NON-KÄHLER COMPLEX STRUCTURES ON \mathbb{R}^4

NAOHIKO KASUYA

We consider the following natural problem. "Is there any non-Kähler complex structures on \mathbb{R}^{2n} ?" If n = 1, there is no such complex structure. On the other hand, if $n \geq 3$, there exist uncountably many non-Kähler complex structures on \mathbb{R}^{2n} . It was proven by Calabi and Eckmann as the consequence of a simple application of the Calabi-Eckmann manifolds. In this talk, I will construct uncountably many non-Kähler complex structures on \mathbb{R}^4 , and give the affirmative answer to the above problem for the case where n = 2.

The outline of the construction is as follows. First, we prepare two complex manifolds, a tubular neighborhood of a singular elliptic fiber of type I₁ and the product of a holomorphic disk and a holomorphic annulus, and glue them by a biholomorphism of certain gluing domains. Then, we show that the resultant complex manifold is diffeomorphic to \mathbb{R}^4 by using a genus-1 achiral Lefschetz fibration $S^4 \to S^2$ found by Yukio Matsumoto and Kenji Fukaya. It is non-Kähler, since it contains holomorphic tori which are homotopically trivial, by construction. This is a joint work with Antonio J. Di Scala and Daniele Zuddas.