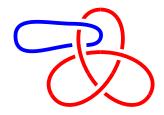
Resonant characters for rational arrangements

Enrique ARTAL BARTOLO

Departamento de Matemáticas Facultad de Ciencias Instituto Universitario de Matemáticas y sus Aplicaciones Universidad de Zaragoza

Branched Coverings, Degenerations, and Related Topics 2016 Hiroshima, March 2016

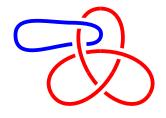
Linking number

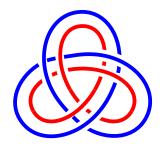


Linking number

 $\blacktriangleright \ \mathcal{L}(\vec{K},\vec{L}) = n \text{ if } \vec{L} = n \cdot C \in H_1(\mathbb{S}^3 \setminus K; \mathbb{Z}) = \mathbb{Z}\langle C \rangle.$

Linking number





Linking number

- ▶ Projection of $K \Longrightarrow \tilde{K}$: $\mathcal{L}(K, \tilde{K})$ invariant of the projection.

Regular neighbourhood

$$ightharpoonup \mathcal{C} = igcup_{i=1}^n \mathcal{C}_i \subset \mathbb{P}^2$$
 plane algebraic curve, $\deg \mathcal{C}_i = d_i$.

Regular neighbourhood

- $ightharpoonup \mathcal{C} = igcup_{i=1}^n \mathcal{C}_i \subset \mathbb{P}^2$ plane algebraic curve, $\deg \mathcal{C}_i = d_i$.
- ▶ Minimal sequence of blow-ups $\sigma: X \to \mathbb{P}^2$ such that $\sigma^{-1}(\mathcal{C})$ is normal crossing divisor (smooth components).

Regular neighbourhood

- $ightharpoonup \mathcal{C} = igcup_{i=1}^n \mathcal{C}_i \subset \mathbb{P}^2$ plane algebraic curve, $\deg \mathcal{C}_i = d_i$.
- ▶ Minimal sequence of blow-ups $\sigma: X \to \mathbb{P}^2$ such that $\sigma^{-1}(\mathcal{C})$ is normal crossing divisor (smooth components).

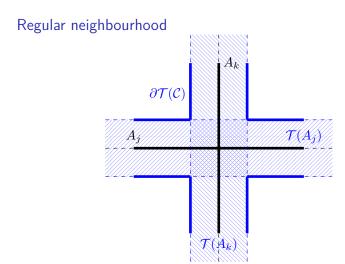
$$\sigma^{-1}(\mathcal{C}) = \bigcup_{j=1}^r \hat{\mathcal{C}}_i \quad \cup \bigcup_{k=1}^s E_k \qquad = \bigcup_{j=1}^{r+s} A_j; \ \Gamma \ \text{dual graph}$$
 weighted by $(g_j,e_j) = (g(A_j),A_j^2).$

Regular neighbourhood

- $ightharpoonup \mathcal{C} = igcup_{i=1}^n \mathcal{C}_i \subset \mathbb{P}^2$ plane algebraic curve, $\deg \mathcal{C}_i = d_i$.
- ▶ Minimal sequence of blow-ups $\sigma: X \to \mathbb{P}^2$ such that $\sigma^{-1}(\mathcal{C})$ is normal crossing divisor (smooth components).

 $\sigma^{-1}(\mathcal{C}) = \underbrace{\bigcup_{j=1}^r \hat{\mathcal{C}}_i}_{r} \cup \underbrace{\bigcup_{k=1}^s E_k}_{r+s} = \underbrace{\bigcup_{j=1}^{r+s} A_j}_{r+s}; \ \Gamma \ \text{dual graph}$ weighted by $(g_j,e_j) = (g(A_j),A_j^2).$

▶ $\mathcal{T}(\mathcal{C})$ regular neighbourhood of $\sigma^{-1}(\mathcal{C}) \subset X$, plumbed union of tubular neighbourhoods $\pi_j : \mathcal{T}(A_j) \to A_j$ (Euler number A_j^2).



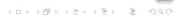
Regular neighbourhood

- $ightharpoonup \mathcal{C} = igcup_{i=1}^n \mathcal{C}_i \subset \mathbb{P}^2$ plane algebraic curve, $\deg \mathcal{C}_i = d_i$.
- ▶ Minimal sequence of blow-ups $\sigma: X \to \mathbb{P}^2$ such that $\sigma^{-1}(\mathcal{C})$ is normal crossing divisor (smooth components).

 $\sigma^{-1}(\mathcal{C}) = \underbrace{\bigcup_{j=1}^r \hat{\mathcal{C}}_i}_{r} \cup \underbrace{\bigcup_{k=1}^s E_k}_{r} = \underbrace{\bigcup_{j=1}^{r+s} A_j}_{r}; \ \Gamma \ \text{dual graph}$ weighted by $(g_j,e_j) = (g(A_j),A_j^2).$

- ▶ $\mathcal{T}(\mathcal{C})$ regular neighbourhood of $\sigma^{-1}(\mathcal{C}) \subset X$, plumbed union of tubular neighbourhoods $\pi_j : \mathcal{T}(A_j) \to A_j$ (Euler number A_j^2).

