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Introduction Teichmüller spaces

Notation

Σg,n: an oriented closed surface of genus g = 2

with n-points deleted

Γg,n = Γ(Σg,n) : mapping class group of Σg,n

Tg,n = T (Σg,n) : Teichmüller space of Σg,n

dimC Tg,n = 3g − 3 + n complex analytic space

Γg,n acts on Tg,n complex analytically,

and properly discontinuously.

Mg,n = Tg,n/Γg,n : moduli space

Mg,n : compactification of Mg,n

(Deligne-Mumford 1969)
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Introduction Teichmüller spaces

The purpose of this talk is

to construct a “natural”orbifold structure on the

DM-compactification Mg,n of Mg,n, making use of

N. V. Ivanov’s “scissored Teichmüller space”P ε
g,n.

This construction clarifies the role of

W. J. Harvey’s curve complex Cg,n

in the compactification of Mg,n.

(Ivanov [’87] introduced P ε
g,n in his cohomological study of the

mapping class group Γg,n.)
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Introduction Teichmüller spaces

Basic definitions

We consider a pair (S,w) of a Riemann surface S

and an orientation preserving homeomorphism

w : S → Σg,n.

Two such pairs (S,w) and (S′, w′) are equivalent

(S,w) ∼ (S′, w′) iff ∃ a biholomorphic map

t : S → S′ s.t. the following diagram homotopically commutes:

S
w−−−→ Σg,n

t

y yid.

S′ −−−→
w′

Σg,n
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Introduction Teichmüller spaces

Basic definitions 2
Teichmüller space

Tg,n is defined by

Tg,n
def .
= {(S,w)}/ ∼ .

The mapping class group Γg,n is defined by

Γg,n
def .
= {ori.pres.homeos : Σg,n → Σg,n}/isotopy.

The action of Γg,n on Tg,n is defined by

[f ]∗[S,w]
def .
= [S, f ◦ w],

where [f ] ∈ Γg,n and [S,w] ∈ Tg,n.
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The polyhedron Length function and the polyhedron

Length function L : Tg,n → R

Tg,n is a complex analytic space (Weil, Ahlfors, 1960) and is a

bounded domain (Bers, 1961) of dimC Tg,n = 3g − 3 + n.

Let C be an essential simple closed curve on Σg,n i.e.

C is not homotopic to a point nor to a puncture.

For any point p = [S,w] ∈ Tg,n, let lp(C) be the length of the

simple closed geodesic Ĉ on S homotopic to w−1(C).

Define L : Tg,n → R by

L(p)
def .
= min

C⊂Σg,n

lp(C).
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The polyhedron Length function and the polyhedron

The scissored Teichmüller space P ε
g,n

The length function

L : Tg,n → R

is a piecewise real analytic function.

(Fenchel-Nielsen, Abikoff[’80])

Let ε > 0 be a sufficiently small number. Then we define P ε
g,n as

follows:

P ε
g,n

def .
= {p ∈ Tg,n | L(p) = ε}.

P ε
g,n is a real analytic manifold with corners.

Yukio Matsumoto (Gakushuin University, Tokyo)Curve complexes and the DM-compactification of moduli spacesTagajo, February 24, 2015 8 / 39



The polyhedron Length function and the polyhedron

To what extent should ε be small?

.
Theorem (L. Keen[1973], W. Abikoff[1980])
..

.

. ..

.

.

There is an universal constant M such that two distinct simple

closed geodesics on S are disjoint, if their lengths

are < M .

The number ε should be taken as ε < M .
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The polyhedron Length function and the polyhedron

Explanation of the Theorem

If the red curves become shorter, transverse curves become longer.
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The polyhedron Length function and the polyhedron

Facets of P ε
g,n (1)

Suppose a point p0 = [S0, w0] is on the boundary ∂P ε
g,n,

then we have

L(p0) = ε.

Then there exist a finite number of simple closed geodesics

Ĉ1, · · · , Ĉk

on (S0, w0) such that lp0(Ĉi) = ε, i = 1, . . . , k. They are disjoint

(because ε < M), and

k 5 3g − 3 + n.
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The polyhedron Length function and the polyhedron

Facets of P ε
g,n (2)

Let σ denote the set of pairwise disjoint simple closed curves on

Σg,n:

σ = {C1, · · · , Ck}.

