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Three Approaches to One Problem

C ⊂ P2

X := P2 \ C

Three approaches:
Topological : Braid Monodromy, Fundamental Group, Alexander
Polynomial.
Geometric: Morphisms onto curves (De Franchis).
Algebraic: Existence of pencils containing C.
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A New Look at a Classical Example

Consider C := {F := h2
3 + h3

2 = 0} ⊂ P2 a sextic.

π1(X ) = Z2 ∗ Z3 and ∆C(t) = t2 − t + 1.
X → P1

2,3 \ {[1 : −1]}, given by [x : y : z] 7→ [h3
2,h

2
3].

F belongs to the pencil generated by (h3
2,h

2
3).
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Orbifold Surfaces
A Factorization Theorem

Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve Sm̄ is a Riemann surface S with a function
m̄ : S → N whose value is 1 outside a finite number of points. A point
P ∈ S for which m̄(P) > 1 is called an orbifold point .

Definition (Orbifold Fundamental Group)

For an orbifold Sm̄, let P1, . . . ,Pn be the orbifold points,
mj := m̄(Pj ) > 1. Then, the orbifold fundamental group of Sm̄ is

πorb
1 (Sm̄) := π1(S \ {P1, . . . ,Pn})/〈µ

mj
j = 1〉,

where µj is a meridian of Pj . We will denote Sm̄ simply by Sm1,...,mn .
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Orbifold Surfaces
A Factorization Theorem

Orbifold Morphisms

Definition
A dominant algebraic morphism ϕ : X → S defines an orbifold
morphism X → Sm̄ if for all P ∈ S, the divisor ϕ∗(P) is a
m̄(P)-multiple.

Proposition ([1, Proposition 1.5])

Let ρ : X → S define an orbifold morphism X → Sm̄. Then ϕ induces
a morphism ϕ∗ : π1(X )→ πorb

1 (Sm̄).
Moreover, if the generic fiber is connected, then ϕ∗ is surjective.
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Orbifold Surfaces
A Factorization Theorem

Applications

Example

Consider F equation of C6,6 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (1)
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Orbifold Surfaces
A Factorization Theorem

Applications

Example

Consider F equation of C6,6 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (1)

Then (1) induces a rational map

ϕ : P2 99K P1

[x : y : z] 7→ [h3
2 : h2

3]
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Orbifold Surfaces
A Factorization Theorem

Applications

Example

Consider F equation of C6,6 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (1)

Then (1) induces a morphism

ϕ̂ : P̂2 → P1

such that ϕ̂ = ϕ ◦ ε.
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Orbifold Surfaces
A Factorization Theorem

Applications

Example

Consider F equation of C6,6 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (1)

ϕ̂|P2\C has two multiple fibers (over [0 : 1], [1 : 0]).
m̄([0 : 1]) = 2, m̄([1 : 0]) = 3
One has an orbifold morphism ϕ̂2,3 : P2 \ C → P1

2,3 \ {[1 : −1]}.
Since the pencil is primitive, there is an epimorphism

ϕ̂2,3 : π1(P2 \ C)→ πorb
1 (P1

2,3 \ {[1 : −1]}) = Z2 ∗ Z3.
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P1

2
3
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Orbifold Surfaces
A Factorization Theorem

Applications
Example

In general, suppose F fits in a functional equation of type

F1hp
1 + F2hq

2 + F3hr
3 = 0, (2)

Then (2) induces a morphism ϕ̂ : P̂2 → P1 given by
ϕ([x : y : z]) = [F1hp

1 : F2hq
2 ].

ϕ̂|P2\C has three multiple fibers (over [0 : 1], [1 : 0], and [1 : −1]).
m̄([0 : 1]) = p, m̄([1 : 0]) = q, and m̄([1 : −1]) = r .
One has an orbifold morphism
ϕ̂p,q,r : P2 \ C → P1

p,q,r \ ϕ̂({F1F2F3 = 0}).
If the pencil is primitive, there is an epimorphism

ϕ̂p,q,r : π1(P2 \ C)→ πorb
1 (P1

p,q,r \ ϕ̂({F1F2F3 = 0})) =
αZp ∗ βZq

(αβ)r .
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Another Application

Corollary

The number of multiple members in a (primitive) pencil of plane
curves (with no base components) is at most two.

