Curve complexes and the DM-compactification of moduli spaces

Yukio Matsumoto

Gakushuin University, Tokyo

Tagajo, February 24, 2015

contents

Introduction

• Teichmüller spaces

2 The polyhedron

- Length function and the polyhedron
- Action of the mapping class group $\Gamma_{g,n}$

3 Moduli Space

Orbifold Structure

Notation

 $\Sigma_{q,n}$: an oriented closed surface of genus $g \geq 2$ with n-points deleted $\Gamma_{q,n} = \Gamma(\Sigma_{q,n})$: mapping class group of $\Sigma_{q,n}$ $T_{q,n} = T(\Sigma_{q,n})$: Teichmüller space of $\Sigma_{q,n}$ $\dim_{\mathbb{C}} T_{q,n} = 3q - 3 + n$ complex analytic space $\Gamma_{q,n}$ acts on $T_{q,n}$ complex analytically, and properly discontinuously. $M_{a,n} = T_{a,n}/\Gamma_{a,n}$: moduli space $M_{q,n}$: compactification of $M_{q,n}$ (Deligne-Mumford 1969)

The purpose of this talk is

to construct a "natural" orbifold structure on the DM-compactification $\overline{M_{g,n}}$ of $M_{g,n}$, making use of N. V. Ivanov's "scissored Teichmüller space" $P_{g,n}^{\varepsilon}$. This construction clarifies the role of W. J. Harvey's curve complex $C_{g,n}$ in the compactification of $M_{g,n}$.

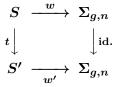
(Ivanov ['87] introduced $P_{g,n}^{\varepsilon}$ in his cohomological study of the mapping class group $\Gamma_{g,n}$.)

Basic definitions

We consider a pair (S, w) of a Riemann surface Sand an orientation preserving homeomorphism

 $w:S
ightarrow \Sigma_{g,n}.$

Two such pairs (S, w) and (S', w') are equivalent $(S, w) \sim (S', w')$ iff \exists a biholomorphic map $t: S \to S'$ s.t. the following diagram homotopically commutes:



Basic definitions 2

Teichmüller space

 $T_{g,n}$ is defined by

$$T_{g,n} \stackrel{ ext{def.}}{=} \{(S,w)\}/\sim.$$

The mapping class group $\Gamma_{g,n}$ is defined by

 $\Gamma_{g,n} \stackrel{\mathrm{def.}}{=} \{ \mathrm{ori.pres.homeos} : \Sigma_{g,n}
ightarrow \Sigma_{g,n} \} / \mathrm{isotopy.}$

The action of $\Gamma_{g,n}$ on $T_{g,n}$ is defined by

$$[f]_*[S,w] \stackrel{\mathrm{def.}}{=} [S,f\circ w],$$

where
$$[f] \in \Gamma_{g,n}$$
 and $[S,w] \in T_{g,n}$.

Length function $L: T_{a,n} \to \mathbb{R}$

 $T_{q,n}$ is a complex analytic space (Weil, Ahlfors, 1960) and is a bounded domain (Bers, 1961) of dim_{\mathbb{C}} $T_{q,n} = 3g - 3 + n$.

Let *C* be an essential simple closed curve on $\Sigma_{a.n}$ i.e. C is not homotopic to a point nor to a puncture. For any point $p = [S, w] \in T_{a,n}$, let $l_p(C)$ be the length of the simple closed geodesic \hat{C} on S homotopic to $w^{-1}(C)$. Define $L: T_{a,n} \to \mathbb{R}$ by

$$L(p) \stackrel{ ext{def.}}{=} \min_{C \subset \Sigma_{g,n}} l_p(C).$$

The scissored Teichmüller space $P_{g,n}^{\varepsilon}$

The length function

 $L:T_{g,n}
ightarrow\mathbb{R}$

is a piecewise real analytic function.

(Fenchel-Nielsen, Abikoff['80])

Let $\varepsilon>0$ be a sufficiently small number. Then we define $P_{g,n}^{\varepsilon}$ as follows:

$$P_{g,n}^arepsilon \stackrel{ ext{def.}}{=} \{p \in T_{g,n} \mid L(p) \geqq arepsilon\}.$$

 $P_{a,n}^{\epsilon}$ is a real analytic manifold with corners.

To what extent should ε be small?

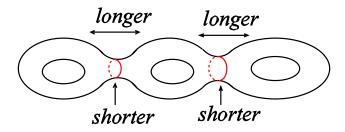
Theorem (L. Keen[1973], W. Abikoff[1980])

There is an universal constant M such that two distinct simple closed geodesics on S are disjoint, if their lengths are < M.

