
March 5, 2012 in Hiroshima

Linear representations over a finite field
of a knot group and the Alexander

polynomial as an obstruction

KITANO Teruaki (Soka Univ.)



Table of Contents:

1. Example.
2. Introduction.
3. Theorem of de Rham.
4. Construction of a homomorphism of G(K) into

symmetric groups.
5. Example:trefoil again.
6. SL(2,Z/d)-represenation of G(K).
7. GL(2,Z/p)-representation of G(K).



1 Example
• K: a knot in S 3.
• G(K) = π1(S 3 − K): its knot group.

In the knot theory

• to find a representation of a knot group
into/onto a finite group

is a fundamental tool related with branched
coverings.



Here we consider K = 31, the trefoil knot.
We take and fix the following presentation:

G(31) = 〈x, y | xyx = yxy〉

Define a map

ϕ : {x, y} → GL(2,Z/3)

by

ϕ(x) = ϕ(y) =
(
a 0
0 1

)
.



Clearly it gives an abelian representation of
G(31) for any a = 1, 2.
Next define a map by

ϕ(x) =
(
a 1
0 1

)
, ϕ(y) =

(
a 2
0 1

)
.

Then does it give a representation

ϕ̂ : G(31)→ GL(2,Z/3)?



By easy computation of matrices, we can see

• it does so for a = 1,
• but not so for a = 2.

If we define a map over Z/5 by

ϕ(x) =
(
a 1
0 1

)
, ϕ(y) =

(
a 2
0 1

)
,

it never gives a representation from G(31) to
GL(2,Z/5) for any a = 1, 2, 3, 4.



How we can see and explain what happens?

• It can be explained by the de Rham’s result.
• Roughly speaking, when a is a zero of the

Alexander polynomial, above map gives a
representation.



2 Introduction
we give some definition and fix some notations
in this talk:

• K: a knot in S 3.
• G(K) = π1(S 3 − K): its knot group.
• H1(G(K);Z) � Z � 〈t〉.
• α : G(K)→ 〈t〉: the abelianization of G(K).
• α∗ : ZG(K)→ Z〈 t 〉 = Z[t, t−1]: induced map

on the integral group ring.



• A ∈ M((n − 1) × n;Z[t, t−1]): Alexander matrix
of G(K) defined by the presentation.
• A(a) = A|t=a ∈ M((n − 1) × n;Z[a, a−1]): the

matrix obtained by substituting t = a to A.
• Sd:the symmetric group of degree d.



In this talk we suppose

• any presentation of G(K) is a Wirtinger
presentation:

G(K) = 〈x1, . . . , xn | r1, . . . , rn−1〉

defined by a regular diagram of K:
– its deficiency=1.
– any ri is a form of xix jx−1

i x−1
k or x−1

i x jxix−1
k .



Recall Fox’s free differentials:

∂

∂x1
, . . . ,

∂

∂xn
: ZFn → ZFn.

Here

• Fn = 〈x1, . . . , xn〉: the free group generated by
x1, . . . , xn.

• ZFn:its group ring.



Free differentials can be characterized by the
following．

1. A linear map over Z.
2. For any i, j，

∂

∂x j
(xi) = δi j.

3. For any g, g′ ∈ Fn，

∂

∂x j
(gg′) =

∂

∂x j
(g) + g

∂

∂x j
(g′).



Since any relator is an element of Fn, we can
apply Fox’s free differentials to the relator. Then
Alexander matrix is defined by

A =
(
α∗

(
∂

∂x j
(ri)

))
i j
.

Remark 2.1. By the definition ∂
∂x j

(ri) ∈ ZFn.
Here it can be projected in ZG(K) and it maps in
Z[t, t−1] by α∗.



Definition 2.2. The Alexander polynomial of K

∆K(t) ∈ Z[t, t−1]

is defined to be a (n − 1)-minor.

Remark 2.3. ∆K(t) is well defined up to ±tl.
Here after changing a presentation if we need,
we can assume that some (n − 1)-minor, that is,
its Alexander polynomial is a polynomial, not a
Laurent polynomial.



As we mentioned before, the set of

• linear representations,
• conjugacy classes of representations

are important subject to study in the low
dimensional topology.

• Representation spaces,
• Character varieties,
• some kinds of topological invariants,
• ….



