Cyclic branched covers of knots and *L*-spaces

Masakazu Teragaito

Hiroshima University

Branched coverings, degenerations, and related topics 2015

Contents

Background

Cyclic branched covers

 \bigcirc Quasi-alternating links and Q-polynomials

Contents

Background

Cyclic branched covers

 $\ \ \odot$ Quasi-alternating links and \emph{Q} -polynomials

Definition

- S³, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links
- * In general, rank $\widehat{HF}(Y) \geq |H_1(Y;\mathbb{Z})|$ for any rational homology sphere Y.

Definition

- S³, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links
- * In general, rank $\widehat{HF}(Y) \geq |H_1(Y;\mathbb{Z})|$ for any rational homology sphere Y.

Definition

- S³, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links

^{*} In general, rank $\widehat{HF}(Y) \geq |H_1(Y;\mathbb{Z})|$ for any rational homology sphere Y.

Definition

- S³, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links
- * In general, rank $\widehat{HF}(Y) \geq |H_1(Y;\mathbb{Z})|$ for any rational homology sphere Y.

It is an open problem to find a non-Heegaard Floer characterization of $L{\rm -spaces}$.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable

Left-orderable

A non-trivial group G is left-orderable if G admits a total order such that

$$a < b \Longrightarrow ga < gb$$
 for any $g, a, b \in G$

It is an open problem to find a non-Heegaard Floer characterization of L-spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable

Left-orderable

A non-trivial group G is left-orderable if G admits a total order such that

$$a < b \Longrightarrow ga < gb \quad \text{for any } g, a, b \in G$$

It is an open problem to find a non-Heegaard Floer characterization of L-spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group ${\it G}$ is left-orderable if ${\it G}$ admits a total order such that

$$a < b \Longrightarrow ga < gb \quad \text{for any } g, a, b \in G$$

It is an open problem to find a non-Heegaard Floer characterization of L-spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group ${\it G}$ is left-orderable if ${\it G}$ admits a total order such that

$$a < b \Longrightarrow ga < gb$$
 for any $g, a, b \in G$

It is an open problem to find a non-Heegaard Floer characterization of L-spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group ${\it G}$ is left-orderable if ${\it G}$ admits a total order such that

$$a < b \Longrightarrow ga < gb$$
 for any $g, a, b \in G$

Contents

Background

Cyclic branched covers

 $oxed{3}$ Quasi-alternating links and Q-polynomials

Cyclic branched covers

Theorem

Let L be a non-split alternating link in S^3 . Then,

- $\Sigma_2(L)$ is an L-space;
- $\pi_1\Sigma_2(L)$ is not left-orderable.

[Ozsváth-Szabó]

Examples.

$$\Sigma_2(L) = L(2,1)$$
 $\Sigma_2(K) = L(5,2)$
 $\pi_1 \Sigma_2(L) = \mathbb{Z}_2$ $\pi_1 \Sigma_2(K) = \mathbb{Z}_5$

Cyclic branched covers

Theorem

Let L be a non-split alternating link in S^3 . Then,

- $\Sigma_2(L)$ is an L-space;
- $\pi_1\Sigma_2(L)$ is not left-orderable.

[Ozsváth-Szabó]

[Ito, Greene, BGW]

Examples.

$$\Sigma_2(L) = L(2,1)$$

$$\pi_1 \Sigma_2(L) = \mathbb{Z}_2$$

$$\Sigma_2(K) = L(5,2)$$

$$\pi_1 \Sigma_2(K) = \mathbb{Z}_5$$

Cyclic branched covers

Theorem

Let L be a non-split alternating link in S^3 . Then,

- $\Sigma_2(L)$ is an L-space;
- $\pi_1\Sigma_2(L)$ is not left-orderable.

[Ozsváth-Szabó]

[Ito, Greene, BGW]

Examples.

$$\Sigma_2(L) = L(2,1)$$

$$\pi_1 \Sigma_2(L) = \mathbb{Z}_2$$

$$\Sigma_2(K) = L(5,2)$$

$$\pi_1 \Sigma_2(K) = \mathbb{Z}_5$$

Problem

Which cyclic branched cover of a knot or link is an L-space?

ullet Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$,

- ullet Restrict to $\Sigma_2(L)$
- ullet Fix L or a class, and study $\Sigma_d(L)$ $(d\geq 2).$

Problem

Which cyclic branched cover of a knot or link is an L-space?