The number ε should be taken as $\varepsilon < M$.

Explanation of the Theorem

If the red curves become shorter, transverse curves become longer.



Facets of $P_{g,n}^{\varepsilon}$ (1)

Suppose a point $p_0 = [S_0, w_0]$ is on the boundary $\partial P_{g,n}^{arepsilon}$, then we have

$$L(p_0) = \varepsilon.$$

Then there exist a finite number of simple closed geodesics

$$\hat{C}_1, \cdots, \hat{C}_k$$

on (S_0, w_0) such that $l_{p_0}(\hat{C}_i) = \varepsilon, i = 1, \dots, k$. They are disjoint (because $\varepsilon < M$), and

$$k \leqq 3g - 3 + n.$$

Facets of $P_{g,n}^{\varepsilon}$ (2)

Let σ denote the set of pairwise disjoint simple closed curves on $\Sigma_{g,n}$:

$$\sigma = \{C_1, \cdots, C_k\}.$$

Define the facet $F^{\varepsilon}(\sigma)$ corresponding to σ by

$$F^arepsilon(\sigma):=\{p\in P^arepsilon_{g,n}\mid l_p(\hat{C}_i)=arepsilon,i=1,\cdots,k\}$$

For $\forall p = [S, w]$ in $F(\sigma)$, we assume that other simple closed geodesics on S have length $> \varepsilon$.

(The point $p_0 = [S_0, w_0]$ in the previous slide is on this facet.)

Facets of $P_{g,n}^{\varepsilon}$ (3)

A facet $F^{\varepsilon}(\sigma)$ is a real analytic manifold homeomorphic to

$$\mathbb{R}^{2(3g-3+n)-k},$$

where $k = \#\sigma$. Facets of $P_{g,n}^{\varepsilon}$ are analogous to open faces of a finite polyhedron P. Incidence relation: If $\sigma \subset \sigma'$, then we have

$$\overline{F^arepsilon(\sigma)} \supset F^arepsilon(\sigma').$$

A facet is itself an infinite polyhedron.

Abelian subgroup $\Gamma(\sigma)$

Let σ denote $\{C_1, \dots, C_k\}$ as before. Let $\tau(C_i)$ be the right handed (negative) Dehn twist about C_i , and define a subgroup $\Gamma(\sigma)$ of $\Gamma_{g,n}$ to be the subgroup generated by

$$au(C_i), \quad i=1,\cdots,k.$$

Since σ is a disjoint union of s.c.c's, the group $\Gamma(\sigma)$ is abelian. More precisely, $\Gamma(\sigma)$ is a free abelian group of rank k

Action of $\Gamma(\sigma)$ on $F^{\varepsilon}(\sigma)$

Since the action of $\Gamma_{g,n}$ on $T_{g,n}$ preserves the Poincaré metric on Riemann surfaces (hence preserves the length function L), and since

$$au(C_i)(C_j)=C_j, \quad i,j=1,\ldots,k,$$

the twists $\tau(C_i), i = 1, ..., k$ preserve $F^{\epsilon}(\sigma)$. This action of $\Gamma(\sigma)$ on $F^{\epsilon}(\sigma)$ is real analytic and properly discontinuous.

Complex of curves $C_{g,n}$

W. J. Harvey (1977) introduced an abstract simplicial complex called the complex of curves $C_{g,n} = C(\Sigma_{g,n})$:

Definition(Complex of curves)

Vertices of $C_{g,n}$: isotopy classes of essential simple closed curves on $\Sigma_{g,n}$.

A simplex σ of $C_{g,n}$: a set of vertices represented by a disjoint union of simple closed curves.

The facets $F^{\varepsilon}(\sigma)$ are in 1:1 correspondece with the simplices σ of $\mathcal{C}_{g,n}$.

Barycentric subdivision of $C_{g,n}$

Proposition 1

The totality of the facets $\{F^{\varepsilon}(\sigma)\}_{\sigma\in\mathcal{C}}$ makes a complex (facet complex) analogous to a simplicial complex. The flag complex associated to the facet complex is isomorphic to the barycentric subdivision of the complex of curves $\mathcal{C}(\Sigma_{g,n})$.

