

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

<ロ> (四) (四) (三) (三) (三)

Recent Progress on Topology of Plane Curves: A Quick Trip Part II: The Cohomology Algebra of a Plane Curve

José Ignacio COGOLLUDO-AGUSTÍN

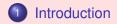
Departamento de Matemáticas Universidad de Zaragoza

Branched Coverings in Tokyo - March 7-10, 2011

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

・ ロ ト ・ 雪 ト ・ 画 ト ・ 目 ト

Contents



J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

<ロト < 回 > < 回 > < 回 > 、

∃ 990

Contents

Introduction

Settings and Results

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Contents

Introduction

- Settings and Results
- The Line Arrangement Case

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Ð.

Contents

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms

イロト イポト イヨト イヨト

Ð.

Contents

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators

Contents

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X

Contents

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X
 - Weak Combinatorics

(日)

Contents

- Introduction
- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X
 - Weak Combinatorics
- 3 Resonance Varieties

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

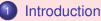
・ロト ・ 同ト ・ ヨト ・ ヨト

Contents

Introduction

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X
 - Weak Combinatorics
- 3 Resonance Varieties
 - Formality of X

Contents



- Sottings and E
- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X
 - Weak Combinatorics
- 3 Resonance Varieties
- Formality of X
 - Max-Noether Fundamental Theorem Revisited

Contents

Introduction

- Settings and Results
- The Line Arrangement Case
- Log-resolution Logarithmic Forms
- Poincaré Residue Operators
- 2 Cohomology Algebra of X
 - Weak Combinatorics
- 3 Resonance Varieties
- Formality of X
 - Max-Noether Fundamental Theorem Revisited

5 Problems

Cohomology Algebra of X Resonance Varieties Formality of X Problems

Settings

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

 $\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

э.

Cohomology Algebra of X Resonance Varieties Formality of X Problems

Settings

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

 $X:=\mathbb{P}^2\setminus \mathcal{C}$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

э.

Cohomology Algebra of X Resonance Varieties Formality of X Problems

Settings

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

 $X := \mathbb{P}^2 \setminus \mathcal{C}$

 $H^*(X) = H^*(X; \mathbb{C})$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト 不得 とくほと くほとう

ъ

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems

Settings

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

$$X:=\mathbb{P}^2\setminus \mathcal{C}$$

$$H^*(X)=H^*(X;\mathbb{C})$$

• Give a constructive description of $H^*(X)$ by generators and relations, as well as describe the product.

・ロト ・ ア・ ・ ヨト ・ ヨト

Ð.

Cohomology Algebra of X Resonance Varieties Formality of X Problems Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

$$X := \mathbb{P}^2 \setminus \mathcal{C}$$

$$H^*(X)=H^*(X;\mathbb{C})$$

- Give a constructive description of H^{*}(X) by generators and relations, as well as describe the product.
- Weak Combinatorial Invariants of C.

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems

Settings

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

 $X:=\mathbb{P}^2\setminus \mathcal{C}$

 $H^*(X) = H^*(X; \mathbb{C})$

- Give a constructive description of $H^*(X)$ by generators and relations, as well as describe the product.
- Weak Combinatorial Invariants of C.
- Existence of an Orlik-Solomon-like algebra.

・ロット (雪) (山) (山)

Cohomology Algebra of X Resonance Varieties Formality of X Problems Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forr Poincaré Residue Operators

$$\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1 \cup ... \cup \mathcal{C}_r \subset \mathbb{P}^2$$

 $X:=\mathbb{P}^2\setminus \mathcal{C}$

 $H^*(X) = H^*(X; \mathbb{C})$

- Give a constructive description of $H^*(X)$ by generators and relations, as well as describe the product.
- Weak Combinatorial Invariants of C.
- Existence of an Orlik-Solomon-like algebra.
- Prove Formality of X.

・ ロ ト ・ 雪 ト ・ 画 ト ・ 目 ト

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

$$\mathcal{C} = \ell_0 \cup \ell_1 \cup \ldots \cup \ell_r \subset \mathbb{P}^2,$$

where ℓ_i is a line.

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

$$\mathcal{C} = \ell_0 \cup \ell_1 \cup ... \cup \ell_r \subset \mathbb{P}^2,$$

where ℓ_i is a line. Consider $X = \mathbb{C}^2 \setminus (\ell_1 \cup ... \cup \ell_r)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

Theorem (Arnold, Brieskorn, Orlik-Solomon)

The ring $H^*(X)$ is generated by $H^1(X)$, that is, by:

$$\sigma_i := \frac{d\ell_i}{\ell_i}$$

A complete set of relations is given by:

$$\sigma_i \wedge \sigma_j + \sigma_j \wedge \sigma_k + \sigma_k \wedge \sigma_i = \mathbf{0},$$

whenever $\ell_i \cap \ell_j \cap \ell_k \neq \emptyset$.