Here we consider representations over a finite
prime field Z/p.

• The set of all SL(2,Z/p)-representations is an
algebraic set over a finite field Z/p.
• It is hard to check whether the set of

representations is empty or not, because to
solve an equation over a finite field is so.



Suzuki-Kitano (JKTR, 2012) computed the
followings for the Reidemeister-Rolfsen’s list;

• the number of the conjugacy classes of
SL(2,Z/p)-representations,
• the number of the conjugacy classes of non

abelian SL(2,Z/p)-representations,
• the number of the conjugacy classes of

surjective SL(2,Z/p)-representations,

where p is a prime number with p ≤ 23.



表1: Number of non abelian representations

K 2 3 5 7 11 13 17 19 23
31 1 4 10 14 18 30 44 38 42
41 0 4 8 20 16 28 28 32 36
62 0 0 0 4 4 26 36 36 34
63 0 0 4 8 32 12 24 40 40
71 0 0 0 12 0 78 0 0 0
75 0 0 0 8 8 8 28 28 40
812 0 0 0 0 12 4 12 24 28
818 4 20 48 84 112 308 300 248 340
99 0 0 0 12 6 32 32 32 32
948 4 0 20 64 60 132 194 138 200

1098 4 20 84 200 340 692 870 870 1352
1099 4 20 128 320 736 1368 1832 2176 2984
10124 0 0 16 0 88 0 0 152 0

There are lots of zeros. It is hard to see the law
on the numbers at first glance.



Then we consider the following problem:

Problem 2.4. Does there exist a non abelian
representation

G(K)→ SL(2,Z/p)

for infinitely many prime numbers p?



Along this direction, there are known results:

Theorem 2.5 (Magnus-Pelso, 1967).
G(KT ) has a quotient group isomorphic to
PSL(2,Z/p) for infinitely many prime numbers p.

Theorem 2.6 (Riley, 1970’). There exists a
parabolic representation of 2-bridge knot group
in PSL(2,Z/p) for infinitely many prime numbers
p.



Remark 2.7. By easy arguments, projective
representations

G(K)→ PSL(2,Z/p)

can be lifted to

G(K)→ SL(2,Z/p).



In this talk, we study the existence of a linear
representation from the Alexander polynomial.

Theorem 2.8. If ∆K(t) , 1, then there exists a
non abelian representation G(K)→ SL(2,Z/d)
for infinitely many d ∈ Z+.

Remark 2.9. We do not know whether there
exists infinitely many prime numbers in the set
of d’s.



If ∆K(t) has a special form, we can prove the
following.

Theorem 2.10. If the degree of ∆K(t) is 2, then
there exist a non abelian representation
G(K)→ GL(2,Z/p) for infinitely many prime
numbers p ∈ Z+.

More generally, we can obtain the following as a
corollary.



Corollary 2.11. If ∆K(t) = f (t)g(t) with the
degree of f (t) is two and f (1) = 1, then there
exists a non abelian representation
G(K)→ GL(2,Z/p) for infinitely many prime
numbers p ∈ Z+.



The main tool to study is a classical theory by de
Rham:
G. De Rham, Introduction aux polynomes d’un
nœud, L’Enseignement Mathématique, Vol.13
(1967).

Remark 2.12. This work is one origin of twisted
Alexander polynomials of a knot.



3 Theorem of de Rham
Recall the theorem by de Rham.
We fix a Wirtinger presentation of K as

G(K) = 〈x1, . . . , xn | r1, . . . , rn−1〉.

Now we take a map

ϕ : {x1, . . . , xn} 3 xi 7→
(
a bi

0 1

)
∈ GL(2;C)

where a , 0 ∈ C and b1, . . . , bn ∈ C.



When ϕ can be extended to G(K) as a
homomorphism?

Remark 3.1. If b1 = · · · = bn = b ∈ C，then it
can be done as an abelian representation:

ϕ : G(K) 3 xi 7→
(
a b
0 1

)
∈ GL(2;C).

Hence we assume that

b = t(b1 b2 . . . bn) , ct(1 1 . . . 1).



Under the fixing presentation, we have the
Alexander matrix

A ∈ M((n − 1) × n;Z[t, t−1]),

and by putting t = a,

A(a) ∈ M((n − 1) × n;C).



