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Definition for a group and a morphism I

G a group (finitely presented) and ε : G � Z.

Let X a space such that π1(X ) = G. Unless otherwise stated, we
consider the CW -complex of dimension 2 associated to a presentation.

Let Ai be the set of (oriented) i-cells and let C∗(X ;C) the complex of
C-chains:

0→ C2(X ;C)→ C1(X ;C)→ C0(X ;C)→ 0

Consider the covering ρ : X̃ → X associated to ε. Let t : X̃ → X̃ be a
generator of the automorphism group of ρ; X̃ has a natural structure of
CW -complex.

Let Ãi be the set of i-cells of X̃ . For each σ ∈ Ai , we choose (arbitrarily)
σ̃ ∈ Ãi such that ρ(σ̃) = σ. Then, Ãi := {tk σ̃ | k ∈ Z, σ ∈ Ai}.
Λ := C[Z] the group algebra of Z identified as C[t±1]. The complex
C∗(X̃ ;C) is a free Λ-module such that rankΛ Ci (X̃ ;C) = dimC Ci (X ;C)
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Definition for a group and a morphism II

Let us denote p the only 0-cell. Let x̃ ∈ Ã1; Then ∂(x̃) = (tε(x) − 1)p

If σ̃ ∈ Ã2 is associated to a relation σ = w(x1, . . . , xr ), then ∂(σ̃) is
computed using Fox derivation ∂t :

xi 7→ x̃i , x−1
i 7→ −t−ε(xi )x̃i , w1w2 7→ ∂t (w1) + tε(w1)∂t (w2)

Since C∗(X̃ ;C) is a complex of Λ-modules, then H1(X̃ ;C) is a Λ-module.
If G is finitely presented then H1(X̃ ;C) is finitely generated.

The Alexander polynomial ∆G,ε of G with respect to ε is the order of
H1(X̃ ;C) as Λ-module (Λ is a PID).
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Definition of Alexander Polynomial

Definition

Let Caff be an affine curve defined by f (x , y) = 0 and let ε : π1(C2 \ Caff)→ Z
the epimorphism determined by f : C2 \ Caff → C∗. The Alexander polynomial
of Caff is ∆π1(C2\Caff),ε.

Definition (Libgober)

The Alexander polynomial ∆C of a projective curve C is the one of its generic
associated affine curve Caff.

Remark

Further properties of this invariant will be sketched in the following lecture. A
main feature (or weakness) compared with knot theory is the following: all
roots of the Alexander polynomial are d-roots of unity.

Remark

In the same way one can define the Alexander polynomial for a non reduced
curve: these polynomials are called Alexander-Oka polynomials.
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Alexander polynomial of a curve whose group is unknown

Cyclic version of Sakuma’s formula

Let εd : G→ Z/dZ be the natural composition mapping, let ρd : Xd → X be
the associated cyclic covering and let td : Xd → Xd the standard generator of
the automorphism group of ρd .
For ζ 6= 1 a d-root of unity, let mζ be the dimension of the ζ-eigenspace of
H1(Xd ;C) by the action of td . Then mζ is the multiplicity of ζ as root of ∆G,ε.

Consequence

Let C be a projective curve defined by F (x , y , z) = 0. Let
Xd := {(x , y , z) ∈ C3 | F (x , y , z) = 1} and let ρd : Xd → P2 \ C be the
standard projection.

Then ρd is a d-cyclic unramified covering whose monodromy is
generated by (x , y , z) 7→ ζd (x , y , z), ζd := exp( 2iπ

d ).

Then, the Alexander polynomial ∆C is determined by the action on
cohomology H1(Xd ;C) of the above multiplication.

Moreover, if X̄d is a smooth projective completion of Xd , all the
computations can be done on X̄d and Hodge structure can be used.
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Quasi-adjunction ideals

Construction

Let (C,P) ⊂ (Y ,P) be a germ of curve singularity on a smooth complex
surface. Let OP := OY ,P the fiber at P of the structure sheaf.

