A combinatorial approach to broken Lefschetz fibrations via mapping class groups

Kenta Hayano (Osaka University)

March 7, 2012, Hiroshima University

- ♦ Main Results (Roughly)
- 1. Classification of genus-1 SBLF.
- 2. \exists sections of SBLF w/ properties that sections of LF would not have.

♦ The Plan of Talk

§.1. Introduction

§.2. Main Results

§.3. A Combinatorial Approach

§.4. Outline of Proofs

- * We will work in smooth category
- * We will always assume that manifolds are oriented.

§.1. Introduction

♦ Background

Donaldson '99, Gompf '04

 $\begin{array}{c|c} \text{symplectic} \\ \text{4-manifold} & \Longleftrightarrow & \begin{array}{c} \text{Lefschetz} \\ \text{pencil} \end{array} & \xrightarrow{\text{blow up}} & \begin{array}{c} \text{Lefschetz} \\ \text{fibration} \end{array} \end{array}$

§.1. Introduction

♦ Background

Donaldson '99, Gompf '04

Auroux-Donaldson-Katzarkov generalized in '05

§.1. Introduction

♦ Background

Donaldson '99, Gompf '04

Auroux-Donaldson-Katzarkov generalized in '05

∃BLF without a condition. Indeed,

Theorem 1.1 (Williams '10 e.t.c.)

 \forall closed ori. conn. 4-mfd admits a (simplified) BLF

Definition 1.2

 $f:M^4 o B^2$ is called a **broken Lefschetz fibration** (BLF) if it satisfies the following conditions:

- $(1) f^{-1}(\partial B) = \partial M,$
- (2) f has at most the following types of singularities:
- L) $(z_1,z_2)\mapsto \xi=z_1z_2$ (Lefschetz singularity),
 - I) $(t,x,y,z)\mapsto (s,w)=(t,x^2+y^2-z^2)$ (indefinite fold),
- (3) $f|_{\mathcal{C}_f}$: injective and $f|_{Z_f}$: immersion, where Z_f : the set of indefinite folds of f, \mathcal{C}_f : the set of Lefschetz singularities of f.
- *A BLF f is called a Lefschetz fibration (LF) if $Z_f = \emptyset$.

♦ Fibers around indefinite folds (2nd component)

* the curve c collapses to the point and then vanishes.

♦ Fibers around indefinite folds (global model)

st a curve $oldsymbol{c}$ is called a **vanishing cycle** of the indefinite folds.

Fibers around a Lefschetz singularity

* a curve $d_i \subset f^{-1}(p_1)$ is called a **vanishing cycle** of Lefschetz singularity w_i .

* an isotopy class of a vanishing cycle depends on choice of a path on the base space. $ullet Z_f$:conn., $eq \emptyset$,

 $f:M o S^2$:BLF. Assume ullet fibers of f :conn., then,

ullet $f|_{Z_f}$: injective,

 $ullet Z_f$:conn., $eq \emptyset$,

 $f:M o S^2$:BLF. Assume ullet fibers of f:conn., then,

 $ullet f|_{Z_f}$: injective,

 $f^{-1}(D_h)$ (resp. $f^{-1}(D_l)$) :the higher (resp. lower) side of f

Definition 1.3 (Baykur '09)

 $f:M o S^2$:BLF is said to be simplified (SBLF) if

- (1) Z_f is conn., fiber of f is conn. and $f|_{Z_f}$: injective,
- (2) if $Z_f \neq \emptyset$, $C_f \subset f^{-1}(D_h)$.

The genus g of a regular fiber (in $f^{-1}(D_h)$ if $Z_f \neq \emptyset$) is called the **genus** of f.

Definition 1.3 (Baykur '09)

 $f:M o S^2$:BLF is said to be simplified (SBLF) if

- (1) Z_f is conn., fiber of f is conn. and $f|_{Z_f}$: injective,
- (2) if $Z_f \neq \emptyset$, $C_f \subset f^{-1}(D_h)$.