Proof: A flag in the facet complex $\overline{F^{\varepsilon}(\sigma)} \supset \overline{F^{\varepsilon}(\sigma')} \supset F^{\varepsilon}(\sigma'')$ corresponds to a flag in the complex of curves $\mathcal{C}, \ \sigma \subset \sigma' \subset \sigma''$. The latter corresponds to a simplex of the barycentric subdivision of $\mathcal{C}(\Sigma_{g,n})$. \Box

Automorphisms of $\mathcal{C}_{g,n}$

We need the following theorem:

Theorem (Ivanov['97], Korkmaz['99], Luo['00])

With the exceptional cases {of spheres with ≤ 4 punctures, tori with ≤ 2 punctures and a closed surface of genus 2}, the following holds:

$$Aut(\mathcal{C}_{g,n})=\Gamma_{g,n}^{*},$$

where $\Gamma_{g,n}^*$ stands for the extended mapping class group (containing orientation reversing homeomorphisms).

Automorphisms of $P_{g,n}^{arepsilon}$

The scissored Teichmüller space $P_{g,n}^{\varepsilon}$ together with the Teichmüller metric becomes a metric (infinite) polyhedron. Then the following proposition is a corollary to the above theorem.

Proposition 2

With the same exceptions as above, we have the following:

$$Isom_+(P_{g,n}^{\varepsilon}) = \Gamma_{g,n}.$$

Proof of Proposition 2

Proof: An isomorphism of $P_{g,n}^{\varepsilon}$ induces on $\partial P_{g,n}^{\varepsilon}$ an automorphism of the facet complex, thus that of the barycentric subdivion of $C_{g,n}$, and finally an automorphism of $C_{g,n}$. The automorphism of $C_{g,n}$ in turn corresponds (by Ivanov-Korkmaz-Luo's theorem) to an action of the mapping class group $\Gamma_{g,n}$, hence an (orientation preserving) isometry of $T_{g,n}$. \Box

Essentialy the same arguments are found in A. Papadopoulos ['08] and K. Ohshika ['11].

The subgroup of $\Gamma_{g,n}$ preserving $F^{\varepsilon}(\sigma)$

Proposition 3.

The subgroup of $\Gamma_{g,n}$ which preserves a facet $F^{\varepsilon}(\sigma)$ is precisely $N\Gamma(\sigma)$, the normalizer of $\Gamma(\sigma)$ in $\Gamma_{g,n}$.

Proof: If a mapping class $[f] \in \Gamma_{g,n}$ preserves $F^{\varepsilon}(\sigma)$, then [f]induces on $\Sigma_{g,n}$ a permutation of $\sigma = \{C_1, \dots, C_k\}$, and vice versa. Such mapping classes make the normilizer $N\Gamma(\sigma)$ of $\Gamma(\sigma)$. \Box

"Fringe" $FR^{arepsilon}(\sigma)$ bounded by $F^{arepsilon}(\sigma)$

The fringe $FR^{arepsilon}(\sigma)$ is defined by

$$FR^arepsilon(\sigma) = igcup_{0 < \delta < arepsilon} F^\delta(\sigma).$$

Then we have

Cor. to Proposition 3

The subgroup of $\Gamma_{g,n}$ which preserves the fringe $FR^{\varepsilon}(\sigma)$ is the normalizer $N\Gamma(\sigma)$. The action of $N\Gamma(\sigma)$ on $FR^{\varepsilon}(\sigma)$ is properly discontinuous.

Proof: $FR^{\varepsilon}(\sigma)$ is foliated by the facets $F^{\delta}(\sigma)$, and Corollary holds for each leaf $F^{\delta}(\sigma)$. \Box

Augmented fringe $\overline{FR^{arepsilon}}(\sigma)$

Define the augmented fringe as follows

Definition: Augmented fringe

$$\overline{FR^arepsilon}(\sigma) = igcup_{0 \leq \delta < arepsilon} F^\delta(\sigma) \ \left(= FR^arepsilon \cup F^0(\sigma)
ight).$$

Then $N\Gamma(\sigma)$ acts on $\overline{FR^{\varepsilon}}(\sigma)$ continuosly, but not properly discontinuously. (The action of $\Gamma(\sigma)$ fixes the added ideal boundary $F^{0}(\sigma)$.)

Augmented Teichmüller space $\overline{T}_{g,n}$

The ideal boundary $F^0(\sigma)$ parametrizes the nodal surfaces obtained by pinching the curves in σ to points.

Abikoff ['77] attached to $T_{g,n}$ all ideal boundaries, and considered the augmented Teichmüller space

$$\overline{T}_{g,n} = T_{g,n} \cup igcup_{\sigma \in \mathcal{C}} F^0(\sigma).$$

Yamada [04] identified $\overline{T}_{g,n}$ with the Weil-Petersson completion of $T_{g,n}$, and proved the geodesic convexity of the ideal boundaries $F^0(\sigma)$.