Define the facet F ε(σ) corresponding to σ by

F ε(σ) := {p ∈ P ε
g,n | lp(Ĉi) = ε, i = 1, · · · , k}

For ∀p = [S,w] in F (σ), we assume that other simple closed

geodesics on S have length > ε.

(The point p0 = [S0, w0] in the previous slide is on this facet.)
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The polyhedron Length function and the polyhedron

Facets of P ε
g,n (3)

A facet F ε(σ) is a real analytic manifold homeomorphic to

R2(3g−3+n)−k,

where k = #σ.

Facets of P ε
g,n are analogous to open faces of a finite polyhedron P .

Incidence relation: If σ ⊂ σ′, then we have

F ε(σ) ⊃ F ε(σ′).

A facet is itself an infinite polyhedron.
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The polyhedron Action of the mapping class group Γg,n

Abelian subgroup Γ(σ)

Let σ denote {C1, · · · , Ck} as before. Let τ (Ci) be the right

handed (negative) Dehn twist about Ci, and define a subgroup

Γ(σ) of Γg,n to be the subgroup generated by

τ (Ci), i = 1, · · · , k.

Since σ is a disjoint union of s.c.c’s, the group Γ(σ) is abelian.

More precisely, Γ(σ) is a free abelian group of rank k
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The polyhedron Action of the mapping class group Γg,n

Action of Γ(σ) on F ε(σ)

Since the action of Γg,n on Tg,n preserves the Poincaré metric on

Riemann surfaces (hence preserves the length function L), and since

τ (Ci)(Cj) = Cj, i, j = 1, . . . , k,

the twists τ (Ci), i = 1, . . . , k preserve F ϵ(σ).

This action of Γ(σ) on F ε(σ) is real analytic and properly

discontinuous.

Yukio Matsumoto (Gakushuin University, Tokyo)Curve complexes and the DM-compactification of moduli spacesTagajo, February 24, 2015 15 / 39



The polyhedron Action of the mapping class group Γg,n

Complex of curves Cg,n

W. J. Harvey (1977) introduced an abstract simplicial complex

called the complex of curves Cg,n = C(Σg,n):

.
Definition(Complex of curves)
..

.

. ..

.

.

Vertices of Cg,n: isotopy classes of essential simple closed curves on

Σg,n.

A simplex σ of Cg,n: a set of vertices represented by a disjoint

union of simple closed curves.

The facets F ε(σ) are in 1:1 correspondece with the simplices σ of

Cg,n.
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The polyhedron Action of the mapping class group Γg,n

Barycentric subdivision of Cg,n

.
Proposition 1
..

.

. ..

.

.

The totality of the facets {F ε(σ)}σ∈C makes a complex (facet

complex) analogous to a simplicial complex. The flag complex

associated to the facet complex is isomorphic to the barycentric

subdivision of the complex of curves C(Σg,n).

Proof: A flag in the facet complex F ε(σ) ⊃ F ε(σ′) ⊃ F ε(σ′′)

corresponds to a flag in the complex of curves C, σ ⊂ σ′ ⊂ σ′′.

The latter corresponds to a simplex of the barycentric subdivision of

C(Σg,n). �
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The polyhedron Action of the mapping class group Γg,n

Automorphisms of Cg,n

We need the following theorem:
.
Theorem (Ivanov[’97], Korkmaz[’99], Luo[’00])
..

.

. ..

.

.

With the exceptional cases {of spheres with 5 4 punctures, tori with

5 2 punctures and a closed surface of genus 2}, the following holds:

Aut(Cg,n) = Γ∗
g,n,

where Γ∗
g,n stands for the extended mapping class group (containing

orientation reversing homeomorphisms).
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The polyhedron Action of the mapping class group Γg,n

Automorphisms of P ε
g,n

The scissored Teichmüller space P ε
g,n together with the Teichmüller

metric becomes a metric (infinite) polyhedron. Then the folllowing

proposition is a corollary to the above theorem.
.
Proposition 2
..

.

. ..

.

.