The genus g of a regular fiber (in $f^{-1}(D_h)$ if $Z_f \neq \emptyset$) is called the **genus** of f.

 $*~f^{-1}(D_l)$ is the trivial Σ_{g-1} -bundle if $Z_f
eq \emptyset$.

Definition 1.3 (Baykur '09)

 $f:M o S^2$:BLF is said to be $\operatorname{ extstyle simplified}$ (SBLF) if

- (1) Z_f is conn., fiber of f is conn. and $f|_{Z_f}$: injective,
- (2) if $Z_f \neq \emptyset$, $\mathcal{C}_f \subset f^{-1}(D_h)$.

The genus g of a regular fiber (in $f^{-1}(D_h)$ if $Z_f \neq \emptyset$) is called the **genus** of f.

- $*~f^{-1}(D_l)$ is the trivial Σ_{g-1} -bundle if $Z_f
 eq \emptyset$.
- * [∀]closed ori. conn. 4-mfd. admits an SBLF (Williams '10).

§.2. Main Results

Definition 2.1 $f:M \to S^2$: genus-g SBLF.

- 1. f is relatively minimal $\stackrel{\text{def}}{\Longleftrightarrow}$ no fiber contains (-1)-spheres.
- 2. f is **trivial** $\stackrel{\text{def}}{\Longleftrightarrow} f$ has no singularities (i.e. f: Σ_g -bundle).

§.2. Main Results

Definition 2.1 $f:M \to S^2$: genus-g SBLF.

- 1. f is relatively minimal $\overset{\text{def}}{\Longleftrightarrow}$ no fiber contains (-1)-spheres.
- 2. f is **trivial** $\stackrel{\text{def}}{\Longleftrightarrow} f$ has no singularities (i.e. f: Σ_g -bundle).

* non-relatively blow-down at minimal SBLF the (-1)-spheres relatively minimal SBLF

§.2. Main Results

Definition 2.1 $f:M \to S^2$: genus-g SBLF.

- 1. f is relatively minimal $\overset{\text{def}}{\Longleftrightarrow}$ no fiber contains (-1)-spheres.
- 2. f is **trivial** $\stackrel{\mathrm{def}}{\Longleftrightarrow} f$ has no singularities (i.e. f: Σ_g -bundle).
- * non-relatively blow-down at minimal SBLF the (-1)-spheres relatively minimal SBLF
- * $f:M\to S^2$: relatively minimal genus-g SBLF w/ $Z_f\neq\emptyset$ \longrightarrow $\exists f^{(m)}:M\#m\overline{\mathbb{CP}^2}\to S^2$: rel. min. genus-g SBLF (Auroux-Donaldson-Katzarkov '05).

♦ Classification of genus-1 SBLF

We tried to generalize the following result.

Theorem 2.2 (Kas '77, Moishezon '77)

$$f:M o S^2$$
: genus-1 LF w/ $egin{cases} ext{relatively minimal} \ \sharp \mathcal{C}_f = r > 0 \end{cases}$

$$\Longrightarrow r \equiv 0 \pmod{12}$$
 and $M \cong E\left(rac{r}{12}
ight)$.

$$*E(1)=\mathbb{CP}^2\#9\overline{\mathbb{CP}^2} o\mathbb{CP}^1$$
: the elliptic surface, and

$$E(n) = \underbrace{E(1)\#_f \cdots \#_f E(1)}_{n} o \mathbb{CP}^1 ext{ (fiber sum)}.$$

Theorem 2.3 (H. '11)

The following 4-mfds admit a relatively minimal genus-1 SBLF w/ $Z_f
eq \emptyset$, $\sharp \mathcal{C}_f = r$:

- ullet $\#k\mathbb{CP}^2\#(r-k)\mathbb{CP}^2$ $(0\leq k\leq r-1)$,
- ullet $\#rac{r}{2}S^2 imes S^2$, for even r,
- ullet $L\#r\overline{\mathbb{CP}^2}$ $(L=L_n ext{ or } L'_n: ext{ defined by Pao '77}).$

* $S^1 imes S^3 \# S \# r \overline{\mathbb{CP}^2}$ (S: S^2 -bundle over S^2) also admits a genus-1 SBLF w/ the above properties (ADK '05).