Let σ : Z → (Y ,P) be the minimal embedded resolution of C and let
σ∗(C) = Ĉ +

∑
i∈I miEi .

Let ω be a holomorphic 2-form on Y not vanishing at P. Let
(σ∗ω) =

∑
i∈I κiEi .

Let q ∈ Q ∩ (0, 1). We define the quasiadjunction ideal JC,P,q as the set
of h ∈ OP such that the order of σ∗(h) at Ei is at least bqmic − κi .

Theorem (Zariski,Libgober,Esnault,Loeser-Vaquié,–)

Let C be a projective curve of degree d and let k ∈ {1, . . . , d}. Let
σk : H0(P2,O(k − 3))→

⊕
P∈Sing C OP/JC,P, k

d
be the natural map. We set

ak := dim cokerσk .
Then, the multiplicity of ζk

d as root of ∆C equals ak + ad−k .

E. Artal Fundamental Group and Braid Monodromy
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Examples

(C,P) = A1, JC,P,q = OP

(C,P) = A2, JC,P, 5
6

=MP .

(C,P) = A17 = {u2 − v18 = 0}, JC,P, 5
6

= (u) +MP = (u, v6).

C a sextic with six cusps: ∆C = t2 − t + 1 (resp. 1) if the six cusps (resp.
do not) lie on a conic (Zariski).

C an irreducible sextic with A17: ∆C = t2 − t + 1 (resp. 1) if there is (resp.
not) a conic with intersection number 12 at A17.
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Settings for characteristic varieties

G a group (finitely presented) with the same notation as before. Let
H := G/G′ and let ε : G � H.

Consider the covering ρ : X̃ → X associated to ε. Each t ∈ H defines an
automorphism t : X̃ → X̃ of ρ; X̃ has a natural structure of CW -complex.
Let Ãi be the set of i-cells of X̃ . For each σ ∈ Ai , we choose (arbitrarily)
σ̃ ∈ Ãi such that ρ(σ̃) = σ. Then, Ãi := {t σ̃ | t ∈ H, σ ∈ Ai}.
Λ := C[H] the group algebra of H. If H ∼= Zr−1⊕Z/eZ (with multiplicative
notation), then Λ is identified with C[t±1

1 , . . . , t±1
r ]/(te

r − 1). The complex
C∗(X̃ ;C) is a free Λ-module such that rankΛ Ci (X̃ ;C) = dimC Ci (X ;C)

For x̃ ∈ Ã1 ∂(x̃) = (ε(x)− 1)p. The boundary for Ã2 is defined using Fox
derivation ∂H :

xi 7→ x̃i , x−1
i 7→ −ε(xi )

−1x̃i , w1w2 7→ ∂H(w1) + ε(w1)∂H(w2)

Since C∗(X̃ ;C) is a complex of Λ-modules, then H1(X̃ ;C) is a Λ-module.
If G is finitely presented then the Λ-module H1(X̃ ;C) = G′/G′′ is finitely
generated.
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derivation ∂H :

xi 7→ x̃i , x−1
i 7→ −ε(xi )

−1x̃i , w1w2 7→ ∂H(w1) + ε(w1)∂H(w2)

Since C∗(X̃ ;C) is a complex of Λ-modules, then H1(X̃ ;C) is a Λ-module.
If G is finitely presented then the Λ-module H1(X̃ ;C) = G′/G′′ is finitely
generated.

E. Artal Fundamental Group and Braid Monodromy



Alexander polynomial
Algebraic computations
Characteristic varieties

Settings for characteristic varieties

G a group (finitely presented) with the same notation as before. Let
H := G/G′ and let ε : G � H.
Consider the covering ρ : X̃ → X associated to ε. Each t ∈ H defines an
automorphism t : X̃ → X̃ of ρ; X̃ has a natural structure of CW -complex.
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For x̃ ∈ Ã1 ∂(x̃) = (ε(x)− 1)p. The boundary for Ã2 is defined using Fox
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Definitions of characteristic varieties

Definition

Let M be a finitely presented Λ-module and let A ∈ Mat(n ×m; Λ) be a
presentation matrix, i.e., A is the matrix of a morphism Φ : Am → An. Then,
the k -Fitting ideal JM,k of M is the ideal of H generated by the (n − k)-minors
of A (it does not depend on A).

