Non-Galois triple coverings of projective plane branched along quintic curves and cubic surfaces in projective space ## Tadasuke Yasumura Department of Mathematics and Information Sciences, Tokyo Metropolitan University #### Definition Let X and Y be normal projective varieties. We denote the function fields of X and Y by $\mathbf{C}(X)$ and $\mathbf{C}(Y)$, respectively. We call a finite surjective morphism $\pi:X\to Y$ with the non-Galois cubic extension $\mathbf{C}(X)/\mathbf{C}(Y)$ of these function fields induced by π a non-Galois triple covering. Then - $\Delta_{\pi} := \{ y \in Y \mid \sharp(\pi^{-1}(y)) < 3 \}$: the branch locus of π . - $D \subset \Delta_{\pi}$: an irreducible component. - $\star \pi$: totally branched along $D \iff \forall p \in D, \sharp \pi^{-1}(p) = 1$. - $\star \pi$: simply branched along $D \iff \exists U \subset D$: Zariski open set s.t. $\forall p \in U, \, \sharp \pi^{-1}(p) = 2$. - $\pi: X \to \mathbf{P}^2$: non-Galois triple covering of QL-type (for simply QL-type) $\stackrel{\text{def}}{\Longleftrightarrow} \exists Q$: a quartic and $\exists L$: a line such that $\Delta_{\pi} = Q + L$ and π is totally (resp. simply) branched along L (resp. Q). ### QL-type Form H. Tokunaga [1], we obtain that the branch locus of a non-Galois triple covering of QL-type falls into one of the following: | Δ_{π} | Q | $Q \cap L$ | Δ_{π} | Q | $Q \cap L$ | |----------------|-------|------------|----------------|----------|---------------------------| | Δ_1 | Q_1 | (i) | Δ_{10} | Q_5 | (ii) | | Δ_2 | Q_2 | | Δ_{11} | Q_6 | $(iii), a_3$ | | Δ_3 | Q_3 | | Δ_{12} | Q_{12} | ()) 0 | | Δ_4 | Q_4 | | Δ_{13} | Q_7 | $(iii), a_6$ | | Δ_5 | Q_5 | | Δ_{14} | Q_8 | $(v), a_4$ | | Δ_6 | Q_9 | | Δ_{15} | Q_{10} | $(iv), 2a_3$ | | Δ_7 | Q_1 | | Δ_{16} | Q_{13} | (| | Δ_8 | Q_2 | (ii) | Δ_{17} | Q_{11} | $(v), a_7$ | | Δ_9 | Q_4 | | Δ_{18} | Q_{14} | (v), ordinary 4-ple point | | Q | irreducible components | singular points | |----------|-----------------------------|----------------------| | Q_1 | irreducible | $2a_2$ | | Q_2 | irreducible | $a_1 + 2a_2$ | | Q_3 | irreducible | $3a_2$ | | Q_4 | irreducible | a_5 | | Q_5 | irreducible | e_6 | | Q_6 | irreducible | $a_2 + a_3$ | | Q_7 | irreducible | a_6 | | Q_8 | irreducible | $a_2 + a_4$ | | Q_9 | two conics | $a_1 + a_5$ | | Q_{10} | two conics | $2a_3$ | | Q_{11} | two conics | a_7 | | Q_{12} | a cuspital cubic and a line | $a_1 + a_2 + a_3$ | | Q_{13} | a conics and two lines | $2a_3 + a_1$ | | Q_{14} | four lines | ordinary 4-ple point | - (i) L is a bitangent line of Q at two smooth points. - (ii) L is a tangent line of Q at a smooth point with multiplicity four. - (iii) L is tangent to Q at one smooth point and passes through one singular point of Q. - (iv) L passes through two distinct singular points of Q. - (v) L meets Q at just one singular point. Let $\pi_i: X_i \to \mathbf{P}^2$ be a non-Galois triple covering such that Δ_{π_i} is of type Δ_i ($1 \le i \le 18$). Let $\gamma: \overline{X_i} \to X_i$ be the minimal resolution of X_i . If $1 \le i \le 17$ (resp. i = 18), then we see that the topological Euler number $\chi_{top}(\overline{X_i})$ is 9 (resp. 0) and that the self intersection number of the canonical divisor $K_{\overline{X_i}}$ of $\overline{X_i}$ is 3 (resp. 0). #### Facts Using the following three facts, we obtain that X_i ($1 \le i \le 17$) are cubic surfaces in \mathbf{P}^3 . **Lemma 0.1.