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Introduction

Setup:

S compact oriented surface, g genus, n number of boundary
components, χ(S) = 2− 2g − n < 0.

Mod(S) mapping class group, Mod(S) = Homeo+/ ∼

PS pseudo-Anosov elements of Mod(S)

Goal in this lecture:
Set P =

⋃
S PS

Describe an embedding P ↪→
⋃

Fα, where Fα are some convex
polyhedra in Eucldiean space (fibered faces), and the image of
P are the union of rational points in the interiors of Fα.

Describe invariants of P like homological and geomeric
dilatations from this point of view.
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Horizontal and vertical theory of mapping classes

Think of

PS ! horizontal theory of pA maps

(Mapping class groups, Teichmüller space, moduli space)

Fα ! vertical theory of pA maps

(3-manifold geometry and topology)

This point of view stems from work of W. Thurston, D. Fried, C.
McMullen



Vertical Theory for P



Mapping Tori

The mapping torus Mφ of a mapping class (S , φ) is the 3-manifold:

Mφ = S × [0, 1]/ ∼

where (x , 1) ∼ (φ(x), 0).

The homeomorphism type of Mφ is determined by the isotopy
class of φ.

Mφ is hyperbolic ⇔ φ is pseudo-Anosov.

Let Φ(M) = {(S , φ) | Mφ = M}, the monodromies of M.



Vertical partition 1:

{Φ(M)} defines partitions of

Mod =
⋃
S

Mod(S) and P =
⋃
S

PS .

Add some structure on Φ(M).



Thurston norm

Fix a 3-manifold M.

Given a connected subsurface Σ ⊂ M, define
χ−(Σ) = max{0,−χ(Σ)}.

For Σ = Σ1 ∪ · · · ∪ Σk , Σi connected, define
χ−(Σ) =

∑k
i=1 χ−(Σi ).

For α ∈ H1(M;Z),
||α|| = min{χ−(Σ) | [Σ] ∈ H2(M;Z) is dual to α}.

|| || extends to the Thurston (semi-) norm on H1(M;R).

If M is hyperbolic, the Thurston norm extends to a norm on
H1(M;R). (Assume hereafter that M is hyperbolic.)



Fibered faces

The Thurston norm ball

{α ∈ H1(M;R) : ||α|| ≤ 1}

is a convex polyhedron with integer vertices.
For each top dimensional face F , let CF be the positive cone over
F .
Let H1(M;Z)prim be the set of primitive elements

⇔ has a simply connected dual surface.
Then either:

Φ(M) ∩ CF = H1(M;Z)prim ∩ CF ; or

Φ(M) ∩ CF = ∅.
In the former case we say F is a fibered face of M.



Vertical partition 2

The sets
Φ(M,F ) = Φ(M) ∩ CF ⊂ Φ(M)

define a subpartition of P.

Identify each Φ(M,F ) with rational
points on F .

Identify closure P with the disjoint
union of closures of fibered faces.
These are homeomorphic to closed
disks of dimension
d = dim H1(M;R) -1.
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Invariants of mapping classes

We are interested in the following invariants of (S , φ) ∈ P:

Dilatation λ(φ)

Homological dilatation

λhom(φ) = Spec.Rad.(φ∗ : H1(S ;R)→ H1(S ;R)).

Normalized dilatation of (S , φ)

L(S , φ) = λ(φ)|χ(S)|.

(Useful for studying families of mapping classes with
asymptotically small dilatations.)
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Specializing Laurent polynomials

Let G = Zd , and let

f =
∑
g∈G

agg ∈ Z[G ]

be a Laurent polynomial. Here we take ag ∈ Z to be nonzero for
only a finite number of g .

Let ψ : G → Z. The specialization of f at ψ is:

f ψ =
∑
g∈G

ag tψ(g).

Given a single variable polynomial f (t) ∈ R[t], the house is:

|f | = max{|µ| : f (µ) = 0}.
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Alexander and Teichmüller polynomials

G = H1(Mφ;Z)/Torsion (' Zd)
∆ ∈ Z[G ] the Alexander polynomial of Mφ. (E.g., use Fox
calculus.)
For (S , φa) ∈ Φ(Mφ,Fφ), let ψa : G → Z be the map associated to
the corresponding fibration Mφa → S1. Then we have:

λhom(φa) = |∆ψa |.

