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1 Example

e K:aknotinS?.
o G(K) = m(S? - K): its knot group.

In the knot theory

e to find a representation of a knot group
into/onto a finite group

Is a fundamental tool related with branched
coverings.



Here we consider K = 34, the trefoil knot.
We take and fix the following presentation:

G(31) = (x,y | xyx = yxy)
Define a map
@ {x,y = GL(2,2/3)

Dy
p(x) = @) = (g (1))



Clearly it gives an abelian representation of
G@3y) foranya=1,2.
Next define a map by

1 2
P(x) = (g 1),so<y> = (g 1).

Then does it give a representation

?:G(3,) = GL(2,Z/3)?



By easy computation of matrices, we can see

e Itdoessofora=1,
e but not so for a = 2.

If we define a map over Z/5 by

1 2
p(x) = (g 1),<,o<y> = (g 1),

it never gives a representation from G(3;) to
GL(2,Z/5)foranya =1,2,3,4.



How we can see and explain what happens?

e |t can be explained by the de Rham’s result.

e Roughly speaking, when a is a zero of the
Alexander polynomial, above map gives a
representation.



2 Introduction

we give some definition and fix some notations
In this talk:

e K:aknotinS?.

G(K) = m1(S? — K): its knot group.
H{(G(K);Z) = 7Z = {t).

a : G(K) — (t): the abelianization of G(K).
a. : ZG(K) = Z{t) = Z[t,t']: induced map
on the integral group ring.



o Ac M(((n-1)xn;Z[t,t']): Alexander matrix
of G(K) defined by the presentation.

o A(a) = Al—, € M((n - 1) xn;Z[a,a']): the
matrix obtained by substituting r = a to A.

o S,:the symmetric group of degree d.



In this talk we suppose

e any presentation of G(K) is a Wirtinger
presentation:

G(K):<x19°°°9xn|r19'-°9rn—1>

defined by a regular diagram of K:
— Its deficiency=1.

— any r; is a form of x;x;x; !

X, Orx XjXiX; .



Recall Fox’s free differentials:

9 9
(9)61,.”,(9)6”

 2F,, —> ZF,.

Here

o I, =(x1,...,x,): the free group generated by
Xlseoos Xy
o /I, :Its group ring.



Free differentials can be characterized by the
following.

1. Alinear map over Z.
2. Forany i, j,
0

i) = 51
0)Cj(X) /

3. Forany g,¢’ € F,,

0 0 0

a—xj(gg’) = 6—xj(g) - g axj(g’).




Since any relator is an element of F,,, we can
apply Fox’s free differentials to the relator. Then
Alexander matrix is defined by

0
A= (CL@,< (a—x](l”l)))l] .

Remark 2.1. By the definition ->(r;) € ZF,.
Here it can be projected in ZG(K) and it maps in
Z[t,t'] by a..



Definition 2.2. The Alexander polynomial of K
Ax(t) € Z[t, t7']

Is defined to be a (n — 1)-minor.

Remark 2.3. Ax(?) is well defined up to +t'.
Here after changing a presentation if we neeaq,
we can assume that some (n — 1)-minor, that is,
its Alexander polynomial is a polynomial, not a
Laurent polynomial.



As we mentioned before, the set of

e linear representations,
e conjugacy classes of representations

are important subject to study in the low
dimensional topology.

Representation spaces,
Character varieties,
some kinds of topological invariants,



Here we consider representations over a finite
prime field Z/ p.

e The setof all SL(2, Z/p)-representations is an
algebraic set over a finite field Z/p.

e |t is hard to check whether the set of
representations is empty or not, because to
solve an equation over a finite field is so.



Suzuki-Kitano (JKTR, 2012) computed the
followings for the Reidemeister-Rolfsen’s list;

e the number of the conjugacy classes of
SL(2,7Z/ p)-representations,

e the number of the conjugacy classes of non
abelian SL(2,7Z/ p)-representations,

e the number of the conjugacy classes of
surjective SL(2,7Z/p)-representations,

where p Is a prime number with p < 23.



3% 1: Number of non abelian representations

K 2 3 5 7 11 13 17 19 23
31 | 4 10 14 18 30 44 38 42
4 0 4 8 20 16 28 28 32 36
6~ 0 0 0 4 4 26 36 36 34
03 0 0 4 8 32 12 24 40 40
71 0 0 0 12 0 78 0 0 0
75 0 0 0 8 8 8 28 28 40
812 0 0 0 0 12 4 12 24 28
81é 4 20 48 84 112 308 300 248 340
9% 0 0 0 12 6 32 32 32 32
948 4 0 20 64 60 132 194 138 200
109g 4 20 84 200 340 692 870 870 1352
1099 4 20 128 320 736 1368 1832 2176 2984
10794 0 0 16 0 88 0 0 152 0

There are lots of zeros.

