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$ Main Results (Roughly)

1. Classification of genus-1 SBLF.

2. Jsections of SBLF w/ properties that sections
of LF would not have.
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* We will work in smooth category

* We will always assume that manifolds are oriented.
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Theorem 1.1 (Williams '10 e.t.c.)
Vclosed ori. conn. 4-mfd admits a (simplified) BLF




Definition 1.2

f : M* - B? is called a broken Lefschetz fibration
(BLF) if it satisfies the following conditions:

(1) f~H8B) = oM,

(2) f has at most the following types of singularities:

L) (21,22) — & = 2129 (Lefschetz singularity),
D (t,x,y,2) — (s,w) = (t, x> +y*—2?) (indefinite fold),
(3) f|cf: injective and f|Zf3 immersion, where
Zy¢ :the set of indefinite folds of f,
Cr :the set of Lefschetz singularities of f.
*A BLF f is called a Lefschetz fibration (LF) if Z; = 0.




> Fibers around indefinite folds (2nd component)
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% the curve c collapses to the point and then vanishes.



< Fibers around indefinite folds (global model)

% a curve c is called a vanishing cycle of the indefinite folds.



& Fibers around a Lefschetz singularity

/8\\ xa curve d; C fl(p1) is
sk - -
/(-2\ : /?Swwl called a varushmg cycle of
Co | d ke Lefschetz singularity w;.
. g/: 6

% an isotopy class of a vanish-
INg cycle depends on choice

of a path on the base space.



® Z¢ :conn., # 0,
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® Z¢ :conn., # 0,

f: M — S? :BLF. Assume e fibers of f :conn., then,
° f|Zf3 injective,
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f~1(Dy,) (resp.f~1(D;)) :the higher (resp. lower) side of f



Definition 1.3 (Baykur '09)

f: M — S? :BLF is said to be simplified (SBLF) if

(1) Z; is conn., fiber of f is conn. and f|Zf: injective,
(2) if Zg #0, C¢ C f~H(Dp,).

The genus g of a regular fiber (in f=1(Dy) if Zg # 0) is
called the genus of f.
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§.2. Main Results

Definition 2.1 f: M — S?; genus-g SBLF.
1. f is relatively minimal
<d=ef> no fiber contains (—1)-spheres.

2. f is trivial
(d:ef> f has no singularities (i.e. f: Xg-bundle).
non-relatively blow-down at relatively minimal
* >
minimal SBLF | the (—1)-spheres SBLF

x f: M — S?: relatively minimal genus-g SBLF w/ Z¢ # 0
— (M) . M#mCP?2 — $2: rel. min. genus-g SBLF
(Auroux-Donaldson-Katzarkov '05).



$ Classification of genus-1 SBLF

We tried to generalize the following result.

Theorem 2.2 (Kas '77, Moishezon '77)
relatively minimal

f: M — S?: genus-1 LF w/ {j:th:r>O

r
—> r =0 (mod 12) andM%’E<1—2>.

% E(1) = CP?#9CP2 — CP!: the elliptic surface, and

E(n) = E(L)#y---#7EQ1) — CP! (fiber sum).

n




Theorem 2.3 (H. '11)
The following 4-mfds admit a relatively minimal genus-1
SBLF w/ Z; # 0, §Cs = 7

o #kCP?#(r — k)CP2 (0 < k <r —1),

T
° #552 X 82, for even r,

o L#rCP? (L = Ly, or L: defined by Pao '77).

x S1 x §34#S4#rCP?2 (S: S2?-bundle over S2) also admits a
genus-1 SBLF w/ the above properties (ADK '05).



Theorem 2.4 (H.)
Let f: M — S? be a genus-1 SBLF w/ Z; # 0, §C¢ = r.
1. If » < 5, M is diffeo. to one of the following 4-mfds:

o #kCP2#(r — k)CP2 (0 < k < r — 1),
o #252 x S2, for even r,
o L#rCP2 (L = L, or L!: defined by Pao '77),
o S! x S3#S84rCP? (S:S2-bundle over S§2).
2. If M is spin and r # 0, then r is even and

M = #252 x S2.