Theorem 2.4 (H.)

Let $f:M o S^2$ be a genus-1 SBLF w/ $Z_f
eq \emptyset$, $\sharp \mathcal{C}_f=r$.

- 1. If $r \leq 5$, M is diffeo. to one of the following 4-mfds:
 - ullet $\#k\mathbb{CP}^2\#(r-k)\overline{\mathbb{CP}^2}$ $(0\leq k\leq r-1)$,
 - $ullet \ \#rac{r}{2}S^2 imes S^2$, for even r,
 - ullet $L\#r\overline{\mathbb{CP}^2}$ $(L=L_n ext{ or } L'_n: ext{ defined by Pao '77}),$
 - ullet $S^1 imes S^3\#S\#r\overline{\mathbb{CP}^2}$ $(S:S^2 ext{-bundle over }S^2).$
- 2. If M is spin and $r \neq 0$, then r is even and

$$M\cong \#rac{r}{2}S^2 imes S^2.$$

- ♦ Remarks on Theorem 2.3 and Theorem 2.4
- 1. Baykur-Kamada also studied genus-1 SBLFs. They proved a part of 1. of Theorem 2.4 (the case r=0) and,

Theorem 2.5 (Baykur-Kamada)

 $f:M o S^2$: rel. min. genus-1 SBLF w/ $Z_f, \mathcal{C}_f
eq \emptyset$. $\pi_1(M)=1$

 \Longrightarrow $\exists m \gg 0$ s.t. $f^{(m)}: M\#m\overline{\mathbb{CP}^2} o S^2$ is "equiv." to

 $ilde{f}: \#k\mathbb{CP}^2 \#l\overline{\mathbb{CP}^2} o S^2$: canonical genus-1 SBLF.

for some $k, l \geq 0$.

In particular, $M\#m\overline{\mathbb{CP}^2}\cong \#k\mathbb{CP}^2\#l\overline{\mathbb{CP}^2}$.

2. $\#k\mathbb{CP}^2$ $(k \ge 1)$ cannot admit any genus-1 SBLFs (H. '11), but admits a genus-2 SBLF (Sato-H.).

♦ Sections of SBLFs

Definition 2.6

 $f:M o S^2$: genus-g SBLF

 $\sigma:S^2 o M$ is a **section** of $f\overset{\mathsf{def}}{\Longleftrightarrow} f\circ\sigma=\mathsf{id}_{S^2}.$

* Sections of LFs were studied well. For example,

Theorem 2.7 (Smith '01)

 $orall f:M o S^2$: rel. min. non-triv. genus- $g\ge 2$ LF, f has only finitely many homotopy classes of sections, that is, there exist only finitely many elements of $[S^2,M]=\{h:S^2 o M:C^\infty\text{-map}\}/(\text{homotopy})$ represented by a section of f.

Theorem 2.8 (Smith '01, Stipsicz '01)

 ${}^orall f:M o S^2$: rel. min. non-triv. genus- $g\ge 2$ LF,

 ${}^{orall}\sigma:S^2 o M$: section of f ,

 $[\sigma(S^2)]^2 < 0.$

* These results **CANNOT** be generalized to SBLFs.

Theorem 2.9 (H.)
$$\forall g \geq 2$$
,
$$\exists f: M \to S^2 \text{: SBLF W/} \begin{cases} \text{genus-}g, \\ \text{non-trivial,} \\ \text{relatively minimal,} \end{cases} \text{ s.t.}$$
 there exist infinitely many homotopy classes of sections.