It is hard to see the law
on the numbers at first glance.




Then we consider the following problem:

Problem 2.4. Does there exist a non abelian
representation

G(K) — SL(2,Z/p)

for infinitely many prime numbers p?



Along this direction, there are known results:

Theorem 2.5 (Magnus-Pelso, 1967).
G(KT) has a quotient group isomorphic to
PSL(2,Z/ p) for infinitely many prime numbers p.

Theorem 2.6 (Riley, 1970°). There exists a
parabolic representation of 2-bridge knot group
in PSL(2,7Z/ p) for infinitely many prime numbers

P-



Remark 2.7. By easy arguments, projective
representations

G(K) —» PSL(2,7Z/p)
can be lifted to

G(K) — SL(2,Z/p).



In this talk, we study the existence of a linear
representation from the Alexander polynomial.

Theorem 2.8. If Ax(¢) # 1, then there exists a
non abelian representation G(K) — SL(2,7Z/d)
for infinitely many d € Z, .

Remark 2.9. We do not know whether there
exists infinitely many prime numbers in the set
of d’s.



It Ax(?) has a special form, we can prove the
following.

Theorem 2.10. If the degree of Ak(t) is 2, then
there exist a non abelian representation

G(K) — GL(2,Z/ p) for infinitely many prime
numbers p € Z,.

More generally, we can obtain the following as a
corollary.



Corollary 2.11. If Ax(t) = f(r)g(r) with the
degree of f(¢t) is two and f(1) = 1, then there
exists a non abelian representation

G(K) — GL(2,Z/ p) for infinitely many prime
numbers p € Z,.



The main tool to study is a classical theory by de
Rham:

G. De Rham, Introduction aux polynomes d’un
nceud, LEnseignement Mathématique, Vol.13
(1967).

Remark 2.12. This work is one origin of twisted
Alexander polynomials of a knot.



3 Theorem of de Rham

Recall the theorem by de Rham.
We fix a Wirtinger presentation of K as

G(K) — <x19°°°9-xn | r19'°°9rn—1>°
Now we take a map

O :{xX1,..., X} 2 x; — (g Iii)e GL(2;C)

wherea # 0 e Cand by,...,b, € C.



When ¢ can be extended to G(K) as a
homomorphism?

Remark 3.1. Ifby=---=b,=be€C, thenit
can be done as an abelian representation:

a b

QDZG(K)E.XiI—)(O i

) € GL(2;C).

Hence we assume that

b:t(bl b, ...bn)ict(ll D).



Under the fixing presentation, we have the
Alexander matrix

AeM((n-1)xnZ[t, '],
and by putting 7 = a,

A(a) e M((n—1) X n;C).



Theorem 3.2 (de Rham). The map

A bi

0 1) e GL(2;C)

903{X1,--.,Xn}9xi'—>(

can be extended to G(K) as a homomorphism if
and only if A(a)b = 0.

In particular then it holds t = a is a zero of

Ak (t) = 0.



Outline of Proof:

As a homomorphism, ¢ can be done to G(K) if
and only if any relator maps to E.

For example, we take one relator

Then the condition ¢(r;) = E Is equivalent to

p(xi)p(x;) = e(x)e(x;).



Then we compute the both sides:

b, b, 2 ab;+ b
QO(xi)so(xj):(g 1)(8 1]):(‘8 o )

b b; > ab;+ Db
so(ka(xi):(g’ 1") (g 1):(‘6 o k).

By comparing entries of the both, we have

Clbj + b,‘ = Clbl‘ + bk,



and then
Clbj-l-(l —Cl)bi—bk = 0.

Remark 3.3. Here we note by, b,, ..., b, are the
variables.



This condition can be also given by Fox’s free
differential calculus as follows.

0
. ((9_)@-(xixj — xkx,-)) =1—-1

0
Q. 8_)cj(xixj — Xk X)) | =t

Qs ((%k(x,-xj — xkxi)) = —1.

Then the above condition is the same with the
i-th entry of the vector A(a)b equals zero.



Therefore the conditon for ¢ to be extended is
given by the linear system

A(a)b = 0.

By the linear algebra, there exists b # 0 if and
only if any (n — 1)-minors of A(a) Is zero.
Hence, whent = ais a zero of Ax(¢) = 0,

0 :{x1,...,x,} 2 (g Ii’) € GL(2,0C)

can be extended to G(K) as a homomorphism,



Remark 3.4. Because the condition A(a)b = 0
is a linear condition, if we find some a and b,
then for any s € C — {0},

Os  {X1,...,%,} 3 (g Sfi) —e GL(2,0)

gives a representation.