S Remarks on Theorem 2.3 and T heorem 2.4

1. Baykur-Kamada also studied genus-1 SBLFs. They proved
a part of 1. of Theorem 2.4 (the case r = 0) and,

Theorem 2.5 (Baykur-Kamada)

f: M — S% rel. min. genus-1 SBLF w/ Z¢,Cs¢ # 0.

(M) =1

— Im > 0 s.t. f(m) : M#mCP2 — S? is "equiv.” to
f : #kCP2#ICP2 — S2: canonical genus-1 SBLF.

for some k,l > 0.
In particular, M#mCP?2 = #kCP24#ICP2.




2. #kCP? (k > 1) cannot admit any genus-1 SBLFs (H. '11),
but admits a genus-2 SBLF (Sato-H.).



O Sections of SBLFs

Definition 2.6
f: M — S?: genus-g SBLF
o:S% — M is a section of f (d=ef> f oo =idg.




* Sections of LFs were studied well. For example,

Theorem 2.7 (Smith '01)
Vf: M — S2: rel. min. non-triv. genus-g > 2 LF,

f has only finitely many homotopy classes of sections,

that is, there exist only finitely many elements of
(S2, M] = {h : §? - M : C>®-map}/(homotopy)

represented by a section of f.

Theorem 2.8 (Smith 01, Stipsicz '01)

Vf: M — S2: rel. min. non-triv. genus-g > 2 LF,
Vo : §2 — M: section of f,

[0(5%)]% < 0.




* [ hese results CANNOT be generalized to SBLFs.

Theorem 2.9 (H.) Vg > 2,

(genus-g,
Elf : M — S?: SBLF w/ { non-trivial, S.t.

\relatively minimal,
there exist infinitely many homotopy classes of sections.

Theorem 2.10 (H.) Vg > 2, Yn > 0,

(genus-g,

3f . M — S2: SBLF w/ { non-trivial,

_relatively minimal,

3o : 82 — M: section of f s.t.

(0(52)]2 = n.




§.3. A Combinatorial Approach

f: M — 82 genus-g SBLF, Z;y #0, f(Cf) = {y1,---,Yn}

utaldio
U els

*We call (¢,dq,...,dyn) a Hurwitz cycle system of f.



Theorem 3.1 (ADK ’'05, Baykur '09)

1. f: M — S?: genus-g SBLF, Z¢ # 0
(cydi,...,dp) :Hurwitz cycle system of f
then tg, ----- tq, € Ker ®. (C Mgy(c))




*xMg(c) = {[p] € My | ¢(c) = c}. Mg := m(Diff T 3y).

* o1 Mg(c) =+ Mg_1 is defined as follows:
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———>E|f:M—>Sz:g .g /2y 7
Hurwitz cycle system (¢, dq,...,dy).

S.t. td1°° . "tdn € Ker &,

x f is uniquely determined by (c¢,dq1,...,dyn) when g > 3.



& The case Z¢ =0 (i.e. Lefschetz fibrations)

Theorem 3.2
1. f: M — S%: rel. min. genus-g LF, Cy # 0
di,...,dn C Xg: vanishing cycles of f.
Then, tg, «---- tg, = 1.
2. (Kas '80, Matsumoto '96) Conversely,
di,...,dn C Xg: essential s.c.c. s.t. 4, ----- tg, = 1
— E'f : M — S?: rel. min. genus-g LF
w/ vanishing cycles dqi,...,dn

Moreover, such an f is unique up to "equivalence .




* VWe can extend Theorem 3.1 to SBLFs with sections.

0
Yg,1 = <.<>’ - °‘O’,O C g, 1: g1 <> 2g: inclusion
9

®.: Mg i(c) > Mg_q1,1: defined as we define ®..




* VWe can extend Theorem 3.1 to SBLFs with sections.