・ ロ ト ・ 雪 ト ・ 画 ト ・ 目 ト

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

Note that whenever $\ell_i \cap \ell_j \cap \ell_k \neq \emptyset \Rightarrow \ell_k = a\ell_i + b\ell_j$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

Note that whenever $\ell_i \cap \ell_j \cap \ell_k \neq \emptyset \Rightarrow \ell_k = a\ell_i + b\ell_j$

$$\ell_i\ell_j\ell_k\cdot\sigma_j\wedge\sigma_k=a\ell_i(d\ell_j\wedge d\ell_i)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

Note that whenever $\ell_i \cap \ell_j \cap \ell_k \neq \emptyset \Rightarrow \ell_k = a\ell_i + b\ell_j$

$$\ell_i \ell_j \ell_k \cdot \sigma_j \wedge \sigma_k = a \ell_i (d \ell_j \wedge d \ell_i)$$

$$\ell_i \ell_j \ell_k \cdot \sigma_k \wedge \sigma_i = b \ell_j (d \ell_j \wedge d \ell_i)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Ð.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The Line Arrangement Case

Note that whenever $\ell_i \cap \ell_j \cap \ell_k \neq \emptyset \Rightarrow \ell_k = a\ell_i + b\ell_j$

$$\ell_i \ell_j \ell_k \cdot \sigma_j \wedge \sigma_k = a \ell_i (d \ell_j \wedge d \ell_i)$$

$$\ell_i\ell_j\ell_k\cdot\sigma_k\wedge\sigma_i=b\ell_j(d\ell_j\wedge d\ell_i)$$

Therefore,

$$\ell_i\ell_j\ell_k\cdot(\sigma_j\wedge\sigma_k+\sigma_k\wedge\sigma_i)=\ell_k(\mathbf{d}\ell_j\wedge\mathbf{d}\ell_i)=-\ell_i\ell_j\ell_k\cdot\sigma_i\wedge\sigma_j$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Ð.

Cohomology Algebra of X Resonance Varieties Formality of X Problems Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The General Case

However,

$$\mathcal{C} = \ell_0 \cup q,$$

where $\ell_0 = \{z = 0\}$ and $q := \{z^2 = xy\}$.

イロト イポト イヨト イヨト

э.

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The General Case

However,

$$\mathcal{C} = \ell_0 \cup q,$$

where $\ell_0 = \{z = 0\}$ and $q := \{z^2 = xy\}.$
 $\mathcal{H}^1(X) = \mathbb{C}$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト イポト イヨト イヨト

ъ

Introduction Cohomology Algebra of X Resonance Varieties

Problems

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The General Case

However,

$$\mathcal{C}=\ell_0\cup q,$$

where $\ell_0=\{z=0\}$ and $q:=\{z^2=xy\}.$
 $H^1(X)=\mathbb{C}$

$$H^2(X) = H_1(\mathcal{C}) = \mathbb{C}$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト イポト イヨト イヨト

ъ

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The General Case

However,

$$\mathcal{C} = \ell_0 \cup q,$$

where $\ell_0 = \{z = 0\}$ and $q := \{z^2 = xy\}.$
 $\mathcal{H}^1(X) = \mathbb{C}$

$$H^2(X) = H_1(\mathcal{C}) = \mathbb{C}$$

Therefore

 $\wedge^2 H^1(X) \neq H^2(X).$

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

The General Case

However,

$$\mathcal{C} = \ell_0 \cup q,$$

where $\ell_0 = \{z = 0\}$ and $q := \{z^2 = xy\}.$
 $\mathcal{H}^1(X) = \mathbb{C}$

$$H^2(X) = H_1(\mathcal{C}) = \mathbb{C}$$

Therefore

 $\wedge^2 H^1(X) \neq H^2(X).$

In fact,

$$H^2(X) = \langle \frac{\omega}{\ell_0 q} \rangle_{\mathbb{C}}, \quad \text{where } \omega := z dx \wedge dy + x dy \wedge dz + y dz \wedge dx.$$

イロト イポト イヨト イヨト

ъ

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems

The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

 $\pi: S \rightarrow \mathbb{P}^2$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

= 900

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems

Definitions

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

E DQC

Definitions

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{rcccc} \pi : & \mathcal{S} & \to & \mathbb{P}^2 \\ & \cup & & \cup \\ & \bar{\mathcal{C}} & \to & \mathcal{C} \end{array} \tag{1}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Definition

The sheaf $\pi_* \mathcal{E}^*_{\mathcal{S}}(\log \overline{\mathcal{C}})$ is the sheaf of *log-resolution logarithmic* forms of \mathcal{C} w.r.t. π .

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{rcccc} \pi : & \mathcal{S} & \to & \mathbb{P}^2 \\ & \cup & & \cup \\ & \bar{\mathcal{C}} & \to & \mathcal{C} \end{array} \tag{1}$$

Definition

The sheaf $\pi_* \mathcal{E}^*_{\mathcal{S}}(\log \overline{\mathcal{C}})$ is the sheaf of *log-resolution logarithmic* forms of \mathcal{C} w.r.t. π .

Remark

• The sheaf $\pi_* \mathcal{E}^*_{S}(\log \overline{C})$ is independent of the resolution.