Remark

The maximal spectrum TH of H is a disjoint union of e (r − 1)-dimensional
tori, identified with the subvariety of Tr defined by te

r = 1. In particular, it is a
complex Lie group.

Definition

The k -characteristic variety ΣC,k of a complex projective curve C is the zero
locus of JH1(X̃ ,C),k .
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Alternative definition

Let ξ : G→ C∗ be a character. For the space of characters we have

Hom(G;C∗) = Hom(H,C∗) = Hom(H1(X ;Z);C∗) = H1(X ;C∗) = TH .

We denote by Cξ the Λ-module structure of C defined by ξ: if t ∈ H and
z ∈ C, then t · z := ξ(t)z.

Let us consider the local system of coefficients Cξ defined on X by ξ and
consider its cohomology H∗(X ;Cξ); in degree 1 it depends only on G.

This cohomology can be computed as follows. Consider the complex of
C-vector spaces defined by C∗(X ;Cξ) := C∗(X̃ ;Cξ)⊗Λ Cξ. It is
isomorphic as (graded) C-vector space with C∗(X ;C) but the differential
is twisted by ξ. The cohomology of this complex is H∗(X ;Cξ).

Set ΣG,k := {ξ ∈ TH | dimC H1(X ;Cξ) ≥ k}.
With this definition ΣGC ,k and ΣC,k coincide outside 1 ∈ TH . This is due
to the commutation of the operations cohomology and ⊗ΛCξ.
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Quasi-adjunction ideals and characteristic varieties

There is a similar notion of quasi-adjunction ideals adapted to
characteristic varieties. One possible definition uses the former
quasi-adjunction ideals for non-reduced germs of curves.

The Theorem for the computation of the Alexander polynomial without
computing the fundamental group also works in this setting with one
exception. In that case the space which was computed was H1(X̄d ;C)ζ
which turned out to be equal to H1(Xd ;C)ζ .

It is no more the case for characters ξ which do not ramify at some
irreducible component of C.
Combining Sakuma’s formula and further properties of characteristic
varieties it is possible to obtain all irreducible components of
characteristic varieties whose generic elements ramify along all the
irreducible components of C.
The resonance varieties are subspaces R ⊂ H1(X ;C); the irreducible
components of the characteristic varieties passing through 1 are
obtained as exp(2iπR).
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varieties it is possible to obtain all irreducible components of
characteristic varieties whose generic elements ramify along all the
irreducible components of C.
The resonance varieties are subspaces R ⊂ H1(X ;C); the irreducible
components of the characteristic varieties passing through 1 are
obtained as exp(2iπR).
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More computations

Group quartic+conic I

GC = 〈a, b | b2 = (ab)4〉
1 6= ξ : GC → C∗, a 7→ t , b 7→ s, t4s2 = 1, (t , s) 6= (1, 1)

∂ : C1 → C0: (t − 1 s − 1)⇒ dim ker ∂ = 1.

∂ : C2 → C1: t
(

1−(ts)4

1−ts t 1−(ts)4

1−ts − (s + 1)
)

.

If we want to have non trivial homology the matrix must vanish: s = −1
and t4 = 1. The case (1,−1) cannot be obtained using quasi-adjunction
ideals.
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Group quartic+conic II

GC = 〈a, b | a2(ab)2 = [a, b2] = 1〉
1 6= ξ : GC → C∗, a 7→ t , b 7→ s, t4s2 = 1, (t , s) 6= (1, 1)

∂ : C1 → C0: (t − 1 s − 1)⇒ dim ker ∂ = 1.

∂ : C2 → C1: (
1 + t + t2 + t3s 1− s2

t3(1 + ts) (t − 1)(1 + s)

)

If we want to have non trivial homology the matrix must vanish and this is
not possible.
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