Well known fact

The quotient space of $\overline{T}_{g,n}$ under the action of $\Gamma_{g,n}$ is the compactified moduli space $\overline{M_{g,n}}$.

Note that the union of the augmented fringes $\bigcup_{\sigma \in \mathcal{C}} \overline{FR^{\varepsilon}}(\sigma)$ gives an open neighborhood of singular divisors when divided out by the action of $\Gamma_{g,n}$.

A defect of the fringes

To analyse the orbifold structure of $\overline{M_{g,n}}$, the fringes $\overline{FR^{\varepsilon}}(\sigma)$ are inadequete, because they are pairwise disjoint:

$$\overline{FR^arepsilon}(\sigma)\cap\overline{FR^arepsilon}(\sigma')=\emptyset, \quad ext{if} \quad \sigma
eq\sigma'.$$

(Recall that facets are something like open faces of a polyhedron.) Namely the fringes do not make an open covering of the singular divisors $\bigcup_{\sigma \in \mathcal{C}} F^0(\sigma)$. To remedy the deficiency, we introduce controlled deformation spaces.

Bers' deformation spaces

Let $\sigma \in \mathcal{C}$ be any simplex $\sigma = \{C_1, \cdots, C_k\} \in \mathcal{C}$.

Let $\Sigma_{g,n}(\sigma)$ denote the surface with nodes obtained from $\Sigma_{g,n}$ by pinching each C_i to a point.

Bers [1974] introduced the deformation space $D(\sigma)$ associated with $\Sigma_{g,n}(\sigma)$.

The following theorem is well-known:

Proposition 4

 $D(\sigma)$ is homeomorphic to $(T_{g,n}/\Gamma(\sigma))\cup F^0(\sigma).$

Orbifold Structure

Complex analytic structure on $D(\sigma)$

Bers announced in 70's that $D(\sigma)$ is a bounded domain, but without proof. Recently Hubbard and Koch [2014] gave a proof.

Theorem (Hubbard and Koch)

The deformation space $D(\sigma)$ has a complex structure.

I am still trying to understand the details of their arguments, but conceptually the proof is clear: The core part $F^0(\sigma)$ is Teichmüller space of a nodal surface $\Sigma_{g,n}(\sigma)$, and the transverse direction corresponds to the "plumbing coordinates" (cf. Masur[1976]).

The groups $W(\sigma)$

Define

$$W(\sigma) = N\Gamma(\sigma)/\Gamma(\sigma).$$

The groups $W(\sigma)$ are not generally finite groups, but they seem to have certain similarities with the Weyl groups.

Proposition 5

(i) $W(\sigma)$ is the mapping class group of the surface with nodes $\Sigma_{g,n}(\sigma)$.

(ii) $W(\sigma)$ acts on $D(\sigma)$ holomorphically and properly discontinuously.

A Remark

- When σ is a maximal simplex of $\mathcal{C}(\Sigma_{g,n})$, the group $W(\sigma)$ is finite. It appeared in Harvey's paper [1979] as the automorphism group of the maximal partition graph K_{σ} .
- In this case, the facet $F^{\varepsilon}(\sigma)$ (together with the Weil-Petersson metric) is a Lagrangean submanifold of $T_{g,n}$. $F^{\varepsilon}(\sigma)$ is homeomorphic to \mathbb{R}^{3g-3+n} on which $\Gamma(\sigma)$ acts as translations. This is exactly the situation of crystallographic groups. Appearance of "Symplectic crystallographic groups" in Teichmüller Theory! (Terminology "symplectic crystallographic groups" is due to S. Yamada.)

Harvey's paper[1981]

Harvey considers the cuspidal boundary structure

$$\partial T_{g,n} = igcup_{\sigma\in\mathcal{C}} T_\sigma imes\mathbb{R}^{\#(\sigma)}$$

and attaced it to the Teichmler space $T_{g,n}$. He claims that $T_{g,n} \cup \partial T_{g,n}$ is a real analytic manifold with corners on which $\Gamma_{g,n}$ acts properly discontinuously. (He called this construction "blowing up").

His explanation is vague. Our polyhedron $P_{g,n}^{\varepsilon}$ realizes his idea inside the Teichmüller space more rigourously.