Problem

Which cyclic branched cover of a knot or link is an L-space?

• Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$.

- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ $(d \ge 2)$.

Problem

Which cyclic branched cover of a knot or link is an L-space?

• Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$.

- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ $(d \ge 2)$.

Problem

Which cyclic branched cover of a knot or link is an L-space?

• Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$.

- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ $(d \ge 2)$.

Simple questions

Questions

- Is there a knot/link all of whose cyclic branched covers are L-spaces?
- ② Is there a knot/link none of whose cyclic branched covers are L-spaces?

Answers

- Yes.
- Yes.

Simple questions

Questions

- Is there a knot/link all of whose cyclic branched covers are L-spaces?
- ② Is there a knot/link none of whose cyclic branched covers are L-spaces?

Answers

- Yes
- Yes.

Simple questions

Questions

- Is there a knot/link all of whose cyclic branched covers are L-spaces?
- ② Is there a knot/link none of whose cyclic branched covers are L-spaces?

Answers.

- Yes.
- Yes.

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$ -cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L-spaces.

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$ -cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L-spaces.

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$ -cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L-spaces.

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$ -cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L-spaces.

(3,7)-torus knot

Gordon-Lidman 2014

For (p,q)-torus knot K

 $\Sigma_d(K)$ is an L-space $\Longleftrightarrow \pi_1\Sigma_d(K)$ is finite

(3,7)-torus knot

Gordon-Lidman 2014

For (p, q)-torus knot K,

 $\Sigma_d(K)$ is an L-space $\iff \pi_1\Sigma_d(K)$ is finite

Further question

Corollary

 Σ_d (trefoil) is an L-space $\iff d \leq 5$

Question [Gordon-Lidman]

For a knot or link L, if there exists $d \geq 2$ such that $\pi_1 \Sigma_d(L)$ is left-orderable, then is $\pi_1 \Sigma_e(L)$ left-orderable for any $e \geq d$?

Another evidence [Hu]

For a 2-bridge knot S(p,q) with $p \equiv 3 \pmod 4$, there exists N such that $\pi_1 \Sigma_d(S(p,q))$ is left-orderable for any $d \geq N$.

Further question

Corollary

 Σ_d (trefoil) is an L-space $\iff d \leq 5$

Question [Gordon-Lidman]

For a knot or link L, if there exists $d \geq 2$ such that $\pi_1 \Sigma_d(L)$ is left-orderable, then is $\pi_1 \Sigma_e(L)$ left-orderable for any $e \geq d$?

Another evidence [Hu]

For a 2-bridge knot S(p,q) with $p\equiv 3\pmod 4$, there exists N such that $\pi_1\Sigma_d(S(p,q))$ is left-orderable for any $d\geq N$.

Further question

Corollary

 Σ_d (trefoil) is an L-space $\iff d \leq 5$

Question [Gordon-Lidman]

For a knot or link L, if there exists $d \geq 2$ such that $\pi_1 \Sigma_d(L)$ is left-orderable, then is $\pi_1 \Sigma_e(L)$ left-orderable for any $e \geq d$?

Another evidence [Hu]

For a 2-bridge knot S(p,q) with $p\equiv 3\pmod 4$, there exists N such that $\pi_1\Sigma_d(S(p,q))$ is left-orderable for any $d\geq N$.

Example

Let K be the 2-bridge knot $5_2 = S(7,2)$.

- If d > 9, then $\pi_1 \Sigma_d(K)$ is left-orderable.
- $\Sigma_d(K)$ is an L-space for d=2,3,4,5.

[Hu]

Peters, Te, Hori]

Example

Let K be the 2-bridge knot $5_2 = S(7,2)$.

- If $d \geq 9$, then $\pi_1 \Sigma_d(K)$ is left-orderable.
- $\Sigma_d(K)$ is an L-space for d=2,3,4,5.

[Hu]

[Peters,Te,Hori]

Select a class

Problem

Which cyclic branched cover of a knot is an L-space

- torus knot: Solved
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Problem

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot

Let K be an alternating knot.

Ozsváth-Szabó 2005

 $\Sigma_2(K)$ is an L-space

3-fold covers

Is $\Sigma_3(K)$ an L-space?