Theorem 3.2 (de Rham). The map

ϕ : {x1, . . . , xn} 3 xi 7→
(
a bi

0 1

)
∈ GL(2;C)

can be extended to G(K) as a homomorphism if
and only if A(a)b = 0.
In particular then it holds t = a is a zero of
∆K(t) = 0.



Outline of Proof:
As a homomorphism, ϕ can be done to G(K) if
and only if any relator maps to E．
For example, we take one relator

ri = xix jx−1
i x−1

k .

Then the condition ϕ(ri) = E is equivalent to

ϕ(xi)ϕ(x j) = ϕ(xk)ϕ(xi).



Then we compute the both sides:

ϕ(xi)ϕ(x j) =
(
a bi

0 1

) (
a b j

0 1

)
=

(
a2 ab j + bi

0 1

)

ϕ(xk)ϕ(xi) =
(
a bk

0 1

) (
a bi

0 1

)
=

(
a2 abi + bk

0 1

)
.

By comparing entries of the both, we have

ab j + bi = abi + bk,



and then

ab j + (1 − a)bi − bk = 0.

Remark 3.3. Here we note b1, b2, . . . , bn are the
variables.



This condition can be also given by Fox’s free
differential calculus as follows.

α∗

(
∂

∂xi
(xix j − xk xi)

)
= 1 − t

α∗

(
∂

∂x j
(xix j − xk xi)

)
= t

α∗

(
∂

∂xk
(xix j − xk xi)

)
= −1.

Then the above condition is the same with the
i-th entry of the vector A(a)b equals zero.



Therefore the conditon for ϕ to be extended is
given by the linear system

A(a)b = 0.

By the linear algebra, there exists b , 0 if and
only if any (n − 1)-minors of A(a) is zero.
Hence，when t = a is a zero of ∆K(t) = 0,

ϕ : {x1, . . . , xn} 37→
(
a bi

0 1

)
∈ GL(2,C)

can be extended to G(K) as a homomorphism．



Remark 3.4. Because the condition A(a)b = 0
is a linear condition, if we find some a and b,
then for any s ∈ C − {0},

ϕs : {x1, . . . , xn} 3
(
a sbi

0 1

)
7→∈ GL(2,C)

gives a representation.



Here we consider a map into SL(2;C)．
Take a map

ϕ̂ : {x1, . . . , xn} → SL(2;C)

is given by ϕ̂(xi) =
(
a bi

0 a−1

)
.

By the similar computation, the condition to be
extended for ϕ̂ is given by

A(a2)b = 0.



In particular at that time, t = a2 is a zero of
∆K(t) = 0.



4 Construction of a homomorphism of G(K)
into symmetric groups

From the above observation, we can get also a
homomorphism of G(K) into symmetric groups.
Originally this argument was given in the famous
paper by

• R. H. Fox, A quick trip through knot theory,
Topology of 3-Manifolds edited by Fort.



We recall that ∆K(t) is well defined up to ±tk and
a special value of ∆K(t) is not well-defined as a
knot invariant.
However we consider |∆K(m)| as a number, not
invariant, under fixing Wiritinger presentation for
any integer m ∈ Z.

Remark 4.1. We choice ∆K(t) to be a
polynomial as a minor of A by changing a
presentation of G(K).



First example is the knot determinant

dK = |∆K(−1)| ∈ Z.

Remark 4.2. It is known that |∆K(−1)| , 0 and it
is a knot invariant．

By substituting t = −1，we get

A(−1) ∈ M((n − 1) × n;Z).



Then for the linear system A(−1)b ≡ 0, clearly it
has no nontrival solution, because

|∆K(−1)| = dK , 0.

However if we consider and treat

A(−1)b ≡ 0

over Z/dK , clearly any (n − 1)-minor of A(−1) is
zero mod dK .



Hence there exists the solution

b =


b1
...

bn

 ∈ (Z/dK)n .

Then we can get a representation

ϕ̄ : G(K) 3 xi 7→
(
−1 bi

0 1

)
∈ GL(2;Z/dK).



Here an affine transformation ϕ̄(xi) =
(
−1 bi

0 1

)
can be consider a permutation on Z/dK :

Z/dK 3 m 7→ −m + bi ∈ Z/dK .

Therefore we obtain a homomorphism;

G(K)→ SdK .