Definitions

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{aligned} \pi : & \boldsymbol{S} & \to & \mathbb{P}^2 \\ & \cup & & \cup \\ & \bar{\mathcal{C}} & \to & \mathcal{C} \end{aligned}$$
 (1)

Definition

The sheaf $\pi_* \mathcal{E}^*_{\mathcal{S}}(\log \overline{\mathcal{C}})$ is the sheaf of *log-resolution logarithmic* forms of \mathcal{C} w.r.t. π .

Remark

- The sheaf π_{*} ε^{*}_S(log C
) is independent of the resolution.
- Denote it by $\mathcal{E}^*_{\mathbb{P}^2}(\log \mathcal{C})$.

 π

of X Settings and Hesuits leties The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Definition

The sheaf $\pi_* \mathcal{E}^*_{\mathcal{S}}(\log \overline{\mathcal{C}})$ is the sheaf of *log-resolution logarithmic* forms of \mathcal{C} w.r.t. π .

Remark

- The sheaf π_{*} ε^{*}_S(log C
) is independent of the resolution.
- Denote it by *E*^{*}_{ℙ²}(log *C*).

Introduction

Cohomology Algebra of *X* Resonance Varieties Formality of *X* Problems Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$H^{i}(S; W_{i}\mathcal{E}^{*}_{S}(\log \bar{\mathcal{C}}))$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{c} H^{i}(\mathbb{P}^{2}; \, W_{i}\mathcal{E}_{\mathbb{P}^{2}}^{*}(\log \mathcal{C})) \\ \| \\ H^{i}(S; \, W_{i}\mathcal{E}_{S}^{*}(\log \bar{\mathcal{C}})) \end{array}$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

E DQC

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{c} H^{i}(\mathbb{P}^{2}; W_{i}\mathcal{E}_{\mathbb{P}^{2}}^{*}(\log \mathcal{C})) \\ \parallel \\ H^{i}(S; W_{i}\mathcal{E}_{S}^{*}(\log \bar{\mathcal{C}})) \\ \parallel \\ H^{i}(X) \end{array}$$

E DQC

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$egin{aligned} & \mathcal{H}^i(\mathbb{P}^2; \, \mathcal{W}_i \mathcal{E}^*_{\mathbb{P}^2}(\log \mathcal{C})) & & \parallel \ & \mathcal{H}^i(S; \, \mathcal{W}_i \mathcal{E}^*_S(\log ar{\mathcal{C}})) & o & \mathcal{H}^i(S; \, \mathcal{W}_i / \mathcal{W}_{i-1}) \ & \parallel \ & \mathcal{H}^i(X) \end{aligned}$$

E DQC

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$egin{aligned} &\mathcal{H}^i(\mathbb{P}^2; \, \mathcal{W}_i \mathcal{E}^*_{\mathbb{P}^2}(\log \mathcal{C})) & & \parallel \ & \mathcal{H}^i(S; \, \mathcal{W}_i \mathcal{E}^*_{\mathcal{S}}(\log ar{\mathcal{C}})) & o & \mathcal{H}^i(S; \, \mathcal{W}_i / \mathcal{W}_{i-1}) &\simeq & \mathcal{H}^0(ar{\mathcal{C}}^{[i]}) & \ & \parallel \ & \mathcal{H}^i(X) \end{aligned}$$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

E DQC

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{ccc} H^{i}(\mathbb{P}^{2}; W_{i}\mathcal{E}_{\mathbb{P}^{2}}^{*}(\log \mathcal{C})) \\ & \parallel \\ H^{i}(S; W_{i}\mathcal{E}_{S}^{*}(\log \bar{\mathcal{C}})) & \rightarrow & H^{i}(S; W_{i}/W_{i-1}) & \simeq & H^{0}(\bar{\mathcal{C}}^{[i]}) \\ & \parallel \\ & H^{i}(X) \end{array}$$

Such a residue map will be denoted by $\operatorname{Res}^{[i]}$.

ъ

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

$$\begin{array}{ccc} H^{i}(\mathbb{P}^{2}; W_{i}\mathcal{E}_{\mathbb{P}^{2}}^{*}(\log \mathcal{C})) \\ \| \\ H^{i}(S; W_{i}\mathcal{E}_{S}^{*}(\log \bar{\mathcal{C}})) & \rightarrow & H^{i}(S; W_{i}/W_{i-1}) & \simeq & H^{0}(\bar{\mathcal{C}}^{[i]}) \\ \| \\ H^{i}(X) \end{array}$$

Such a residue map will be denoted by Res^[*i*]. In more generality:

$$H^{i}(\mathbb{P}^{2}; W_{k}\mathcal{E}^{*}_{\mathbb{P}^{2}}(\log \mathcal{C})) \xrightarrow{\mathsf{Res}^{[i,k]}} H^{i-k}(\overline{\mathcal{C}}^{[k]}).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Problems

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Theorem (-,D.Matei)

Under the above conditions:

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

ъ

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Theorem (-,D.Matei)

Under the above conditions:

• $\operatorname{Res}^{[1,1]}$ is injective.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト 不得 とくほと くほとう

ъ

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Theorem (-,D.Matei)

Under the above conditions:

Res^[1,1] is injective.