Let K be an alternating knot.

Ozsváth-Szabó 2005

 $\Sigma_2(K)$ is an L-space.

3-fold covers

Is $\Sigma_3(K)$ an L-space?

Let K be an alternating knot.

Ozsváth-Szabó 2005

 $\Sigma_2(K)$ is an L-space.

3-fold covers

Is $\Sigma_3(K)$ an L-space?

Let K be an alternating knot.

Ozsváth-Szabó 2005

 $\Sigma_2(K)$ is an L-space.

3-fold covers

Is $\Sigma_3(K)$ an L-space?

Genus one alternating knot

Theorem

Let K be a genus 1 alternating knot. Then,

- $\Sigma_3(K)$ is an L-space.
- $\pi_1\Sigma_3(K)$ is not left-orderable.

[le]

Genus one alternating knot

Theorem

Let K be a genus 1 alternating knot. Then,

- $\Sigma_3(K)$ is an L-space.
- $\pi_1\Sigma_3(K)$ is not left-orderable.

[Te]

Two-bridge knot

- Σ_2 is a lens space, so an L-space.
- For $C[2b_1, 2b_2, \ldots, 2b_n]$ with $b_i > 0$, all Σ_d is an L-space.
- In general, hard to handle.

Two-bridge knot

- Σ_2 is a lens space, so an L-space.
- For $C[2b_1, 2b_2, \ldots, 2b_n]$ with $b_i > 0$, all Σ_d is an L-space.
- In general, hard to handle.

There are two types.

$$C[2m, -2n]$$

There are two types.

$$C[2m, -2n]$$

There are two types.

Theorem

For K = C[2m, 2n], m, n > 0, $\Sigma_d(K)$ is an L-space for any $d \geq 2$.

Theorem

For K = C[2m, -2n], m, n > 0, $\Sigma_d(K)$ is an L-space for

d = 3

[Peters]

d = 4

[Te]

• d = 5

[Hori]

Conjecture

For $K=C[2m,-2n],\ m,n>0,\ \Sigma_d(K)$ is not an L-space if $d\geq 6$.

Theorem

For K=C[2m,2n], m,n>0, $\Sigma_d(K)$ is an L-space for any $d\geq 2$.

Theorem

For
$$K = C[2m, -2n]$$
, $m, n > 0$, $\Sigma_d(K)$ is an L -space for

•
$$d = 3$$

$$d = 4$$

$$d = 5$$

Hori

Conjecture

For $K = C[2m, -2n], m, n > 0, \Sigma_d(K)$ is not an L-space if $d \ge 6$.

Theorem

For K=C[2m,2n], m,n>0, $\Sigma_d(K)$ is an L-space for any $d\geq 2$.

Theorem

For
$$K = C[2m, -2n]$$
, $m, n > 0$, $\Sigma_d(K)$ is an L -space for

•
$$d = 3$$

[Peters]

•
$$d = 4$$

[Te]

•
$$d = 5$$

[Hori]

Conjecture

For $K = C[2m, -2n], m, n > 0, \Sigma_d(K)$ is not an L-space if $d \ge 6$.

Theorem

For K = C[2m, 2n], m, n > 0, $\Sigma_d(K)$ is an L-space for any $d \geq 2$.

Theorem

For
$$K = C[2m, -2n]$$
, $m, n > 0$, $\Sigma_d(K)$ is an L -space for

•
$$d = 3$$

[Peters]

$$\bullet$$
 $d=4$

[Te]

•
$$d = 5$$

[Hori]

Conjecture

For $K=C[2m,-2n],\ m,n>0,\ \Sigma_d(K)$ is not an L-space if $d\geq 6.$

 $5_2 = C[2, -4].$

$$5_2 = C[2, -4].$$

3-fold cover of K

- Is this alternating?
- No! (This is 9_{49} .)
- But, it is quasi-alternating

Ozsváth-Szabó

- Is this alternating?
- No! (This is 9_{49} .)
- But, it is quasi-alternating.

Ozsváth-Szabó

- Is this alternating?
- No! (This is 9_{49} .)
- But, it is quasi-alternating.

Ozsváth-Szabó

- Is this alternating?
- No! (This is 9₄₉.)
- But, it is quasi-alternating.