Analogously,...
(C. McMullen ’00) Given a pseudo-Anosov mapping class (S , φ)
and associated fibered face (M,F ) = (Mφ,Fφ), there is a
Teichmüller polynomial Θ ∈ Z[G ] such that for all
(Sα, φα) ∈ Φ(M,F )

λ(φa) = |Θψa |.
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Alexander and Teichmüller polynomials

Consequences:

On connected components of int(P), it is possible to find
defining equations for homological and geometric dilatations
so that the coefficient strings of defining polynomials for
homological and geometric dilatations are the same.

The algebraic integers that realize the homological and
geometric dilatations belong to particular kinds of algebraic
families.

This property can help to identify when two mapping classes
lie on the same fibered face.
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Normalized dilatation and fibered faces

(D. Fried ’82, C. McMullen ’00) The normalized dilatation

L : P → R
(S , φ) 7→ λ(φ)|χ(S)|

extends to a continuous convex function on int(P) that goes to
infinity toward the boundary of P.



Effect of puncturing at singularities:

For (S , φ) ∈ P, let S0 = S \ Sing(φ) and φ0 = φ|S0 .

Equivalence relation on P:
Write (S1, φ1) ∼ (S2, φ2) if (S0

1 , φ
0
1) = (S0

2 , φ
0
2).

Lemma
If (S1, φ1) ∼ (S2, φ2), then λ(φ1) = λ(φ2).

Remark: One is tempted to mod P out by this equivalence
relations. One problem: the normalized dilatation L(S , φ) does not
behave well with respect to this equivalence relation. (Subject of
further study.)
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Universal Finiteness theorem

(Farb-Leininger-Margalit ’09, Agol ’10) For any L > 1, there is a
finite collection (Mi ,Fi ), i = 1, . . . , k so that

L(S , φ) ≤ L ⇒ (S0, φ0) ∈ Φ(Mi ,Fi ) for some i .

(Penner) ⇒ The minimum dilatation mapping classes on genus g
surfaces have mapping tori coming from a finite collection of
3-manifolds.
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Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Some immediate consequences and questions:
(Brinkman, Penner) As g →∞,

δ(Sg ) = min{λ(φ) ; φ ∈ PS} → 1

(In fact, log(δ(Sg )) � 1
g .)

UFT ⇒ the minimum value ` for L is greater than one.

Question 1: Is the minimum ` of L attained by some (S , φ)?

(H ) lim sup `(Sg ) ≤ (3+
√
5

2 )2 = L(S0φ0), where (S0, φ0) is the
simplest pseudo-Anosov braid. (see also Kin-Takasawa,
Aaber-Dunfield)

Golden Mean Conjecture: lim
g→∞

`(Sg ) = L(S0, φ0).

Question 2 (McMullen): Are the local minima of L in P attained
at rational points (i.e., points in P)?

If Question 2 is true, then UFT would imply Question 1.



Families with asymptotically small dilatations

A family F ⊂ P is said to have asymptotically small dilatation
elements if F contains a subfamily F1 = {(S , φ)} where

χ(S) is unbounded, and

normalized dilatation L(S , φ) = λ(φ)|χ(S)| is bounded.
i.e.,

log(λ(φ)) � 1

|χ(S)|
.

Problem: Which natural subsets of PS have asymptotically small
dilatation elements?
Examples:

Torelli subgroups ∩ P? No (Farb-Leininger-Margalit ’08)

Hyperelliptic elements of P? Orientable elements of P? Yes
(H-Kin ’06)



Families with asymptotically small dilatations

A family F ⊂ P is said to have asymptotically small dilatation
elements if F contains a subfamily F1 = {(S , φ)} where

χ(S) is unbounded, and

normalized dilatation L(S , φ) = λ(φ)|χ(S)| is bounded.
i.e.,

log(λ(φ)) � 1

|χ(S)|
.