Theorem 2.10 (H.)
$$\forall g \geq 2, \ \forall n \geq 0,$$
 $\exists f: M \to S^2$: SBLF w/ $\begin{cases} \text{genus-}g, \\ \text{non-trivial,} \\ \text{relatively minimal,} \end{cases}$ s.t. $[\sigma(S^2)]^2 = n.$

§.3. A Combinatorial Approach

 $f:M o S^2$: genus-g SBLF, $Z_f
eq \emptyset$, $f(\mathcal{C}_f)=\{y_1,\ldots,y_n\}$

*We call (c, d_1, \ldots, d_n) a Hurwitz cycle system of f.

Theorem 3.1 (ADK '05, Baykur '09)

1. $f:M o S^2$: genus-g SBLF, $Z_f
eq \emptyset$ (c,d_1,\ldots,d_n) :Hurwitz cycle system of f then $t_{d_1}\cdot \cdots \cdot t_{d_n}\in \operatorname{Ker}\Phi_c\;(\subset \mathcal{M}_g(c))$

$$*\mathcal{M}_g(c) = \{ [\varphi] \in \mathcal{M}_g \mid \varphi(c) = c \}. \ \mathcal{M}_g := \pi_0(\operatorname{Diff}^+ \Sigma_g).$$

 $* \Phi_c: \mathcal{M}_g(c) o \mathcal{M}_{g-1}$ is defined as follows:

$$\begin{array}{cccc}
& & & & & & & & & & & & \\
\downarrow \varphi & & & & & \downarrow \varphi |_{\Sigma_g \setminus c} & & \downarrow \tilde{\varphi} \\
\hline
& & & & & & & & & & & & \\
\hline
& \varphi & & & & & & & & & & \\
\hline
& \varphi & & & & & & & & & \\
\hline
& \varphi & & & & & & & & & \\
\hline
& \varphi & & & & & & & & \\
\hline
& \varphi & & & & & & & & \\
\hline
& \varphi & & & & & & & & \\
\hline
& \varphi & & & & & & & \\
\hline
& \varphi & & & & & & & \\
\hline
& \varphi & & & & & & \\
\hline
& \varphi & & & & & & \\
\hline
& \varphi & & & & & \\
\hline
& \varphi & & & & & \\
\hline
& \varphi & & & & & \\
\hline
& \varphi & & & & & \\
\hline
& \varphi & & \\
\hline
& \varphi & & & \\
\hline
& \varphi & & \\
\hline
&$$

Theorem 3.1 (ADK '05, Baykur '09)

- 1. $f:M o S^2$: genus-g SBLF, $Z_f
 eq \emptyset$ (c,d_1,\ldots,d_n) :Hurwitz cycle system of f then $t_{d_1}\cdot \cdots \cdot t_{d_n}\in \operatorname{Ker}\Phi_c\;(\subset \mathcal{M}_g(c))$
- 2. Conversely,

$$d_1,\ldots,d_n\subset \Sigma_g$$
 :s.c.c.

 $c\subset \Sigma_g$:non-separating s.c.c.

$$\Longrightarrow$$
 $\exists f: M o S^2$: genus- g SBLF w/ $Z_f
eq \emptyset$,

Hurwitz cycle system (c, d_1, \ldots, d_n) .

s.t. $t_{d_1} \cdots t_{d_n} \in \operatorname{Ker} \Phi_c$

Theorem 3.1 (ADK '05, Baykur '09)

- 1. $f:M o S^2$: genus-g SBLF, $Z_f
 eq \emptyset$ (c,d_1,\ldots,d_n) :Hurwitz cycle system of f then $t_{d_1}\cdot \cdots \cdot t_{d_n}\in \operatorname{Ker}\Phi_c\;(\subset \mathcal{M}_g(c))$
- 2. Conversely,

$$d_1,\ldots,d_n\subset \Sigma_g$$
 :s.c.c. s.t. $t_{d_1}\cdots t_{d_n}\in \operatorname{Ker}\Phi_c$ s.t. $t_{d_1}\cdots t_{d_n}\in \operatorname{Ker}\Phi_c$

$$\implies$$
 $\exists f: M o S^2$: genus- g SBLF w/ $Z_f
eq \emptyset$, Hurwitz cycle system (c, d_1, \ldots, d_n) .