Ozsváth-Szabó

- Is this alternating?
- No! (This is 9₄₉.)
- But, it is quasi-alternating.

Ozsváth-Szabó

- Is this alternating?
- No! (This is 9₄₉.)
- But, it is quasi-alternating.

Ozsváth-Szabó

Contents

Background

Cyclic branched covers

 \odot Quasi-alternating links and Q-polynomials

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - ullet L_{∞} and L_0 are QA.
 - $\bullet \det L = \det L_{\infty} + \det L_{0}$

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - ullet L_{∞} and L_0 are QA
 - $\det L = \det L_{\infty} + \det L_0$

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - L_{∞} and L_0 are QA.
 - $\bullet \det L = \det L_{\infty} + \det L_{0}$

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - L_{∞} and L_0 are QA.
 - $\det L = \det L_{\infty} + \det L_0$

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - L_{∞} and L_0 are QA.
 - $\det L = \det L_{\infty} + \det L_0$

Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_{∞} , L_0 satisfy
 - L_{∞} and L_0 are QA.
 - $\det L = \det L_{\infty} + \det L_0$

In particular, any alternating knot or non-split alternating link is QA.

Example 1

Example 2

Q-polynomial

For an unoriented link, the Q-polynomial $Q_L \in \mathbb{Z}[x,x^{-1}]$ is defined as follows.

- For the unknot U, $Q_U = 1$.
- $Q_{L_{+}} + Q_{L_{-}} = x(Q_{L_{\infty}} + Q_{L_{\infty}})$

Basic problem

Problem

Determine whether a given link is QA or not.

Properties of QA-links

- $\Sigma_2(L)$ is an L-space.
- $\Sigma_2(L)$ bounds H_1 -torsion free, negative-definite 4-manifold.
- homologically thin (knot Floer, reduced Khovanov, reduced odd Khovanov)
 - i.e. supported on a single diagonal

Basic problem

Problem

Determine whether a given link is QA or not.

Properties of QA-links

- $\Sigma_2(L)$ is an L-space.
- $\Sigma_2(L)$ bounds H_1 -torsion free, negative-definite 4-manifold.
- homologically thin (knot Floer, reduced Khovanov, reduced odd Khovanov)
 - i.e. supported on a single diagonal

Qazaqzeh-Chbili's work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

* K. Qazaqzeh and N. Chbili, "A new obstruction of quasi-alternating links", arXiv:1406.0279.

$$K = 8_{19}$$

 $\deg Q_K = 7$, $\det K = 3$.

Qazaqzeh-Chbili's work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

* K. Qazaqzeh and N. Chbili, "A new obstruction of quasi-alternating links", arXiv:1406.0279.

$$K=8_{19}$$
 $\deg Q_K=7$, $\det K=3$. So, K is not QA .

Qazaqzeh-Chbili's work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

* K. Qazaqzeh and N. Chbili, "A new obstruction of quasi-alternating links", arXiv:1406.0279.

$K = 8_{19}$

$$\deg Q_K = 7$$
 , $\det K = 3$.

So, K is not QA .

New criterion

Theorem

If a link L is QA, then either,

- ① L is a (2, n)-torus link $(n \neq 0)$ and $\deg Q_L = \det L 1$;

Remark

- Tigure-eight knot K is alternating, so QA. Since $\deg Q_K=3$, $\det K=5$, the above evaluation is optimal.
- ② Connected sum of two Hopf links L is QA . $\deg Q_L = 2$, $\det L = 4$.

New criterion

Theorem

If a link L is QA, then either,

- ① L is a (2, n)-torus link $(n \neq 0)$ and $\deg Q_L = \det L 1$;

Remark

- Figure-eight knot K is alternating, so QA. Since $\deg Q_K=3$, $\det K=5$, the above evaluation is optimal.

New criterion

Theorem

If a link L is QA, then either,

- ① L is a (2, n)-torus link $(n \neq 0)$ and $\deg Q_L = \det L 1$;

Remark

- Figure-eight knot K is alternating, so QA. Since $\deg Q_K=3$, $\det K=5$, the above evaluation is optimal.
- $\ \ \, \ \ \, \ \ \, \ \,$ Connected sum of two Hopf links L is QA . $\deg Q_L=2$, $\det L=4$.