Here we consider a map into SL(2; C).
Take a map

@ 1 {x1, ..., X = SL(2; C)

IS given by @(x;) = (g ab_il).

By the similar computation, the condition to be
extended for ¢ is given by

A(a®)b = 0.



In particular at that time, ¢ = a* is a zero of
AK(t) = 0.



4  Construction of a homomorphism of G(K)
iInto symmetric groups

From the above observation, we can get also a
homomorphism of G(K) into symmetric groups.
Originally this argument was given in the famous

paper by

e R. H. Fox, A quick trip through knot theory,
Topology of 3-Manifolds edited by Fort.



We recall that Ax(¢) is well defined up to +¢ and
a special value of Ak(?) is not well-defined as a
knot invariant.

However we consider |Ax(m)| as a number, not
invariant, under fixing Wiritinger presentation for
any integer m € Z.

Remark 4.1. We choice Ak(¢) to be a
polynomial as a minor of A by changing a
presentation of G(K).



First example is the knot determinant
dx = |Ak(=1)| € Z.

Remark 4.2. Itis known that |Ax(—1)| # 0 and it
IS a knot invariant.

By substituting r = —1, we get

A(-l)e M((n—1) X n;2).



Then for the linear system A(—1)b = 0, clearly it
has no nontrival solution, because

| Ax(=1)| = dg # 0.
However if we consider and treat
A(-Db =0

over Z/dk, clearly any (n — 1)-minor of A(—1) Is
zero mod dg.



Hence there exists the solution

(D1

b = c (Z/d[{)n .

\Dn J
Then we can get a representation

-1 b

Q_DZG(K)E.XI'I—)(O 1

) c GL(2;Z/dk).



—1
0
can be consider a permutation on Z/d:

Here an affine transformation @(x;) = (

Z/d[{ SMmMb—> —m + bi c Z/dK
Therefore we obtain a homomorphism;



From here we consider r = m € Z and
dxm = |Ax(m)|.

Here if dg,, Is not a prime number. we put the

assumption:
(ma dK,m) = 1.

In this case,

e misaunitinZ/dg,,.
e the linear sytem: A(m)b = 0 mod dg,, has a
solution over Z/dk .



By finding a solution a and b, we obtain a
representation

3 : G(K) = GL(2:Z/dx m)-

. D;
For any generator x;, its image ¢(x;) = (’g 1)
gives a permutaion:

Z/d[(,m > k> mk+ bi c Z/d[(,m
Therefore we obtain a homomorphism of G(K);

G(K) — edK,m.



5 Example:trefoil knot again

Here we consider K = 31, the trefoil knot. We
take and fix the following presentation:
G(K) = (x,y [ xyx = yxy)

0 O
Ox Oy’

By applying the Fox’s free derivatives

we get

e A=(P-t+1 —P+1-1)
o A3 ()=t —r1+1.



Example 5.1. First we consider the case of
t =—1.
d3, = |Ax(=1)| =3.

Then we find a solution

In this case, the Alexander matrix mod 3 :

A(3)E(o o) mod 3.



Then
e anyn € Z/3 is zero of A;,(t) = 0 mod 3,

e anyb = (Zl) e (Z/3)* is a solution.
2

For examples, takingn =2 and b, = 1,b, = 2, a
represenation

0:G3)) = GL(2,Z/3)



can be defined by

2 1 9)
p(x) = (o 1),90@) = (o

Furthermore, if we define a map
@ :{x,y} = SL(2,7Z/3) by

2 1 9)
@(x) = (0 2) , o(y) = (0

it gives a representation

3 :G3)) = SL(2.Z/3).



We put m = 2 and then obtain d, = |A(2)| = 3.
Then we have the same as above.

Example 5.2. If we putm = 3, then
ds = |A3,(3)] =7. In this case any n and any b
satisfies also the linear equation, because

AB3)=(0 0) mod7.
Hence we obtain a representation

0 :G(3y) — GL(2,Z/7)



and
o :G(31) > SL2,Z/7).

For examples,

2 1 2 2
@(x) = (o 2),¢(y) = (0 2)

gives a representation

»: G(K) — SL(22,Z/7).



Finally we can see

Proposition 5.3. There exit a non abelian
representation of G(3;) in SL(2,7Z/d) for infinitely
many integers d.



6 SL(2,7Z/d)-represenation of G(K)

In this section, we consider the following
problem.

