular points are rational double points.

Proposition 0.2. Under the assumption of Lemma 0.1, $X = \text{Im } \varphi_{|-K_{\overline{X}}|}$ and $\pi : X \to \mathbf{P}^2$ is a restriction of a projection $\mathbf{P}^3 \cdots \to \mathbf{P}^2$ from a point.

Centers of projections

To obtain non-Galois triple coverings of QL-types, the centers fall one of the following:

$\operatorname{Sing} S$	$\Delta \pi_p$	normal forms of S	centers of the projections
$A_1 + 2A_2$	Δ_2		$[1:a:b:0], ab \neq -1, 0, 3$
	Δ_5		[1:a:b:0], ab = -1
	Δ_6	$WYZ + WX^2 + X^3 = 0$	[1:a:b:0], ab = 3
	Δ_{12}		$[1:a:b:0], ab = 0, a+b \neq 0$
	Δ_{16}		[1:0:0:0]
$A_1 + A_5$	Δ_8	$WXY + WZ^2 + X^3 = 0$	$[1:a:b:0], a+b^2 \neq 0$
21 1 + 2 1 5	Δ_{10}		$[1:a:b:0], a+b^2=0$
	Δ_1	$W^{3} + kWX^{2} + WYZ + X^{3} = 0$ $(4k^{3} + 27 \neq 0)$	$[1:a:b:0], ab \neq 0,$
			$a^4b^4 - 6a^2b^2k^2 - 8abk^3 - 108ab - 3k^4 \neq 0$
	Δ_4		$[1:a:b:0], ab \neq 0,$
$2A_2$			$a^4b^4 - 6a^2b^2k^2 - 8abk^3 - 108ab - 3k^4 = 0$
	Δ_{11}		$[1:a:b:0], k \neq 0, ab = 0, a+b \neq 0$
	Δ_{13}		$[1:a:b:0], k = 0, ab = 0, a + b \neq 0$
	Δ_{15}		$[1:0:0:0], k \neq 0$
	Δ_3	_	$[1:0:a:b], ab \neq 0$
$3A_2$		$WYZ + X^3 = 0$	$[1:a:0:b], ab \neq 0$
			$[1:a:b:0], ab \neq 0$
	Δ_7		[1:a:b:0],
A_5		$W^2Z + WXY + WZ^2 + X^3 = 0$	$27 + 4a^3 + 12a^2b^2 + 12ab^4 + 4b^6 \neq 0$
	Δ_9		[1:a:b:0],
			$27 + 4a^3 + 12a^2b^2 + 12ab^4 + 4b^6 = 0$
E_6	Δ_{14}	$W^2Y + WZ^2 + X^3 = 0$	$[1:a:b:0], a \neq 0$
	Δ_{17}		$[1:0:b:0], b \neq 0$
$\widetilde{E_6}$	Δ_{18}	$kW^3 + lW^2X + WY^2 + X^3 = 0$	$p \in H_1 \setminus H_2$
		$(4l^2 + 27k^3 \neq 0)$	$H_1, H_2 \in H_k, H_1 \neq H_2$

 $a, b, k, l \in \mathbf{C}$. if l = 0, $H_k = \{H_w, H_t, H_{su} \mid t^2 + k = 0, 2u^3 + k = 0, 3ks^2 = u^2, s \neq 0, (s, t, u \in \mathbf{C})\}$. if $l \neq 0$, $H_k = \{H_w, H_{su} \mid 3lu^4 - 6us^2 - 1 = 0, 6lus^2 + 9ks^2 - 3u^2 + l = 0, s \neq 0, (s, t, u \in \mathbf{C})\}$. $(H_W := V(W) \setminus V(X), H_t := V(Y + tW) \setminus V(X)$.) $(H_{su} := V(X - sY - uW) \setminus V(3s^3Y + (1 + 3us^2)W)$.)

References

[1] H. Tokunaga, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math. Kyoto Univ. 44, pp. 255–270, (2004).