Problem: Which natural subsets of PS have asymptotically small
dilatation elements?
Examples:

Torelli subgroups ∩ P? No (Farb-Leininger-Margalit ’08)

Hyperelliptic elements of P? Orientable elements of P? Yes
(H-Kin ’06)



Families with asymptotically small dilatations

A family F ⊂ P is said to have asymptotically small dilatation
elements if F contains a subfamily F1 = {(S , φ)} where

χ(S) is unbounded, and

normalized dilatation L(S , φ) = λ(φ)|χ(S)| is bounded.
i.e.,

log(λ(φ)) � 1

|χ(S)|
.

Problem: Which natural subsets of PS have asymptotically small
dilatation elements?
Examples:

Torelli subgroups ∩ P? No (Farb-Leininger-Margalit ’08)

Hyperelliptic elements of P? Orientable elements of P? Yes
(H-Kin ’06)



I. Pseudo-Anosov mapping classes
1. Introduction
2. Visualizing pseudo-Anosov mapping classes
3. Train tracks
4. Minimum dilatation problem

II. Fibered faces and applications
1. Introduction
2. Fibered face theory
3. Alexander and Teichmüller polynomials
4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations
1. Introduction
2. Deformations of mapping classes on fibered faces
3. Penner sequences and applications
4. Quasiperiodic mapping classes



Orientable examples

(S , φ) ∈ P is an orientable mapping class if the stable foliation F s

is orientable

(Rykken) For any (S , φ) ∈ P

λhom(φ) ≤ λ(φ),

with equality if and only if φ is orientable.

Let δ+(Sg ) be the smallest dilatation amongst orientable elements
of PSg .
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LT polynomials

LT-polynomials:

LTa,n(x) = x2n − xn+a − xn − xn−a + 1.

Let λa,n = |LTn,a| be the house of LTn,a.

(Lanneau-Thiffeault ’09) For g = 2, 3, 4, 6, 8,

λ1,g ≤ δ+(Sg ).

with equality for g = 2, 3, 4.

LT-Question: Is it true that for all even g ,

δ+(Sg ) = λ1,g?
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Other known minima for δ+(Sg )

Using Lanneau and Thiffeault’s lower bounds (for g ≤ 8) and
examples:

(Lanneau-Thiffeault) δ+(S5) = λ1,6
(= Lehmer’s number ≈ 1.17628).

(H ’10) δ+(S8) = λ1,8

(Aaber-Dunfield ’10, Kin-Takasawa ’11) δ+(S7) = λ2,9.
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Simplest pseudo-Anosov braid revisited

Let (S , φ) be the simplest pseudo-Anosov braid, let (M,F ) be its
mapping torus and fibered face, so that (S , φ) ∈ Φ(M,F ) ⊂ F .

K
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1

2

The meridians µ1, µ2 of K1 and K2 determine coordinates (t, u) for
H1(M;Z).
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Polynomial invariants

The Alexander polynomial and Teichmüller polynomials are given
in terms of these coordinates by:

∆(t, u) = u2 − u(1− t − t−1) + 1

and
Θ(t, u) = u2 − u(1 + t + t−1) + 1.

and their specializations

∆(a,b)(x) = ∆(xa, xb) Θ(a,b)(x) = Θ(xa, xb) = LTa,b(x).

It follows that φa,b is orientable for a odd and b even.



Consequences

Evidence for LT-Question:

Theorem (H )

For g even and 6 6 |g, there is a sequence of orientable mapping
classes φg defined on a closed genus g surfaces so that with
λ(φg ) = λ1,g .

Evidence for Golden Mean Conjecture:

Theorem (H )

There is an infinite sequence of mapping classes (Sg , φg ) where Sg

is a closed genus g surface, such that

lim
g→∞

L(S , φg ) = lim
g→∞

λ(φg )2g =

(
3 +
√

5

2

)2



Consequences

Evidence for LT-Question:

Theorem (H )

For g even and 6 6 |g, there is a sequence of orientable mapping
classes φg defined on a closed genus g surfaces so that with
λ(φg ) = λ1,g .

Evidence for Golden Mean Conjecture:

Theorem (H )

There is an infinite sequence of mapping classes (Sg , φg ) where Sg

is a closed genus g surface, such that

lim
g→∞

L(S , φg ) = lim
g→∞

λ(φg )2g =

(
3 +
√

5

2

)2



Fibered face for simplest pseudo-Anosov braid
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