J.I. Cogolludo-Agustín Torus Type Curves and Quasi-Toric Relations



Settings and Motivations
Morphisms onto surfaces (after De Franchis)

Pencils and Quasi-toric relations

Functional Relation F1hp
1 + F2hq
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Main Theorem
Examples
The Group Law on Quasi-Toric Relations of Type (2, 3, 6)

A Bound on the Degree of the Alexander Polynomial

Functional Relation F1hp
1 + F2hq

2 + F3hr
3 = 0

Definition

A curve C := {F = 0} satisfies a quasi-toric relation of type (p,q, r) if
there exist homogeneous polynomials h1,h2,h3 ∈ C [x , y , z] such that

F1hp
1 + F2hq

2 + F3hr
3 = 0,

where F1,F2,F3 are homogeneous polynomials and
{F1F2F3 = 0} = C.
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Examples
The Group Law on Quasi-Toric Relations of Type (2, 3, 6)

A Bound on the Degree of the Alexander Polynomial

Main Theorem

Theorem (−, Libgober [3])

Let C = {F = 0} be a (possibly non-reduced) curve with simple
singularities.

Then the following statements are equivalent:

1 The Alexander polynomial ∆C,ε(t) has a primitive root ξ of order
3 (resp. 4, 6) as a zero.

2 There exists an orbifold morphism ϕ : X → P1
3,3,3 (resp.

ϕ : X → P1
2,4,4 ϕ : X → P1

2,3,6).
3 The polynomial F fits in a quasi-toric relation of type (3,3,3)

(resp. (2,4,4), (2,3,6)).

Moreover, the set of quasi-toric relations of type (3,3,3) (resp.
(2,4,4), (2,3,6)) has a group structure, whose rank is twice the
multiplicity of ξ as a root of ∆C,ε(t).
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Main Theorem

Theorem (−, Libgober [3])

Let C = {F = 0} be a (possibly non-reduced) curve with simple
singularities.
Then the following statements are equivalent:

1 The Alexander polynomial ∆C,ε(t) has a primitive root ξ of order
3 (resp. 4, 6) as a zero.

2 There exists an orbifold morphism ϕ : X → P1
3,3,3 (resp.

ϕ : X → P1
2,4,4 ϕ : X → P1

2,3,6).
3 The polynomial F fits in a quasi-toric relation of type (3,3,3)

(resp. (2,4,4), (2,3,6)).

Moreover, the set of quasi-toric relations of type (3,3,3) (resp.
(2,4,4), (2,3,6)) has a group structure, whose rank is twice the
multiplicity of ξ as a root of ∆C,ε(t).
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Example

Since the 6-cuspidal sextic C6,6 is such that: ∆C6,6 (t) = (t2 − t + 1),
the decomposition F = f 2

3 + f 3
2 the only primitive one.
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Since the 6-cuspidal sextic C6,6 is such that: ∆C6,6 (t) = (t2 − t + 1),
the decomposition F = f 2

3 + f 3
2 the only primitive one.

• Note that there is an infinite number of decompositions of F !!!
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Since the 6-cuspidal sextic C6,6 is such that: ∆C6,6 (t) = (t2 − t + 1),
the decomposition F = f 2

3 + f 3
2 the only primitive one.

• For example, consider

h1 = x3 + y3 + z3

h2 = zx − y2

F = −(x6 + 2x3y3 + 3x3z3 − 3x2y2z2 + 3xzy4 + z6 + 2y3z3)

one can check that
h2

1 + h3
2 + F = 0.
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2 the only primitive one.