* f is uniquely determined by (c, d_1, \ldots, d_n) when $g \geq 3$.

 \diamondsuit The case $Z_f = \emptyset$ (i.e. Lefschetz fibrations)

Theorem 3.2

- 1. $f:M o S^2$: rel. min. genus-g LF, $\mathcal{C}_f
 eq \emptyset$ $d_1,\dots,d_n\subset \Sigma_g$: vanishing cycles of f. Then, $t_{d_1}\cdot\dots\cdot t_{d_n}=1$.
- 2. (Kas '80, Matsumoto '96) Conversely, $d_1,\ldots,d_n\subset \Sigma_g$: essential s.c.c. s.t. $t_{d_1}\cdot \cdots \cdot t_{d_n}=1$ $\Longrightarrow \exists f:M\to S^2$: rel. min. genus-g LF w/ vanishing cycles d_1,\ldots,d_n Moreover, such an f is unique up to "equivalence".

* We can extend Theorem 3.1 to SBLFs with sections.

$$\Sigma_{g,1} = \underbrace{ igotimes_{g,1} igotimes_{g,1} } \subset \Sigma_g$$
, $i: \Sigma_{g,1} \hookrightarrow \Sigma_g$: inclusion

 $\overline{\Phi}_c: \mathcal{M}_{g,1}(c) o \mathcal{M}_{g-1,1}$: defined as we define Φ_c .

* We can extend Theorem 3.1 to SBLFs with sections.

$$\Sigma_{g,1} = \underbrace{\sum \cdots \sum}_{g} \delta \subset \Sigma_g, \qquad i: \Sigma_{g,1} \hookrightarrow \Sigma_g$$
: inclusion

 $\overline{\Phi}_c: \mathcal{M}_{g,1}(c) o \mathcal{M}_{g-1,1}$: defined as we define Φ_c .

Lemma 3.3 (H.)

 $d_1,\ldots,d_n\subset \Sigma_{g,1}$ is.c.c. s.t. $\overline{\Phi}_c(t_{d_1}\cdot \cdots \cdot t_{d_n})=t_{\delta}^{-m}$ $c\subset \Sigma_{g,1}$ inon-separating s.c.c.

$$\Longrightarrow$$
 $\exists f: M o S^2$: genus- g SBLF w/ Hurwitz cycle system $(i(c), i(d_1), \ldots, i(d_n))$ and

 $^\exists \sigma: S^2 o M$: section of f w/ $[\sigma(S^2)] = m$.

§.4. Outline of Proofs

- ♦ Classification of genus-1 SBLFs
- * We recall the main results

Theorem 2.3 (H. '11)

The following 4-mfds admit a relatively minimal genus-1 SBLF w/ $Z_f
eq \emptyset$, $\sharp \mathcal{C}_f = r$:

- ullet $\#k\mathbb{CP}^2\#(r-k)\mathbb{CP}^2$ $(0\leq k\leq r-1)$,
- ullet $\#rac{r}{2}S^2 imes S^2$, for even r,
- ullet $L\#r\overline{\mathbb{CP}^2}$ $(L=L_n ext{ or } L'_n: ext{ defined by Pao '77}).$

Theorem 2.4 (H.)

Let $f:M o S^2$ be a genus-1 SBLF w/ $Z_f
eq \emptyset$, $\sharp \mathcal{C}_f=r$.