If $\psi \in \mathcal{E}^2(\mathbb{P}^2)(\log \mathcal{C})$ is such that $\operatorname{Res}^{[2,2]} \psi = 0$ and $\operatorname{Res}^{[2,1]} \psi = 0$, then $\psi = 0$.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.
$$\frac{dx \wedge dy}{f} \stackrel{x=u_1}{\longleftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{y=u_1v_1}{\leftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\leftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)}$$

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{\substack{x=u_1\\y=u_1v_1}}{\longleftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\longleftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)} \stackrel{\substack{u_2=u_3v_3\\y=u_2v_3}}{\longleftarrow} \frac{du_3 \wedge dv_3}{u_3v_3^2(1 - u_3)}$$

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{y=u_1v_1}{\leftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\leftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)} \stackrel{u_2=u_3v_3}{\leftarrow} \frac{du_3 \wedge dv_3}{u_3v_3^2(1 - u_3)}$$

which is not logarithmic.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{y=u_1v_1}{\leftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\leftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)} \stackrel{u_2=u_3v_3}{\leftarrow} \frac{du_3 \wedge dv_3}{u_3v_3^2(1 - u_3)}$$

which is *not* logarithmic. However, if $\psi = \varphi \frac{dx \wedge dy}{f}$, then

DQR

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{y=u_1v_1}{\leftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\leftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)} \stackrel{u_2=u_3v_3}{\leftarrow} \frac{du_3 \wedge dv_3}{u_3v_3^2(1 - u_3)}$$

which is *not* logarithmic. However, if $\psi = \varphi \frac{dx \wedge dy}{f}$, then • $\varphi \in (x, y) \Rightarrow \psi \in \mathcal{E}_0^2(\log \mathcal{C})$.

Settings and Results The Line Arrangement Case Log-resolution Logarithmic Forms Poincaré Residue Operators

Example

Consider
$$f = y^2 - x^3$$
, $C = \{f = 0\}$, and the 2-form $\frac{dx \wedge dy}{f}$.

$$\frac{dx \wedge dy}{f} \stackrel{\substack{x=u_1\\y=u_1v_1}}{\longleftarrow} \frac{du_1 \wedge dv_1}{u_1(v_1^2 - u_1)}$$

$$\stackrel{u_1=u_2v_2}{\longleftarrow} \frac{du_2 \wedge dv_2}{u_2v_2(v_2 - u_2)} \stackrel{u_2=u_3v_3}{\longleftarrow} \frac{du_3 \wedge dv_3}{u_3v_3^2(1 - u_3)}$$

which is *not* logarithmic. However, if $\psi = \varphi \frac{dx \wedge dy}{f}$, then

- $\varphi \in (\mathbf{X}, \mathbf{Y}) \Rightarrow \psi \in \mathcal{E}_0^2(\log \mathcal{C}).$
- Moreover, if φ ∈ (y) ⇒ (Res^[2,2] ψ)_P = 0 at all P ∈ C
 ^[1] infinitely near 0.

Neak Combinatorics

Theorem

The following is a presentation of $H^*(X)$:

• Generators in degree 1: σ_i , i = 1, ..., r,

Neak Combinatorics

Theorem

The following is a presentation of $H^*(X)$:

- Generators in degree 1: σ_i , i = 1, ..., r,
- Generators in degree 2:

$$\begin{array}{ll} \psi_{\mathcal{P}}^{\delta_1,\delta_2}, & \mathcal{P} \in \mathcal{C}_i \cap \mathcal{C}_j, \delta_1 \in \Delta_{\mathcal{P}}(\mathcal{C}_i), \delta_2 \in \Delta_{\mathcal{P}}(\mathcal{C}_j) \\ \psi_{\infty}^{i,k_i}, & i = 1,...,r, k_i = 1,..., d_i - 1 \\ \eta^{i,s_i}, \overline{\eta}^{i,s_i}, & i = 1,...,r, s_i = 1,..., g_i. \end{array}$$

Weak Combinatorics

Theorem

The following is a presentation of $H^*(X)$:

- Generators in degree 1: σ_i , i = 1, ..., r,
- Generators in degree 2:

$$\begin{array}{ll} \psi_{P}^{\delta_{1},\delta_{2}}, & P \in \mathcal{C}_{i} \cap \mathcal{C}_{j}, \delta_{1} \in \Delta_{P}(\mathcal{C}_{i}), \delta_{2} \in \Delta_{P}(\mathcal{C}_{j}) \\ \psi_{\infty}^{i,k_{i}}, & i = 1,...,r, k_{i} = 1,...,d_{i} - 1 \\ \eta^{i,s_{i}}, \overline{\eta}^{i,s_{i}}, & i = 1,...,r, s_{i} = 1,...,g_{i}. \end{array}$$

• Relations:

$$\begin{split} \psi_{P}^{\delta_{1},\delta_{2}} &= -\psi_{P}^{\delta_{2},\delta_{1}} \\ \psi_{P}^{\delta_{1},\delta_{2}} + \psi_{P}^{\delta_{2},\delta_{3}} + \psi_{P}^{\delta_{3},\delta_{1}} = \mathbf{0} \end{split}$$

for any $P \in C_i \cap C_j \cap C_k$ and $\delta_1 \in \Delta_P(C_i)$, $\delta_2 \in \Delta_P(C_j)$, $\delta_3 \in \Delta_P(C_k)$.