• But also, if one considers

h̃1 = 25x3z3 − 27x2y2z2 + 27xzy4 − y6 + 8x6 + 16x3y3 + 16y3z3 + 8z6

h̃2 = −(8x12 − y12 + 8z12 + 297x2y8z2 − 108x2y2z8 − 108x8y2z2

+621x4y4z4 + 12x6y6 + 147x6z6 + 12y6z6 + 68x9z3 − 40y9x3

−40y9z3 + 68z9x3 + 168x6y3z3 − 216x5y5z2 − 378x5y2z5

−216x2y5z5 − 480y6x3z3 + 168z6x3y3 + 32x9y3 + 32z9y3

−54xzy10 + 108x7zy4 + 216x4zy7 + 216xz4y7 + 108xz7y4)

h̃3 = 2(x3 + y3 + z3)

then
h̃2

1 + h̃3
2 + F̃h6

3 = 0.
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Example

Consider the tricuspical quartic:
C4,3 := {C4,3 = x2y2 + y2z2 + z2x2 − 2xyz(x + y + z) = 0},

and its bitangent: `0 := {L0 = x + y + z = 0}.
The bitangent points: P := [1 : ω3 : ω2

3] and Q := [1 : ω2
3 : ω3],

and the cusps: R1 = [1 : 0 : 0], R2 = [0 : 1 : 0], R3 = [0 : 0 : 1].
Take F := C4,3L2

0, then ∆F = (t2 − t + 1)2.
{quasi-toric relations of F} = (Z⊕ ω6Z)2,

generated by:
σ1 ≡ C4,3L2

0 = 4C3
2 + C2

3
σ2 ≡ C4,3L2

0 = 4C̃3
2 + C̃2

3 ,

where C2 := zx + ω3yz − (1 + ω3)xy ,
C3 := (x2y − x2z − y2x − 3(1 + 2ω3)xyz + y2z + z2x − yz2),
C̃2(x , y , z) := C2(x , z, y), and C̃3(x , y , z) := C3(x , z, y).
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Example

F = (y3 − z3)(z3 − x3)(x3 − y3), C := {F = 0}, then
∆C(t) = (t2 + t + 1)2(t − 1)8.

By the Main Theorem, F fits in a quasi-toric relation of elliptic type
(3,3,3):

x3(y3 − z3) + y3(z3 − x3) + z3(x3 − y3) = 0. (3)

However, there should exist another relation independent from (3) of
type

F1`
3
1 + F2`

3
2 + F3`

3
3 = 0. (4)
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...and sure enough, one can check that if:

Fi = (y − ωi
3z)(z − ωi+1

3 x)(x − ωi+2
3 y), i = 1,2,3,

and
`1 = (ω3 − ω2

3)x + (ω3 − ω2
3)y + (ω2

3 − 1)z,
`2 = (ω3 − ω2

3)z + (ω3 − ω2
3)x + (ω2

3 − 1)y ,
`3 = (ω3 − ω2

3)y + (ω3 − ω2
3)z + (ω2

3 − 1)x .

then

F1`
3
1 + F2`

3
2 + F3`

3
3 = 0.
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For ε = (2,1) one has ∆C,ε(t) = (t − 1)(t2 + 1).

There exists an
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Consider the relation

F1h2
1 + F2h3

2 + F3h6
3 = 0.

Consider E0 := {(u, v) ∈ C (x , y) | u2 + v3 = F (x , y)} as an
elliptic curve over C (x , y).
Note that j(E0) = 0.
E0 is the only elliptic curve with an order 6 action ω6.
Given P = (u, v) ∈ E0, then ω6P = (−u, ω6v).
Also
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8u3 ,−u
8u2 + 9v3

4u2

)
Given two points P1 = (u1, v1), P2 = (u2, v2) ∈ E0, then

P1 + P2 =

0@ 3v1v2(u1v2 − u2v1) + (u1 − u2)(u1u2 − 3F )

(v1 − v2)3
,

v2
1 v2 + v1v2

2 + 2u1u2 − 2F

(v1 − v2)2

1A .
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)2

+

(
h2

h2
6

)3
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A Bound on the Degree of the Alexander Polynomial

Theorem (-,Libgober)

The degree of the Alexander polynomial of an irreducible curve C of
degree d, whose singularities are only nodes and cusps satisfies:

deg ∆C(t) ≤ 10
3

d − 4.
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