Problem 6.1. Does there exit a non abelian
representation G(K) — SL(2,7Z/d) for infinitely
many integers d ?



For simplicity we suppose

e [he Alexander polynomial is given to be

Ag (1) = CZle‘Zk + CZQk_ltZk_l + -+ ait + ap,

2k
where Ar = Ao > O,Zai = +].
i=0

If we substitute ¢ = p* for Ax(¢), then

> Ak 4k—2 >
d, = Ax(p”) = axp™ +ag-1p™" “+---+a1p”+ao.



If p Is a sufficient large prime number,
d, = Ax(p®) > p* > p.
Further we put the condition (aq, p) = 1, then
AK(PZ) = ap mod p.

Hence
(Ax(p*), p) = 1.

Then for any prime number p as above, p and
p* are units in Z/d,



Because there exists a solution
A(pH)b = 0 mod d 2,

then a non abelian representation

O : G(K) > X; (](; pb_ll) S SL(Z, Z/dpz)

IS obtained.



Therefore we obtain the following.

Theorem 6.2. There exits a non abelian
representation G(K) — SL(2,7Z/d ) for infinitely
many d,» = |Ag(p?)|.

Remark 6.3. We do not know whetherd . is a
prime number or not.



/ GL(2,Z/p)-representation of G(K)

Here we consider GL(2, Z/ p)-representations as
follows.

Problem 7.1. Does there exit a non abelian
representation G(K) — GL(2,Z/ p) for infinitely
many prime numbers p ?



For any knot K with the Alexander polynomial of
degree 2, we can give the answer as follows.
Now we assume that the Alexander polynomial
of K is given by

Ax(t) = at* — bt + a,

where b > a > 0,Ax(1) =2a—-b = +1. Then by
the condition 2a — b = +1,

b+ 1

+
“=



Now we can prove the following.

Proposition 7.2. There exists a solution of the
congruence Ak (t) = 0 mod p for infinitely many
prime number p.



If Ax(n) = 0 mod p, then we can find a non trivial
solution b of A(n)b = 0 mod p. Then

0 G(K) 3 x; > (’8 (1)) e GL(2,Z/p)

gives a non abelian representation.

Theorem 7.3. There exit a non abelian
representation G(K) — GL(2,7Z/ p) for infinitely
many prime number p.



Let us consider the congruence
at* — bt +a = 0 mod p.

When we consider the equation
at* =bt+a=0

over C, then the solutions are

b + \/bZ — 4Cl2

[ =
2a



Here if D = b* — 4a is a square number mod p,
that is, a quadratic residue mod p, then there
exists a solution of the above congruence.

Definition 7.4. For k and a prime number p, the
Legendre symbol (%) is defined as follows.

(k) |1 ifx* =k mod p has a solution
p] |-1 ifx*=kmod p has no solution



-1, we can eliminate a In

By using 2a — b = -
D =b*-4a” and o

btain D = +2b — 1. Then we

put D, =2b—-1and D_ = -2b — 1 for the both.

By using Legendre
following.

symbol, we can state the

Proposition 7.5. For infinitely many prime
numbers p, Legendre symbols of D = D,, D,

mod p IS

5



1. The case of D, =2b — 1.
Here we assume that

p=42b-1)n+1
IS a prime number and p is not a divisor of a.

Remark 7.6. By the theorem of Dirichlet, there
exisit infinitely many prime number as above.

If pis a divisor of 2b — 1, then D, = 0 mod p.
Hence there exists a solution of
Ag(t) = 0 mod P.



Assume that p is not a divisor of 2b — 1.
By the reciprocity law of the Jacobi symbol,

(%p_ 1)(219]?— 1) = (D=

_ (_ 1 )Z(Zb—l)n(b—l)
= 1.




Therefore




2. Thecaseof D_ =-2b -1
Now assume that

p=42b+ Dn+ 1

IS a prime number and is not a divisor of a.

TERE




By the quadratic reciprocity law,

—1 -1
-
P

— (_ 1)2(2b+1)n

= 1.

Hence

) -2




By using the reciprocity law of the Jacobi
symbol,

2b + 1 p—1 2b+1-1
() v
p 2b + 1

_ (_ 1 )2(2b+ 1)nb

= 1.



Therefore we have

42b+ 1)n + 1
2b + 1

||
e s e T




It Ax(¢) Is product of a degree 2 polynomial and
another one, then by similar arguments, we
obtain the following main result.

Theorem 7.7. If Ax(t) = f(¥)g(t) with the degree
of f(r) iIs two and f(1) = 1, then there exists a
non abelian representation G(K) — GL(2,7Z/p)
for infinitely many prime numbers p € Z.,.