Weak Combinatorics

Theorem

The following is a presentation of $H^*(X)$:

• $\sigma_i, \psi_P^{\delta_1,\delta_2}, \psi_\infty^{i,k_i}, \psi_i^{s_i}, \bar{\psi}_i^{s_i},$

$$\psi_P^{\delta_1,\delta_2} = -\psi_P^{\delta_2,\delta_1}$$

$$\psi_P^{\delta_1,\delta_2} + \psi_P^{\delta_2,\delta_3} + \psi_P^{\delta_3,\delta_1} = \mathbf{0}$$

• Product:

$$\sigma_i \wedge \sigma_j = \sum_{\boldsymbol{P} \in \mathcal{C}_i \cap \mathcal{C}_j} \mu_{\boldsymbol{P}}(\delta_1, \delta_2) \psi_{\boldsymbol{P}}^{\delta_1, \delta_2} + \boldsymbol{d}_i \sum_{k_j=1}^{d_j-1} \psi_{\infty}^{j, k_j} - \boldsymbol{d}_j \sum_{k_j=1}^{d_i-1} \psi_{\infty}^{i, k_j}.$$

Dac

Weak Combinatorics

Remark

Note that from the given presentation one can deduce that $H^*(X)$ only depends on the following invariants of C:

$$(\{1,...,r\}, \mathcal{S} = \operatorname{Sing} \mathcal{C}, \{\Delta_{P}\}_{P \in \mathcal{S}}, \{\phi_{P}\}_{P \in \mathcal{S}}, \{\mu_{P}\}_{P \in \mathcal{S}})$$

such an ordered set of invariants of C will be referred to as the *Weak Combinatorics of* C.

Weak Combinatorics

Remark

Note that from the given presentation one can deduce that $H^*(X)$ only depends on the following invariants of C:

 $(\{1,...,r\}, \mathcal{S} = \text{Sing}\,\mathcal{C}, \{\Delta_{P}\}_{P \in \mathcal{S}}, \{\phi_{P}\}_{P \in \mathcal{S}}, \{\mu_{P}\}_{P \in \mathcal{S}})$

such an ordered set of invariants of C will be referred to as the *Weak Combinatorics of* C.

Hence

Theorem

The cohomology algebra of X only depends on its weak combinatorics.

ヘロン ヘアン ヘビン ヘビン

Consider $\omega \in H^1(X)$.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ ---

Consider $\omega \in H^1(X)$.

$$0 \to H^0(X) = \mathbb{C} \xrightarrow{\bullet \wedge \omega} H^1(X) \xrightarrow{\bullet \wedge \omega} H^2(X) \to 0 \qquad (H^*(X), \wedge \omega)$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

◆□ > ◆圖 > ◆臣 > ◆臣 >

Consider $\omega \in H^1(X)$.

$$0 \to H^0(X) = \mathbb{C} \xrightarrow{\bullet \wedge \omega} H^1(X) \xrightarrow{\bullet \wedge \omega} H^2(X) \to 0 \qquad (H^*(X), \wedge \omega)$$

Definition

The *i*-th Resonance Variety of X is defined as

$$\mathcal{R}^i(X) := \{\omega \in H^1(X) \mid h^1(H^*(X), \wedge \omega) \geq i\}$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト 不得 とくほと くほとう

э.

Consider $\omega \in H^1(X)$.

$$0 \to H^0(X) = \mathbb{C} \xrightarrow{\bullet \land \omega} H^1(X) \xrightarrow{\bullet \land \omega} H^2(X) \to 0 \qquad (H^*(X), \land \omega)$$

Definition

The *i*-th Resonance Variety of X is defined as

$$\mathcal{R}^i(X) := \{\omega \in H^1(X) \mid h^1(H^*(X), \wedge \omega) \geq i\}$$

Remark

Note that for any graded algebra A^* one can analogously define the *i*-th Resonance Variety $\mathcal{R}^i(A)$ of A^* .