Application

Examples

For non-alternating knots 12_{n0025} , 12_{n0093} , 12_{n0115} , 12_{n0138} , 12_{n0199} , 12_{n0355} , 12_{n0374} ,

$$\deg Q = 10, \det = 11.$$

(This was known by homological-thickness.)

Application

Examples

For non-alternating knots 12_{n0025} , 12_{n0093} , 12_{n0115} , 12_{n0138} , 12_{n0199} , 12_{n0355} , 12_{n0374} .

$$\deg Q = 10, \det = 11.$$

So, these are not QA. (This was known by homological-thickness.)

Qazaqzeh-Chbili

$$\deg Q_L \le \max\{\deg Q_{L_\infty}, \deg Q_{L_0}\} + 1$$

Greene (Heegaard Floer Theory)

For a QA link,

det	1	2	3
knot/link	unknot	Hopf link	trefoil

Theorem

For a QA link L

- ① if $\det L=4$, then L is the $(2,\pm 4)$ -torus link or $\deg Q_L\leq 2$;
- ② if $\det L = 5$, then L is the $(2, \pm 5)$ -torus knot or the figure-eight knot.

Qazaqzeh-Chbili

$$\deg Q_L \le \max\{\deg Q_{L_\infty}, \deg Q_{L_0}\} + 1$$

Greene (Heegaard Floer Theory)

For a QA link,

\det	1	2	3
knot/link	unknot	Hopf link	trefoil

Theorem

For a QA link L

- ① if $\det L=4$, then L is the $(2,\pm 4)$ -torus link or $\deg Q_L\leq 2$;
- if $\det L = 5$, then L is the $(2, \pm 5)$ -torus knot or the figure-eight knot.

Qazaqzeh-Chbili

$$\deg Q_L \le \max\{\deg Q_{L_\infty}, \deg Q_{L_0}\} + 1$$

Greene (Heegaard Floer Theory)

For a QA link,

\det	1	2	3
knot/link	unknot	Hopf link	trefoil

Theorem

For a QA link L,

- if $\det L = 4$, then L is the $(2, \pm 4)$ -torus link or $\deg Q_L \le 2$;
- ② if $\det L = 5$, then L is the $(2, \pm 5)$ -torus knot or the figure-eight knot.

Induction on $\det L$

For a QA link L, think QA resolutions L_{∞} and L_0 .

If neither L_{∞} nor L_0 is a (2, n)-torus link,

$$\det Q_L \leq \max\{\deg Q_{L_{\infty}}, \deg Q_{L_0}\} + 1$$

$$= \deg Q_{L_{\alpha}} + 1 \quad (\{\alpha, \beta\} = \{\infty, 0\})$$

$$\leq (\det L_{\alpha} - 2) + 1$$

$$\leq (\det L - \det L_{\beta}) - 1$$

$$\leq \det L - 2$$

- If one of L_{∞} , L_0 is a (2,n)-torus link and the other is not, then similar.
- If both are (2, n)-torus links, then it needs an argument.

Induction on $\det L$

For a QA link L, think QA resolutions L_{∞} and L_0 .

If neither L_{∞} nor L_0 is a (2, n)-torus link,

$$\det Q_L \leq \max\{\deg Q_{L_{\infty}}, \deg Q_{L_0}\} + 1$$

$$= \deg Q_{L_{\alpha}} + 1 \quad (\{\alpha, \beta\} = \{\infty, 0\})$$

$$\leq (\det L_{\alpha} - 2) + 1$$

$$\leq (\det L - \det L_{\beta}) - 1$$

$$\leq \det L - 2$$

- If one of L_{∞} , L_0 is a (2,n)-torus link and the other is not, then similar.
- If both are (2, n)-torus links, then it needs an argument.

References

闻 Masakazu Teragaito,

Four-fold cyclic branched covers of genus one two-bridge knots are L-spaces, Bol. Soc. Mat. Mexicana **20** (2014), no. 2, 391–403.

- Masakazu Teragaito, Cyclic branched covers of alternating knots and L-spaces, to appear in Bull. Korean Math. Soc.
- Masakazu Teragaito, Quasi-alternating links and Q-polynomials, J. Knot Theory Ramifications 23 (2014), no.12, 1450068 (6 pages).
- \blacksquare Masakazu Teragaito, Quasi-alternating links and Q-polynomials, II, in preparation.