** Let $\pi: X \to \mathbf{P}^2$ be a triple covering of QL-type and $\gamma: \overline{X} \to X$ the minimal resolution of X. If $\chi_{top}(\overline{X}) = 9$ and $K_{\overline{X}}^2 = 3$ then $$-K_{\overline{X}} \sim (\gamma \circ \pi)^* l,$$ where l is a line on \mathbf{P}^2 . **Proposition 0.1.** Under the assumption of Lemma 0.1, $|-K_{\overline{X}}|$ induces a morphism $\varphi_{|-K_{\overline{X}}|}: \overline{X} \to \mathbf{P}^3$ such that \overline{X} is birationally equivalent to the image $\operatorname{Im} \varphi_{|-K_{\overline{X}}|}$ and $\operatorname{Im} \varphi_{|-K_{\overline{X}}|}$ is a normal cubic surface whose singular points are rational double points. **Proposition 0.2.** Under the assumption of Lemma 0.1, $X = \text{Im } \varphi_{|-K_{\overline{X}}|}$ and $\pi : X \to \mathbf{P}^2$ is a restriction of a projection $\mathbf{P}^3 \cdots \to \mathbf{P}^2$ from a point. ## Centers of projections To obtain non-Galois triple coverings of QL-types, the centers fall one of the following: | $\operatorname{Sing} S$ | $\Delta \pi_p$ | normal forms of S | centers of the projections | |----------------------------|----------------|--|--| | $A_1 + 2A_2$ | Δ_2 | | $[1:a:b:0], ab \neq -1, 0, 3$ | | | Δ_5 | | [1:a:b:0], ab = -1 | | | Δ_6 | $WYZ + WX^2 + X^3 = 0$ | [1:a:b:0], ab = 3 | | | Δ_{12} | | $[1:a:b:0], ab = 0, a+b \neq 0$ | | | Δ_{16} | | [1:0:0:0] | | $A_1 + A_5$ | Δ_8 | $WXY + WZ^2 + X^3 = 0$ | $[1:a:b:0], a+b^2 \neq 0$ | | 21 1 + 2 1 5 | Δ_{10} | | $[1:a:b:0], a+b^2=0$ | | | Δ_1 | $W^{3} + kWX^{2} + WYZ + X^{3} = 0$ $(4k^{3} + 27 \neq 0)$ | $[1:a:b:0], ab \neq 0,$ | | | | | $a^4b^4 - 6a^2b^2k^2 - 8abk^3 - 108ab - 3k^4 \neq 0$ | | | Δ_4 | | $[1:a:b:0], ab \neq 0,$ | | $2A_2$ | | | $a^4b^4 - 6a^2b^2k^2 - 8abk^3 - 108ab - 3k^4 = 0$ | | | Δ_{11} | | $[1:a:b:0], k \neq 0, ab = 0, a+b \neq 0$ | | | Δ_{13} | | $[1:a:b:0], k = 0, ab = 0, a + b \neq 0$ | | | Δ_{15} | | $[1:0:0:0], k \neq 0$ | | | Δ_3 | _ | $[1:0:a:b], ab \neq 0$ | | $3A_2$ | | $WYZ + X^3 = 0$ | $[1:a:0:b], ab \neq 0$ | | | | | $[1:a:b:0], ab \neq 0$ | | | Δ_7 | | [1:a:b:0], | | A_5 | | $W^2Z + WXY + WZ^2 + X^3 = 0$ | $27 + 4a^3 + 12a^2b^2 + 12ab^4 + 4b^6 \neq 0$ | | | Δ_9 | | [1:a:b:0], | | | | | $27 + 4a^3 + 12a^2b^2 + 12ab^4 + 4b^6 = 0$ | | E_6 | Δ_{14} | $W^2Y + WZ^2 + X^3 = 0$ | $[1:a:b:0], a \neq 0$ | | | Δ_{17} | | $[1:0:b:0], b \neq 0$ | | $\widetilde{E_6}$ | Δ_{18} | $kW^3 + lW^2X + WY^2 + X^3 = 0$ | $p \in H_1 \setminus H_2$ | | | | $(4l^2 + 27k^3 \neq 0)$ | $H_1, H_2 \in H_k, H_1 \neq H_2$ | $a, b, k, l \in \mathbf{C}$. if l = 0, $H_k = \{H_w, H_t, H_{su} \mid t^2 + k = 0, 2u^3 + k = 0, 3ks^2 = u^2, s \neq 0, (s, t, u \in \mathbf{C})\}$. if $l \neq 0$, $H_k = \{H_w, H_{su} \mid 3lu^4 - 6us^2 - 1 = 0, 6lus^2 + 9ks^2 - 3u^2 + l = 0, s \neq 0, (s, t, u \in \mathbf{C})\}$. $(H_W := V(W) \setminus V(X), H_t := V(Y + tW) \setminus V(X)$.) $(H_{su} := V(X - sY - uW) \setminus V(3s^3Y + (1 + 3us^2)W)$.) #### References [1] H. Tokunaga, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math. Kyoto Univ. 44, pp. 255–270, (2004).