- 1. If $r \leq 5$, M is diffeo. to one of the following 4-mfds:
 - ullet $\#k\mathbb{CP}^2\#(r-k)\overline{\mathbb{CP}^2}$ $(0\leq k\leq r-1)$,
 - $ullet \ \#rac{r}{2}S^2 imes S^2$, for even r,
 - ullet $L\#r\overline{\mathbb{CP}^2}$ $(L=L_n ext{ or } L'_n: ext{ defined by Pao '77}),$
 - ullet $S^1 imes S^3\#S\#r\overline{\mathbb{CP}^2}$ $(S:S^2 ext{-bundle over }S^2).$
- 2. If M is spin and $r \neq 0$, then r is even and

$$M\cong \#rac{r}{2}S^2 imes S^2.$$

(Outline of Proof of Theorem 2.3 and 2.4)

 $f:M o S^2$: relatively minimal genus-1 SBLF, $Z_f
eq \emptyset$ (c,d_1,\ldots,d_n) : Hurwitz cycle system of f.

 $W_f := (t_{d_1}, \dots, t_{d_n}) \in \mathcal{M}_1^n$, $b(W_f) := t_{d_1} \cdot \dots \cdot t_{d_n} \in \operatorname{Ker} \Phi_c$.

 $\mu_1,\mu_2\subset T^2$: generator of $\pi_1(T^2)$. Assume $c=\mu_1$.

(Outline of Proof of Theorem 2.3 and 2.4)

 $f:M o S^2$: relatively minimal genus-1 SBLF, $Z_f
eq \emptyset$ (c,d_1,\ldots,d_n) : Hurwitz cycle system of f.

 $W_f:=(t_{d_1},\ldots,t_{d_n})\in \mathcal{M}_1{}^n$, $b(W_f):=t_{d_1}\cdot \cdots \cdot t_{d_n}\in \operatorname{Ker}\Phi_c$. $\mu_1,\mu_2\subset T^2$: generator of $\pi_1(T^2)$. Assume $c=\mu_1$.

Step.1: Prove that W_f can be changed into:

$$egin{aligned} "S_rT(m_1,\ldots,m_s) &= (t_{\mu_1},\ldots,t_{\mu_1},t_{t_{\mu_1}^{m_1}(\mu_2)},\ldots,t_{t_{\mu_1}^{m_s}(\mu_2)}) \ &\in \mathcal{M}_1{}^{r+s} " \ (r\geq 0,m_1,\ldots m_s\in \mathbb{Z}) \end{aligned}$$

by "Hurwitz action" (using charts introduced by Kamada).

<u>Step.2</u>: Construct examples of $S_rT(m_1,\ldots,m_s)$ w/ $b(S_rT(m_1,\ldots,m_s)) \in \operatorname{Ker}\Phi_{\mu_1}.$

- $ullet \ b(S_r) = t_{\mu_1}{}^r \in \operatorname{Ker} \Phi_{\mu_1}$,
- ullet $T_s^k:=T(\ldots, ilde{m}_i\!+\!k,\ldots)$ (for some $ilde{m}_i\in\mathbb{Z}$), $b(T_s^k)\in\operatorname{Ker}\Phi_{\mu_1}$

Step.2: Construct examples of $S_rT(m_1,\ldots,m_s)$ w/ $b(S_rT(m_1,\ldots,m_s))\in \operatorname{Ker}\Phi_{\mu_1}.$

- $ullet \ b(S_r) = t_{\mu_1}{}^r \in \operatorname{Ker} \Phi_{\mu_1}$,
- ullet $T_s^k:=T(\ldots, ilde{m}_i\!+\!k,\ldots)$ (for some $ilde{m}_i\in\mathbb{Z}$), $b(T_s^k)\in\operatorname{Ker}\Phi_{\mu_1}$

We then prove (by Kirby calculus) that:

- ullet $W_f\sim S_r\Longrightarrow M=\#r\overline{\mathbb{CP}^2}, L\#r\overline{\mathbb{CP}^2}$ or $S^1 imes S^3\#S\#r\overline{\mathbb{CP}^2}$,
- $ullet \ W_f \sim T_s^k \Longrightarrow M = S\#(s-2)\mathbb{CP}^2$,
- $ullet \ W_f \sim S_r T_{s_1}^{k_1} \cdots T_{s_l}^{k_l} \Longrightarrow M = \#r \overline{\mathbb{CP}^2} \mathop{\#}_{i=1}^{l} (S\#(s_i-2)\mathbb{CP}^2).$

In particular, we can prove Theorem 2.3.