With the same exceptions as above, we have the following:

Isom+(P ε
g,n) = Γg,n.
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The polyhedron Action of the mapping class group Γg,n

Proof of Proposition 2

Proof: An isomorphism of P ε
g,n induces on ∂P ε

g,n an automorphism

of the facet complex, thus that of the barycentric subdivion of Cg,n,

and finally an automorphism of Cg,n. The automorphism of Cg,n in

turn corresponds (by Ivanov-Korkmaz-Luo’s theorem) to an action

of the mapping class group Γg,n, hence an (orientation preserving)

isometry of Tg,n. �

Essentialy the same arguments are found in A. Papadopoulos [’08]

and K. Ohshika [’11].
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The polyhedron Action of the mapping class group Γg,n

The subgroup of Γg,n preserving F ε(σ)

.
Proposition 3.
..

.

. ..

.

.

The subgroup of Γg,n which preserves a facet F ε(σ) is precisely

NΓ(σ), the normalizer of Γ(σ) in Γg,n.

Proof: If a mapping class [f ] ∈ Γg,n preserves F ε(σ), then [f ]

induces on Σg,n a permutation of σ = {C1, · · · , Ck}, and vice

versa. Such mapping classes make the normilizer NΓ(σ) of Γ(σ). �
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Moduli Space Orbifold Structure

“Fringe”FRε(σ) bounded by F ε(σ)

The fringe FRε(σ) is defined by

FRε(σ) =
∪

0<δ<ε

F δ(σ).

Then we have
.
Cor. to Proposition 3
..

.

. ..

.

.

The subgroup of Γg,n which preserves the fringe FRε(σ) is the

normalizer NΓ(σ). The action of NΓ(σ) on FRε(σ) is properly

discontinuous.

Proof: FRε(σ) is foliated by the facets F δ(σ), and Corollary holds

for each leaf F δ(σ). �
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Moduli Space Orbifold Structure

Augmented fringe FRε(σ)

Define the augmented fringe as follows
.
Definition: Augmented fringe
..

.

. ..

.

.

FRε(σ) =
∪

05δ<ε

F δ(σ)
(
= FRε ∪ F 0(σ)

)
.

Then NΓ(σ) acts on FRε(σ) continuosly, but not properly

discontinuously. (The action of Γ(σ) fixes the added ideal boundary

F 0(σ).)
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Moduli Space Orbifold Structure

Augmented Teichmüller space T g,n

The ideal boundary F 0(σ) parametrizes the nodal surfaces obtained

by pinching the curves in σ to points.

Abikoff [’77] attached to Tg,n all ideal boundaries, and considered

the augmented Teichmüller space

T g,n = Tg,n ∪
∪
σ∈C

F 0(σ).

Yamada [04] identified T g,n with the Weil-Petersson completion of

Tg,n, and proved the geodesic convexity of the ideal boundaries

F 0(σ).
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Moduli Space Orbifold Structure

.
Well known fact
..

.

. ..

.

.

The quotient space of T g,n under the action of Γg,n is the

compactified moduli space Mg,n.

Note that the union of the augmented fringes
∪

σ∈C FRε(σ)

gives an open neighborhood of singular divisors

when divided out by the action of Γg,n.
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Moduli Space Orbifold Structure

A defect of the fringes

To analyse the orbifold structure of Mg,n, the fringes FRε(σ) are

inadequete, because they are pairwise disjoint:

FRε(σ) ∩ FRε(σ′) = ∅, if σ ̸= σ′.

(Recall that facets are something like open faces of a polyhedron.)

Namely the fringes do not make an open covering of the singular

divisors
∪

σ∈C F 0(σ).

To remedy the deficiency, we introduce controlled deformation

spaces.
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Moduli Space Orbifold Structure

Bers’ deformation spaces

Let σ ∈ C be any simplex σ = {C1, · · · , Ck} ∈ C.
Let Σg,n(σ) denote the surface with nodes obtained from Σg,n by

pinching each Ci to a point.

Bers [1974] introduced the deformation space D(σ) associated with

Σg,n(σ).

The following theorem is well-known:
.
Proposition 4
..

.

. ..

.

.

D(σ) is homeomorphic to (Tg,n/Γ(σ)) ∪ F 0(σ).
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Moduli Space Orbifold Structure

Complex analytic structure on D(σ)

Bers announced in 70’s that D(σ) is a bounded domain, but

without proof.