From here we consider t = m ∈ Z and

dK,m = |∆K(m)|.

Here if dK,m is not a prime number. we put the
assumption:

(m, dK,m) = 1.

In this case,

• m is a unit in Z/dK,m.
• the linear sytem: A(m)b ≡ 0 mod dK,m has a

solution over Z/dK,m．



By finding a solution a and b, we obtain a
representation

ϕ̄ : G(K)→ GL(2;Z/dK,m).

For any generator xi, its image ϕ̄(xi) =
(
m bi

0 1

)
gives a permutaion:

Z/dK,m 3 k 7→ mk + bi ∈ Z/dK,m.

Therefore we obtain a homomorphism of G(K);

G(K)→ SdK,m .



5 Example:trefoil knot again

Here we consider K = 31, the trefoil knot. We
take and fix the following presentation:

G(K) = 〈x, y | xyx = yxy〉

By applying the Fox’s free derivatives
∂

∂x
,
∂

∂y
,

we get

• A =
(
t2 − t + 1 −t2 + t − 1

)
,

• ∆31 (t) = t2 − t + 1.



Example 5.1. First we consider the case of
t = −1.

d31 = |∆K(−1)| = 3.

Then we find a solution

A(3)
(
b1
b2

)
≡ 0 mod 3.

In this case, the Alexander matrix mod 3 :

A(3) ≡
(
0 0

)
mod 3.



Then

• any n ∈ Z/3 is zero of ∆31 (t) ≡ 0 mod 3,

• any b =
(
b1

b2

)
∈ (Z/3)2 is a solution.

For examples, taking n = 2 and b1 = 1, b2 = 2, a
represenation

ϕ : G(31)→ GL(2,Z/3)



can be defined by

ϕ(x) =
(
2 1
0 1

)
, ϕ(y) =

(
2 2
0 1

)
.

Furthermore, if we define a map
ϕ̂ : {x, y} → SL(2,Z/3) by

ϕ̂(x) =
(
2 1
0 2

)
, ϕ̂(y) =

(
2 2
0 2

)
,

it gives a representation

ϕ̂ : G(31)→ SL(2,Z/3).



We put m = 2 and then obtain d2 = |∆(2)| = 3.
Then we have the same as above.

Example 5.2. If we put m = 3, then
d3 = |∆31 (3)| = 7. In this case any n and any b
satisfies also the linear equation, because

A(3) =
(
0 0

)
mod 7.

Hence we obtain a representation

ϕ : G(31)→ GL(2,Z/7)



and
ϕ̂ : G(31)→ SL(2,Z/7).

For examples,

ϕ̂(x) =
(
2 1
0 2

)
, ϕ̂(y) =

(
2 2
0 2

)
gives a representation

ϕ̂ : G(K)→ SL(2,Z/7).



Finally we can see

Proposition 5.3. There exit a non abelian
representation of G(31) in SL(2,Z/d) for infinitely
many integers d.



6 SL(2,Z/d)-represenation of G(K)

In this section, we consider the following
problem.

Problem 6.1. Does there exit a non abelian
representation G(K)→ SL(2,Z/d) for infinitely
many integers d ?



For simplicity we suppose

• The Alexander polynomial is given to be

∆K(t) = a2kt2k + a2k−1t2k−1 + · · · + a1t + a0,

where a2k = a0 > 0,
2k∑
i=0

ai = ±1.

If we substitute t = p2 for ∆K(t), then

dp = ∆K(p2) = a2k p4k+a2k−1 p4k−2+ · · ·+a1 p2+a0.



If p is a sufficient large prime number,

dp2 = ∆K(p2) > p2 > p.

Further we put the condition (a0, p) = 1, then

∆K(p2) ≡ a0 mod p.

Hence
(∆K(p2), p) = 1.

Then for any prime number p as above, p and
p2 are units in Z/d2

p．



Because there exists a solution

A(p2)b ≡ 0 mod dp2 ,

then a non abelian representation

ρ̃ : G(K) 3 xi 7→
(
p bi

0 p−1

)
∈ SL(2,Z/dp2 )

is obtained.



Therefore we obtain the following.

Theorem 6.2. There exits a non abelian
representation G(K)→ SL(2,Z/dp2 ) for infinitely
many dp2 = |∆K(p2)|.