Controlled deformation spces

Let M be the constant of Keen and Abikoff, and we take an ε with $\varepsilon < M$). We insert 6g - 6 + 2n numbers between ε and M: $\varepsilon < \varepsilon_1 < \eta_1 < \cdots < \varepsilon_{3g-3+n} < \eta_{3g-3+n} < M$. Let $\hat{\varepsilon}$ denote this sequence. We define the controlled deformation space $D_{\hat{\varepsilon}}(\sigma)$ as follows (σ being $\{C_1, \cdots, C_k\}$)

Definition of $D_{\widehat{arepsilon}}(\sigma)$

$$D_{\hat{arepsilon}}(\sigma) = \{p = [S, w] \in D(\sigma) \mid l_p(\hat{C}_i) < \varepsilon_k, \ i = 1, \dots, k, ext{and other simple closed}$$

geodesics on S are longer than $\eta_k.\}$

Why do we need the controlled deformation spaces?

Because $D(\sigma)$ do not naturally descend to $\overline{M_{g,n}}$. But the controlled deformation spaces $D_{\hat{\varepsilon}}(\sigma)$ do.

Proposition 5

(i) $D_{\hat{\varepsilon}}(\sigma)$ is a bounded domain of \mathbb{C}^{3g-3+n} .

(ii) The group $W(\sigma)$ acts on $D_{\hat{\varepsilon}}(\sigma)$ complex analytically and properly discontinuously.

(iii) $D_{\hat{\varepsilon}}(\sigma)/W(\sigma)$ is an open subset of $\overline{M_{g,n}}$.

(iv) $D_{\hat{\varepsilon}}(\sigma)/W(\sigma)$ contains the "main part" of the quotient of the augmented fringe $\overline{FR^{\varepsilon}}(\sigma)/W(\sigma)$

(v) The family $\{D_{\hat{\varepsilon}}(\sigma)/W(\sigma)\}_{\sigma\in\mathcal{C}}$ is an open covering of the singular divisors $\bigcup_{\sigma\in\mathcal{C}} F^0(\sigma)/W(\sigma)$.

Main theorem

Summarizing the above, we have

Theorem (M. IRMA lectures, [2012])

The family $\{(D_{\hat{\varepsilon}}(\sigma), W(\sigma))\}_{\sigma \in \mathcal{C}}$ gives the orbifold charts around the singular divisors in $\overline{M_{g,n}}$.

Remark. If $\sigma' = f(\sigma)$ by a mapping class $f \in \Gamma_{g,n}$, we consider that $(D_{\hat{\varepsilon}}(\sigma), W(\sigma))$ and $(D_{\hat{\varepsilon}}(\sigma'), W(\sigma'))$ are identical charts.

References

- W. Abikoff, Degenerating families of Riemann surfaces, Ann. of Math. 105 (1977), 29–44.
- W. Abikoff, The Real Analytic Theory of Teichmüller Spaces, L.N.M, Vol. 820, Springer (1980).
- L. Bers, Correction to "Spaces of Riemann surfaces as bounded domains", Bull. AMS,67 (1961), 465–466.
- N. V. Ivanov, Complexes of curves and the Teichmüller modular groups, Russian Math. Surveys 42:3 (1987) 55–107.
- N. V. Ivanov, Automorphisms of Complexes of Curves and Teichmüller Spaces, Intern. Math. Research Notices 14 (1997), 651–666.

References (2)

- W. J. Harvey, Gemetric structure of surface mapping class groups, in *Homological Group Theory* Proc. of a symposium held at Durham in Sept. 1977, (ed. by C. T. C. Wall), London Math. Soc. Lecture Note Series. 36 (1979) 255–269.
- W. J. Harvey, Boundary structure of the modular group, in I. Kra and B. Maskit, eds, *Riemann Surfaces and Related Topics*, Ann. Math. Studies, 97 (1981), 245–251.
- J. H. Hubbard and S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, J.D.G. 98 (2014), 261–313.
- F. Luo, Automorphisms of the complex of curves, Topology 39 (2000) 283–298.

References (3)

- M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology and its Applications 95 (1999) 85–111.
- H. Masur, The exension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. Jour. 43 (1976), 623–635.
- Y. Matsumoto, On the universal degenerating family of Riemann surfaces, IRMA Lectures in Math. and Theoretical Physics 20, (2012) 71–102.
- K. Ohshika, Reduced Bers boundaries of Teichmüller spaces, arXiv:1103.4680v2 [math.GT] 16Jun 2011.

References (4)

- A. Papadopoulos, A regidity theorem for the mapping class group action on the space of unmeasured foliations on a surface, Proc. AMS. 136 (2008), 4453–4460.
- S. Yamada, On the geometry of Weil-Petersson Completion of Teichmüller spaces, Math. Reaearch Letters 11 (2004), 327–344.