・ロト ・ ア・ ・ ヨト ・ ヨト

Theorem

There is an Orlik-Solomon-like graded algebra A^* whose resonance varieties are isomorphic to $\mathcal{R}^i(X)$.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト 不得 とくほと くほとう

ъ

Theorem

There is an Orlik-Solomon-like graded algebra A^* whose resonance varieties are isomorphic to $\mathcal{R}^i(X)$.

$$\mathbf{A}^{1} := \sum_{i=1}^{r} \sigma_{i} \mathbb{C} \quad \mathbf{A}^{2} := \sum_{\mathbf{P} \in \mathcal{S}} \frac{\bigwedge^{2} A_{\mathbf{P}}}{I_{\mathbf{P}}},$$

where

$${\mathcal A}_{\mathcal P} := \sum_{\delta \in \Delta_{\mathcal P}} \psi^\delta_{\mathcal P} \mathbb C$$

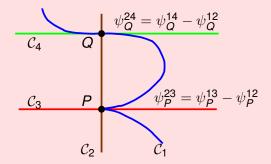
$$I_{\mathcal{P}} := \langle \psi_{\mathcal{P}}^{\delta_1} \wedge \psi_{\mathcal{P}}^{\delta_2} + \psi_{\mathcal{P}}^{\delta_2} \wedge \psi_{\mathcal{P}}^{\delta_3} + \psi_{\mathcal{P}}^{\delta_3} \wedge \psi_{\mathcal{P}}^{\delta_1} \rangle_{\mathbb{C}}$$

and

$$\sigma_i \wedge \sigma_j := \sum_{\mathcal{P} \in \mathcal{C}_i \cap \mathcal{C}_j} \mu_{\mathcal{P}}(\delta_1, \delta_2) \psi_{\mathcal{P}}^{\delta_1, \delta_2}$$

э.

Consider



イロト イポト イヨト イヨト

æ –

$$\sigma_{12} = 2\psi_P^{12} + \psi_Q^{12}$$

$$\sigma_{13} = 3\psi_P^{13}$$

$$\sigma_{14} = 3\psi_Q^{14}$$

$$\sigma_{23} = \psi_P^{13} - \psi_P^{12}$$

$$\sigma_{24} = \psi_Q^{24}$$

$$\sigma_{34} = \psi_R^{34}$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

$$\begin{array}{l} \sigma_{12} = 2\psi_P^{12} + \psi_Q^{12} \\ \sigma_{13} = 3\psi_P^{13} \\ \sigma_{14} = 3\psi_Q^{14} \\ \sigma_{23} = \psi_P^{13} - \psi_P^{12} \\ \sigma_{24} = \psi_Q^{24} \\ \sigma_{34} = \psi_R^{34} \end{array} M := \begin{bmatrix} 2\beta & -2\alpha - \gamma & \beta & 0 \\ 3\gamma & \gamma & -3\alpha - \beta & 0 \\ \beta & -\alpha - \delta & 0 & \beta \\ 3\delta & \delta & 0 & -3\alpha - \beta \\ 0 & 0 & \delta & -\gamma \end{bmatrix}$$

• rank $M = 2 \Leftrightarrow (\lambda, -3(\lambda + \mu), 2\mu, \mu)$.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

◆□→ ◆□→ ◆注→ ◆注→ ○

₹ 990

$$\begin{array}{l} \sigma_{12} = 2\psi_P^{12} + \psi_Q^{12} \\ \sigma_{13} = 3\psi_P^{13} \\ \sigma_{14} = 3\psi_Q^{14} \\ \sigma_{23} = \psi_P^{13} - \psi_P^{12} \\ \sigma_{24} = \psi_Q^{24} \\ \sigma_{34} = \psi_R^{34} \end{array} \qquad M := \begin{bmatrix} 2\beta & -2\alpha - \gamma & \beta & 0 \\ 3\gamma & \gamma & -3\alpha - \beta & 0 \\ \beta & -\alpha - \delta & 0 & \beta \\ 3\delta & \delta & 0 & -3\alpha - \beta \\ 0 & 0 & \delta & -\gamma \end{bmatrix}$$

• rank $M = 2 \Leftrightarrow (\lambda, -3(\lambda + \mu), 2\mu, \mu).$

• Notice that C_1 , $3C_2$, $2C_2 + C_4$ belong to a pencil of cubics.

イロト 不得 とくほと くほとう

= 990

Max-Noether Fundamental Theorem Revisited

 A differential graded algebra (A, d_A) is called *formal* if it has the same minimal model as its cohomology (H(A), 0).

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

・ロット (雪) (山) (山)

э.

Max-Noether Fundamental Theorem Revisited

- A differential graded algebra (A, d_A) is called *formal* if it has the same minimal model as its cohomology (H(A), 0).
- Since the minimal model of a d.g.a. is invariant under quasi-isomorphism, then it is more convenient to state that (A, d_A) is formal if and only if there is a finite sequence of quasi-isomorphisms between (A, d_A) and (H(A), 0).

・ロット (雪) (山) (山)

Max-Noether Fundamental Theorem Revisited

- A differential graded algebra (A, d_A) is called *formal* if it has the same minimal model as its cohomology (H(A), 0).
- Since the minimal model of a d.g.a. is invariant under quasi-isomorphism, then it is more convenient to state that (A, d_A) is formal if and only if there is a finite sequence of quasi-isomorphisms between (A, d_A) and (H(A), 0).

Definition

A differential space X is called *formal* if its algebra of differential forms $(\mathcal{E}(X), d)$ is formal.