Remark 6.3. We do not know whether dp2 is a
prime number or not.



7 GL(2,Z/p)-representation of G(K)

Here we consider GL(2,Z/p)-representations as
follows.

Problem 7.1. Does there exit a non abelian
representation G(K)→ GL(2,Z/p) for infinitely
many prime numbers p ?



For any knot K with the Alexander polynomial of
degree 2, we can give the answer as follows.
Now we assume that the Alexander polynomial
of K is given by

∆K(t) = at2 − bt + a,

where b ≥ a > 0,∆K(1) = 2a − b = ±1. Then by
the condition 2a − b = ±1,

a =
b ± 1

2
.



Now we can prove the following.

Proposition 7.2. There exists a solution of the
congruence ∆K(t) ≡ 0 mod p for infinitely many
prime number p.



If ∆K(n) ≡ 0 mod p, then we can find a non trivial
solution b of A(n)b ≡ 0 mod p. Then

ρ : G(K) 3 xi 7→
(
n 0
0 1

)
∈ GL(2,Z/p)

gives a non abelian representation.

Theorem 7.3. There exit a non abelian
representation G(K)→ GL(2,Z/p) for infinitely
many prime number p.



Let us consider the congruence

at2 − bt + a ≡ 0 mod p.

When we consider the equation

at2 − bt + a = 0

over C, then the solutions are

t =
b ±
√

b2 − 4a2

2a
.



Here if D = b2 − 4a is a square number mod p,
that is, a quadratic residue mod p, then there
exists a solution of the above congruence.

Definition 7.4. For k and a prime number p, the
Legendre symbol

(
k
p

)
is defined as follows.

(
k
p

)
=

1 if x2 ≡ k mod p has a solution
−1 if x2 ≡ k mod p has no solution



By using 2a − b = ±1, we can eliminate a in
D = b2 − 4a2 and obtain D = ±2b − 1. Then we
put D+ = 2b − 1 and D− = −2b − 1 for the both.
By using Legendre symbol, we can state the
following.

Proposition 7.5. For infinitely many prime
numbers p，Legendre symbols of D = D+,D+
mod p is (

D
p

)
= 1.



1. The case of D+ = 2b − 1.
Here we assume that

p = 4(2b − 1)n + 1

is a prime number and p is not a divisor of a.

Remark 7.6. By the theorem of Dirichlet, there
exisit infinitely many prime number as above.

If p is a divisor of 2b − 1, then D+ ≡ 0 mod p.
Hence there exists a solution of
∆K(t) ≡ 0 mod p．



Assume that p is not a divisor of 2b − 1．
By the reciprocity law of the Jacobi symbol,(

2b − 1
p

) ( p
2b − 1

)
= (−1)

p−1
2

2b−1−1
2

= (−1)2(2b−1)n(b−1)

= 1.



Therefore (
2b − 1

p

)
=

( p
2b − 1

)
=

(
4(2b − 1)n + 1

2b − 1

)
=

(
1

2b − 1

)
= 1



2. The case of D− = −2b − 1
Now assume that

p = 4(2b + 1)n + 1

is a prime number and is not a divisor of a．
Now (

−2b − 1
p

)
=

(
−1
p

) (
2b + 1

p

)
.



By the quadratic reciprocity law,(
−1
p

)
= (−1)

p−1
2

= (−1)2(2b+1)n

= 1.

Hence(
−2b − 1

p

)
=

(
−1
p

) (
2b + 1

p

)
=

(
2b + 1

p

)
.



By using the reciprocity law of the Jacobi
symbol，(

2b + 1
p

) ( p
2b + 1

)
= (−1)

p−1
2

2b+1−1
2

= (−1)2(2b+1)nb

= 1.



Therefore we have(
2b + 1

p

)
=

( p
2b + 1

)
=

(
4(2b + 1)n + 1

2b + 1

)
=

(
1

2b + 1

)
= 1.



If ∆K(t) is product of a degree 2 polynomial and
another one, then by similar arguments, we
obtain the following main result.

Theorem 7.7. If ∆K(t) = f (t)g(t) with the degree
of f (t) is two and f (1) = 1, then there exists a
non abelian representation G(K)→ GL(2,Z/p)
for infinitely many prime numbers p ∈ Z+.