Recently Hubbard and Koch [2014] gave a proof.
.
Theorem (Hubbard and Koch)
..
.
. ..

.

.

The deformation space D(σ) has a complex structure.

I am still trying to understand the details of their arguments, but

conceptually the proof is clear: The core part F 0(σ) is Teichmüller

space of a nodal surface Σg,n(σ), and the transverse direction

corresponds to the “plumbing coordinates”(cf. Masur[1976]).
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Moduli Space Orbifold Structure

The groups W (σ)

Define

W (σ) = NΓ(σ)/Γ(σ).

The groups W (σ) are not generally finite groups, but they seem to

have certain similarities with the Weyl groups.
.
Proposition 5
..

.

. ..

.

.

(i) W (σ) is the mapping class group of the surface with nodes

Σg,n(σ).

(ii) W (σ) acts on D(σ) holomorphically and properly

discontinuously.
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Moduli Space Orbifold Structure

A Remark

When σ is a maximal simplex of C(Σg,n), the group W (σ) is finite.

It appeared in Harvey’s paper [1979] as the automorphism group of

the maximal partition graph Kσ.

In this case, the facet F ε(σ) (together with the Weil-Petersson

metric) is a Lagrangean submanifold of Tg,n. F ε(σ) is

homeomorphic to R3g−3+n on which Γ(σ) acts as translations.

This is exactly the situation of crystallographic groups. Appearance

of “Symplectic crystallographic groups” in Teichmüller Theory!

(Terminology “symplectic crystallographic groups”is due to S.

Yamada.)
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Moduli Space Orbifold Structure

Harvey’s paper[1981]

Harvey considers the cuspidal boundary structure

∂Tg,n =
∪
σ∈C

Tσ × R#(σ)

and attaced it to the Teichm̈ller space Tg,n. He claims that

Tg,n ∪ ∂Tg,n is a real analytic manifold with corners on which Γg,n

acts properly discontinuously. (He called this construction “blowing

up”).

His explanation is vague. Our polyhedron P ε
g,n realizes his idea

inside the Teichmüller space more rigourously.
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Moduli Space Orbifold Structure

Controlled deformation spces

Let M be the constant of Keen and Abikoff, and we take an ε with

ε < M). We insert 6g − 6 + 2n numbers between ε and M :

ε < ε1 < η1 < · · · < ε3g−3+n < η3g−3+n < M.

Let ε̂ denote this sequence.

We define the controlled deformation space Dε̂(σ) as follows (σ

being {C1, · · · , Ck})
.
Definition of Dε̂(σ)
..

.

. ..

.

.

Dε̂(σ) = {p = [S,w] ∈ D(σ) | lp(Ĉi) < εk,

i = 1, . . . , k, and other simple closed

geodesics on S are longer than ηk.}

Yukio Matsumoto (Gakushuin University, Tokyo)Curve complexes and the DM-compactification of moduli spacesTagajo, February 24, 2015 32 / 39



Moduli Space Orbifold Structure

Why do we need the controlled deformation spaces?

Because D(σ) do not naturally descend to Mg,n. But the

controlled deformation spaces Dε̂(σ) do.
.
Proposition 5
..

.

. ..

.

.

(i) Dε̂(σ) is a bounded domain of C3g−3+n.

(ii) The group W (σ) acts on Dε̂(σ) complex analytically and

properly discontinuously.

(iii) Dε̂(σ)/W (σ) is an open subset of Mg,n.

(iv) Dε̂(σ)/W (σ) contains the “main part”of the quotient of the

augmented fringe FRε(σ)/W (σ)

(v) The family {Dε̂(σ)/W (σ)}σ∈C is an open covering of the

singular divisors
∪

σ∈C F 0(σ)/W (σ).
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Moduli Space Orbifold Structure

Main theorem

Summarizing the above, we have
.
Theorem (M. IRMA lectures, [2012])
..

.

. ..

.

.

The family {(Dε̂(σ),W (σ))}σ∈C gives the orbifold charts around

the singular divisors in Mg,n.

Remark. If σ′ = f(σ) by a mapping class f ∈ Γg,n, we consider

that (Dε̂(σ),W (σ)) and (Dε̂(σ
′),W (σ′)) are identical charts.
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Moduli Space Orbifold Structure
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