・ロット (雪) (山) (山)

Aax-Noether Fundamental Theorem Revisited

Theorem (-, D. Matei, D. Macinic)

The complement of a plane curve X is a formal space.

(2)

ъ

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

fax-Noether Fundamental Theorem Revisited

Theorem (-, D. Matei, D. Macinic)

The complement of a plane curve X is a formal space.

•
$$(\mathcal{E}(X), d) \stackrel{q,i}{\simeq} (\mathcal{E}(\mathbb{P}^2)(\log \mathcal{C}), d),$$

(2)

ъ

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

fax-Noether Fundamental Theorem Revisited

Theorem (-, D. Matei, D. Macinic)

The complement of a plane curve X is a formal space.

•
$$(\mathcal{E}(X), d) \stackrel{q.i}{\simeq} (\mathcal{E}(\mathbb{P}^2)(\log \mathcal{C}), d),$$

• $(H(\mathcal{E}(X)), 0) \stackrel{q.i}{\simeq} (H(X), 0),$

(2)

э.

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Max-Noether Fundamental Theorem Revisited

Theorem (-, D. Matei, D. Macinic)

The complement of a plane curve X is a formal space.

•
$$(\mathcal{E}(X), d) \stackrel{q,i}{\simeq} (\mathcal{E}(\mathbb{P}^2)(\log \mathcal{C}), d),$$

• $(H(\mathcal{E}(X)), 0) \stackrel{q,i}{\simeq} (H(X), 0),$
• $H^*(X) \stackrel{e}{\to} \mathcal{E}^*(\mathbb{P}^2)(\log \mathcal{C})$

(2)

э.

イロト イポト イヨト イヨト

Aax-Noether Fundamental Theorem Revisited

(2)

э.

イロト イポト イヨト イヨト

Theorem (-, D. Matei, D. Macinic)

۲

The complement of a plane curve X is a formal space.

•
$$(\mathcal{E}(X), d) \stackrel{q,i}{\simeq} (\mathcal{E}(\mathbb{P}^2)(\log \mathcal{C}), d),$$

• $(H(\mathcal{E}(X)), 0) \stackrel{q,i}{\simeq} (H(X), 0),$

$$\begin{array}{rcccc} H^*(X) & \stackrel{e}{\rightarrow} & \mathcal{E}^*(\mathbb{P}^2)(\log \mathcal{C}) \\ [\sigma_i] & \mapsto & \sigma_i \\ [\psi_P^{\delta_1,\delta_2}] & \mapsto & \psi_P^{\delta_1,\delta_2} \\ [\psi_\infty^{i,k_i}] & \mapsto & \psi_\infty^{i,k_i} \\ [\eta^{i,s_i}] & \mapsto & \eta^{i,s_i} \end{array}$$

fax-Noether Fundamental Theorem Revisited

(2)

Theorem (-, D. Matei, D. Macinic)

۲

The complement of a plane curve X is a formal space.

•
$$(\mathcal{E}(X), d) \stackrel{q,i}{\simeq} (\mathcal{E}(\mathbb{P}^2)(\log \mathcal{C}), d),$$

• $(H(\mathcal{E}(X)), 0) \stackrel{q,i}{\simeq} (H(X), 0),$

$$\begin{array}{cccc} H^*(X) & \stackrel{e}{\to} & \mathcal{E}^*(\mathbb{P}^2)(\log \mathcal{C}) \\ [\sigma_i] & \mapsto & \sigma_i \\ [\psi_{\mathcal{P}}^{\delta_1,\delta_2}] & \mapsto & \psi_{\mathcal{P}}^{\delta_1,\delta_2} \\ [\psi_{\infty}^{i,k_i}] & \mapsto & \psi_{\infty}^{i,k_i} \\ [\eta^{i,s_i}] & \mapsto & \eta^{i,s_i} \end{array}$$

Can we choose forms so that e is well-defined?

Max-Noether Fundamental Theorem Revisited

$$\psi_P^{\delta_1,\delta_2} + \psi_P^{\delta_2,\delta_3} + \psi_P^{\delta_3,\delta_1} = \mathbf{0}$$

Choose δ_P at each $P \in S$, then

$$\psi_{P}^{\delta_{1},\delta_{2}} = \psi_{P}^{\delta_{P},\delta_{2}} - \psi_{P}^{\delta_{P},\delta_{1}}$$

イロト 不得 とくほと くほとう

E DQC

Max-Noether Fundamental Theorem Revisited

$$\sigma_i \wedge \sigma_j = \sum_{P \in \mathcal{C}_i \cap \mathcal{C}_j} \mu_P(\delta_i, \delta_j) \psi_P^{\delta_i, \delta_j} +$$

$$+d_i\sum_{k_j=1}^{d_j-1}\psi_{\infty}^{j,k_j}-d_j\sum_{k_i=1}^{d_i-1}\psi_{\infty}^{i,k_i}.$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