0
Yg,1 = <.<>’ - °‘O’,O C g, 1: g1 <> 2g: inclusion
9

®.: Mg i(c) > Mg_q1,1: defined as we define ®..

Lemma 3.3 (H.)
diy...,dp C g1 :S.C.C.
c C 24,1 :non-separating s.c.c.
enus-g SBLF w/ Hurwitz cycle
— E'f . M — S2: . 7 . . / : Y
system (i(c),¢(d1),...,2(dp))

and
3o : 82 — M: section of f w/ [0(S5?)] = m.




§.4. Outline of Proofs

& Classification of genus-1 SBLFS

* VWe recall the main results

Theorem 2.3 (H. '11)
The following 4-mfds admit a relatively minimal genus-1
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o L#rCP? (L = Ly, or L: defined by Pao '77).
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f: M — S?: relatively minimal genus-1 SBLF, AR 0

(cydi,...,dp): Hurwitz cycle system of f.
Wf 1= (tdl, . o 9tdn) e M", b(Wf) =gy ta, € Ker ..
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Step.1l: Prove that Wf can be changed into:

"SrT(may .. sms) = (Bpyye sty ttml(uz)’ o ’ttﬁﬁs(uz))
€ M"T (r > 0,mq,...ms € Z)

by " Hurwitz action” (using charts introduced by Kamada).



Step.2: Construct examples of S;T(mq,...,mg) W/
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Step.2: Construct examples of S;T(mq,...,mg) W/
b(S;T'(m1,...,ms)) € Ker ;.

® b(Sfr-) — tﬂlr E KeI' @“1,
° Tsk =T(...,m;+k,...) (for some m; € Z), b(TSk) € Ker &,

We then prove (by Kirby calculus) that:

o Wi~ Sp — M = #r@, L#r@ or ST x S?’#S#r@,
e Wi~ TF = M = S#(s — 2)CP?,

— 1
o Wi~ STH ... TSl — M = #CE2 #(S# (s - 2)CP?).
1 =

In particular, we can prove Theorem 2.3.



Step.3: Try to classify standard forms S, T(mq,...,mg)
up to "Hurwitz equivalence” by using:
quotient

w: SL(2,7) >» PSL(2,7).

PSL(2,7) =7/2 % 7/3 (free product)

— It becomes easy to solve Hurwitz eq. problem. Indeed,

oer+s<5, 5T(ni...,ng) ~ W = StT;cll---Tfll,

e VM : spin, Cf %+ () — Wf NTzkl---Tzkl.
(by using a generalization of Stipsicz's result on spin str.

on LF)

T his completes the proof of Theorem 2.4.



O Sections of SBLFs
Theorem 2.9 (H.) Vg > 2,

EI_f : M — S?: SBLF w/ genus-g, non-triv. rel. min. s.t.

there exist infinitely many elements of
(S2, M] = {h : §? - M : C>®-map}/(homotopy)
represented by a section of f.

Theorem 2.10 (H.) Vg > 2, Yn > 0,

E'f . M — S?: SBLF w/ genus-g, non-triv. rel. min.

o : S2 — M: section of f s.t.
[0(52%)]? = n.




(Outline of Proof of Theorem 2.9)
Construct SBLF fg w/ sections oy, (n € Z) by Lemma 3.3

fg: Mg := 8% x 3, 1#S1 x S3#2CP? — §2.
By computing wa(Myg) (and ~ m1(Mg)), wWe prove

on X om if n £Am.



(Outline of Proof of Theorem 2.9)
Construct SBLF f4 w/ sections oy, (n € Z) by Lemma 3.3

fg: Mg := 8% x I, _1#S1 x S3#2CP? — S§2.
By computing wa(Myg) (and ~ m1(Mg)), we prove
on X om if n £ m.

(Outline of Proof of Theorem 2.10)

The following equalities imply Theorem 2.10:

tng—2)2(2g_1)) =1,




T hank you for your attention !