Step.3: Try to classify standard forms $S_rT(m_1,\ldots,m_s)$ up to "Hurwitz equivalence" by using:

$$\pi: SL(2,\mathbb{Z}) \xrightarrow{\mathsf{quotient}} PSL(2,\mathbb{Z}).$$

 $PSL(2,\mathbb{Z})\cong \mathbb{Z}/2*\mathbb{Z}/3$ (free product)

⇒ It becomes easy to solve Hurwitz eq. problem. Indeed,

$$ullet$$
 $r+s\leq 5$, $S_rT(n_1,\ldots,n_s)\sim {}^\exists W=S_tT_{s_1}^{k_1}\cdots T_{s_l}^{k_l}$,

ullet M: spin, $\mathcal{C}_f
eq \emptyset \Longrightarrow W_f \sim T_2^{k_1} \cdots T_2^{k_l}.$ (by using a generalization of Stipsicz's result on spin str. on LF)

This completes the proof of Theorem 2.4.

♦ Sections of SBLFs

Theorem 2.9 (H.) $\forall g \geq 2$,

 $\exists f: M o S^2$: SBLF w/ genus-g, non-triv. rel. min. S.t.

there exist infinitely many elements of

$$[S^2,M]=\{h:S^2 o M:C^\infty ext{-map}\}/(ext{homotopy})$$

represented by a section of f.

Theorem 2.10 (H.) $\forall g \geq 2$, $\forall n \geq 0$,

 $^\exists f: M o S^2$: SBLF w/ genus-g, non-triv. rel. min.

$$^\exists \sigma: S^2 o M$$
: section of f s.t.

$$[\sigma(S^2)]^2 = n.$$

(Outline of Proof of Theorem 2.9)

Construct SBLF f_g w/ sections σ_n $(n\in\mathbb{Z})$ by Lemma 3.3

$$f_g: M_g:=S^2 imes \Sigma_{g-1}\#S^1 imes S^3\#2\overline{\mathbb{CP}^2} o S^2.$$

By computing $\pi_2(M_g)$ (and \wedge $\pi_1(M_g)$), we prove

$$\sigma_n \not\simeq \sigma_m$$
 if $n \neq m$.

(Outline of Proof of Theorem 2.9)

Construct SBLF f_g w/ sections σ_n $(n\in\mathbb{Z})$ by Lemma 3.3

$$f_g: M_g:=S^2 imes \Sigma_{g-1}\#S^1 imes S^3\#2\overline{\mathbb{CP}^2} o S^2.$$

By computing $\pi_2(M_g)$ (and $\pi_1(M_g)$), we prove

$$\sigma_n \not\simeq \sigma_m$$
 if $n \neq m$.

(Outline of Proof of Theorem 2.10)

The following equalities imply Theorem 2.10:

$$\Phi_{c_{2g+1}}((t_{c_{2g}}\cdot\dots\cdot t_{c_{2}}\cdot t_{c_{1}}^{2}\cdot t_{c_{2}}\cdot\dots\cdot t_{c_{2g}})^{2}\cdot (t_{c_{1}}\cdot\dots\cdot t_{c_{2g-2}})^{2(2g-1)})=1,$$

$$\Phi_{c_{2g+1}}((t_{c_{2g}}\cdot\dots\cdot t_{c_{2}}\cdot t_{c_{1}}^{2}\cdot t_{c_{2}}\cdot\dots\cdot t_{c_{2g}})^{2n})=t_{\delta}^{-n}.$$

Thank you for your attention!