Max-Noether Fundamental Theorem Revisited

$$\sigma_i \wedge \sigma_j =$$

$$= \sum_{P \in \mathcal{C}_i \cap \mathcal{C}_j} \mu_P(\delta_j, \mathcal{C}_i) \psi_P^{\delta_P, \delta_j} - \sum_{P \in \mathcal{C}_i \cap \mathcal{C}_j} \mu_P(\delta_i, \mathcal{C}_j) \psi_P^{\delta_P, \delta_i} +$$

$$+d_i\sum_{k_j=1}^{d_j-1}\psi_{\infty}^{j,k_j}-d_j\sum_{k_i=1}^{d_i-1}\psi_{\infty}^{i,k_i}.$$

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

Max-Noether Fundamental Theorem Revisited

Let C_i, C_j, C_k be such that:

•
$$d_i = d_j = d_k$$

•
$$\mu_P(\delta_i, \mathcal{C}_j) = \mu_P(\delta_i, \mathcal{C}_k),$$

•
$$\mu_P(\delta_j, C_i) = \mu_P(\delta_j, C_k),$$

•
$$\mu_P(\delta_k, C_i) = \mu_P(\delta_k, C_j),$$

then

$$\sigma_i \wedge \sigma_j + \sigma_j \wedge \sigma_k + \sigma_k \wedge \sigma_i = 0 \tag{3}$$

Note that if $C_k = \alpha C_i + \beta C_j$, then (3) is trivial.

イロト イポト イヨト イヨト

ъ

Max-Noether Fundamental Theorem Revisited

Theorem (Max-Noether Fundamental Theorem (M.Noether,...,Fulton))

Let F, G, and H be three plane curves with no common components. If $H_P \in (F_P, G_P)$ at any $P \in V(F) \cap V(G)$, then there exist two forms $A, B \in \mathbb{C}[x, y, z]$ such that

H = AF + BG

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

・ロット (雪) (手) (日) (

Max-Noether Fundamental Theorem Revisited

Theorem (Max-Noether Fundamental Theorem (M.Noether,...,Fulton))

Let F, G, and H be three plane curves with no common components. If $H_P \in (F_P, G_P)$ at any $P \in V(F) \cap V(G)$, then there exist two forms $A, B \in \mathbb{C}[x, y, z]$ such that

$$H = AF + BG$$

Remark

The conditions $H_P \in (F_P, G_P)$ at any $P \in V(F) \cap V(G)$ are commonly known as the *Noether Conditions*.

・ロット (雪) (手) (日) (

Max-Noether Fundamental Theorem Revisited

Definition

Three curves F, G, and H satisfying (\bigcirc) are said to belong to a *combinatorial pencil*.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

イロト イポト イヨト イヨト

ъ

Max-Noether Fundamental Theorem Revisited

Definition

Three curves F, G, and H satisfying (\bigcirc) are said to belong to a *combinatorial pencil*.

Theorem (-,M.A.Marco)

If F, G, and H belong to a primitive combinatorial pencil, then they belong to an algebraic pencil ($H = \alpha F + \beta G$).

ヘロン ヘアン ヘビン ヘビン

Max-Noether Fundamental Theorem Revisited

Remark

• The Noether Conditions can be replaced by the Combinatorial Conditions.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

= nac

Max-Noether Fundamental Theorem Revisited

Remark

- The Noether Conditions can be replaced by the Combinatorial Conditions.
- Primitive translates into a minimality condition.

イロト イポト イヨト イヨト

э.

Max-Noether Fundamental Theorem Revisited

Remark

- The Noether Conditions can be replaced by the Combinatorial Conditions.
- Primitive translates into a minimality condition.

Proposition

Any combinatorial pencil admits a primitive refinement.

ヘロン ヘアン ヘビン ヘビン

Ð.

Max-Noether Fundamental Theorem Revisited

Remark

- The Noether Conditions can be replaced by the Combinatorial Conditions.
- Primitive translates into a minimality condition.

Proposition

Any combinatorial pencil admits a primitive refinement.

This proves the formality of X.

・ロット (雪) (山) (山)

Open Problems

• Are there also *nice* combinatorial descriptions of *H*^{*}(*X*) in higher dimensions?

・ロト ・ ア・ ・ ヨト ・ ヨト

Э

Open Problems

- Are there also *nice* combinatorial descriptions of *H*^{*}(*X*) in higher dimensions?
- Are the complements of hypersurfaces in the projective space formal?

ヘロト ヘ戸ト ヘヨト ヘヨト

Open Problems

- Are there also *nice* combinatorial descriptions of *H*^{*}(*X*) in higher dimensions?
- Are the complements of hypersurfaces in the projective space formal?
- What about toric varieties, or weighted projective spaces?

ヘロト ヘ戸ト ヘヨト ヘヨト

Open Problems

- Are there also *nice* combinatorial descriptions of *H*^{*}(*X*) in higher dimensions?
- Are the complements of hypersurfaces in the projective space formal?
- What about toric varieties, or weighted projective spaces?
- Study the resonance varieties of Abstract Curve Combinatorics. This could lead to criteria for non-quasiprojective groups.