 $lackbox{ }$ Combinatorics of $\mathcal{C}\equiv\Gamma+\,$ marked components at $\hat{\mathcal{C}}_{j}$



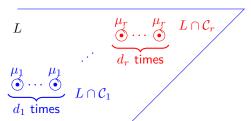
- $lackbox{Combinatorics of } \mathcal{C} \equiv \Gamma + \hspace{0.1cm} \mathsf{marked} \hspace{0.1cm} \mathsf{components} \hspace{0.1cm} \mathsf{at} \hspace{0.1cm} \hat{\mathcal{C}}_{j}$
- $ightharpoonup \partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.

- lacktriangle Combinatorics of $\mathcal{C} \equiv \Gamma + \,$ marked components at $\hat{\mathcal{C}}_j$
- $ightharpoonup \partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.

- lacktriangle Combinatorics of $\mathcal{C} \equiv \Gamma + \,$ marked components at $\hat{\mathcal{C}}_j$
- ▶ $\partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.
- ► Line arrangements and homotopy level: Florens-Guerville-Marco (generalizing E. Hironaka).

- $lackbox{Combinatorics of } \mathcal{C} \equiv \Gamma + \hspace{0.1cm} \mathsf{marked} \hspace{0.1cm} \mathsf{components} \hspace{0.1cm} \mathsf{at} \hspace{0.1cm} \hat{\mathcal{C}}_{j}$
- ▶ $\partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.
- ► Line arrangements and homotopy level: Florens-Guerville-Marco (generalizing E. Hironaka).

- lacktriangle Combinatorics of $\mathcal{C} \equiv \Gamma + \,$ marked components at $\hat{\mathcal{C}}_j$
- ▶ $\partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.
- Line arrangements and homotopy level: Florens-Guerville-Marco (generalizing E. Hironaka).
- $H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) = \frac{\mathbb{Z}\mu_1 \oplus \cdots \oplus \mathbb{Z}\mu_r}{\langle d_1\mu_1 + \cdots + d_r\mu_r \rangle} \cong \mathbb{Z}^{r-1} \oplus \mathbb{Z}/\gcd(d_1, \dots, d_r).$

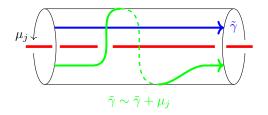


- lacktriangle Combinatorics of $\mathcal{C} \equiv \Gamma + \,$ marked components at $\hat{\mathcal{C}}_j$
- ▶ $\partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.
- ► Line arrangements and homotopy level: Florens-Guerville-Marco (generalizing E. Hironaka).
- $H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) = \frac{\mathbb{Z}\mu_1 \oplus \cdots \oplus \mathbb{Z}\mu_r}{\langle d_1\mu_1 + \cdots + d_r\mu_r \rangle} \cong \mathbb{Z}^{r-1} \oplus \mathbb{Z}/\gcd(d_1, \dots, d_r).$
- $H_1(\partial \mathcal{R}(\mathcal{C}); \mathbb{Z}) \cong \bigoplus_{j=1}^r H_1(\hat{\mathcal{C}}_j; \mathbb{Z}) \oplus A_{\Gamma} A_{\Gamma} \oplus \mathbb{Z}/\gcd(d_1, ..., d_r)^2 \oplus H_1(\Gamma; \mathbb{Z})$

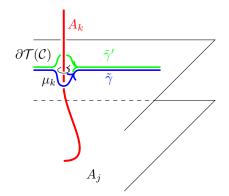
- lacktriangle Combinatorics of $\mathcal{C} \equiv \Gamma + \,$ marked components at $\hat{\mathcal{C}}_j$
- ▶ $\partial \mathcal{R}(\mathcal{C})$ is a combinatorial invariant.
- ▶ Study $j: \partial \mathcal{R}(\mathcal{C}) \hookrightarrow \mathbb{P}^2 \setminus \mathcal{C}$.
- Line arrangements and homotopy level: Florens-Guerville-Marco (generalizing E. Hironaka).
- $H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) = \frac{\mathbb{Z}\mu_1 \oplus \cdots \oplus \mathbb{Z}\mu_r}{\langle d_1\mu_1 + \cdots + d_r\mu_r \rangle} \cong \mathbb{Z}^{r-1} \oplus \mathbb{Z}/\gcd(d_1, \dots, d_r).$
- $H_1(\partial \mathcal{R}(\mathcal{C}); \mathbb{Z}) \cong \bigoplus_{j=1}^r H_1(\hat{\mathcal{C}}_j; \mathbb{Z}) \oplus A_{\Gamma} A_{\Gamma} \oplus \mathbb{Z}/\gcd(d_1, \dots, d_r)^2 \oplus H_1(\Gamma; \mathbb{Z})$
- ▶ Goal: Define a linking number for cycles in Γ (see also Guerville-Meilhan).

• γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$

- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.



- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- ▶ $[A_j, A_k]$ edge of γ : $\tilde{\gamma} \mu_k$ also a lifted 1-cycle.



- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- $[A_j,A_k]$ edge of γ : $\tilde{\gamma}-\mu_k$ also a lifted 1-cycle.
- ▶ Fix a character $\xi: H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) \to \mathbb{C}^*$.

- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- ▶ $[A_j, A_k]$ edge of γ : $\tilde{\gamma} \mu_k$ also a lifted 1-cycle.
- Fix a character $\xi: H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) \to \mathbb{C}^*$.

$$\blacktriangleright \ \mathcal{C}^1_\xi = \bigcup_{\xi(\mu_j)=1} A_j, \, \mathcal{C}^{\neq 1}_\xi = \bigcup_{\xi(\mu_j)\neq 1} A_j \text{ and } \mathcal{C}_\xi = \bigcup_{A_j \cap \mathcal{C}^{\neq 1}_\xi = \emptyset} A_j.$$

- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- ▶ $[A_j, A_k]$ edge of γ : $\tilde{\gamma} \mu_k$ also a lifted 1-cycle.
- Fix a character $\xi: H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) \to \mathbb{C}^*$.

$$\blacktriangleright \ \mathcal{C}^1_\xi = \bigcup_{\xi(\mu_j)=1} A_j, \ \mathcal{C}^{\neq 1}_\xi = \bigcup_{\xi(\mu_j)\neq 1} A_j \ \text{and} \ \mathcal{C}_\xi = \bigcup_{A_j \cap \mathcal{C}^{\neq 1}_\xi = \emptyset} A_j.$$

▶ Γ_{ξ} dual graph of $C_{\xi} \Rightarrow H_1(C_{\xi}; \mathbb{Z}) \cong H_1(C_{\xi}^{\nu}; \mathbb{Z}) \oplus A_{\Gamma_{\xi}} \oplus H_1(\Gamma_{\xi}; \mathbb{Z}).$

- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- ▶ $[A_j, A_k]$ edge of γ : $\tilde{\gamma} \mu_k$ also a lifted 1-cycle.
- ▶ Fix a character $\xi: H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) \to \mathbb{C}^*$.
- ▶ Γ_{ξ} dual graph of $C_{\xi} \Rightarrow H_1(C_{\xi}; \mathbb{Z}) \cong H_1(C_{\xi}^{\nu}; \mathbb{Z}) \oplus A_{\Gamma_{\xi}} \oplus H_1(\Gamma_{\xi}; \mathbb{Z}).$

Definition

The *linking number* of (ξ, γ) , $\gamma \in H_1(\Gamma_{\xi}; \mathbb{Z})$ is $\xi(\tilde{\gamma})$.

- γ simplicial cycle in $\Gamma \Longrightarrow \tilde{\gamma}$ lifted 1-cycle in $\mathbb{P}^2 \setminus \mathcal{C}$
- A_j vertex of γ : $\tilde{\gamma} + \mu_j$ also a lifted 1-cycle.
- ▶ $[A_j, A_k]$ edge of γ : $\tilde{\gamma} \mu_k$ also a lifted 1-cycle.
- ▶ Fix a character $\xi: H_1(\mathbb{P}^2 \setminus \mathcal{C}; \mathbb{Z}) \to \mathbb{C}^*$.

▶ Γ_{ξ} dual graph of $C_{\xi} \Rightarrow H_1(C_{\xi}; \mathbb{Z}) \cong H_1(C_{\xi}^{\nu}; \mathbb{Z}) \oplus A_{\Gamma_{\xi}} \oplus H_1(\Gamma_{\xi}; \mathbb{Z}).$

Definition

The *linking number* of (ξ, γ) , $\gamma \in H_1(\Gamma_{\xi}; \mathbb{Z})$ is $\xi(\tilde{\gamma})$.

Theorem (AFG)

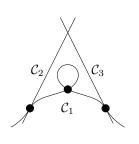
The linking number of (ξ, γ) is a topological invariant of $(\mathbb{P}^2, \mathcal{C}, \xi)$ (in the case of line arrangements).

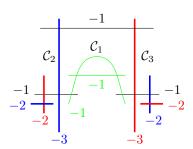
$$\mathcal{C} = \{ \overbrace{(xyz + x^3 - y^3)}^{\mathcal{C}_1} \underbrace{(z^2 - 3(x - y)z + 9(x^2 - xy + y^2))}_{\text{nodal cubic and two tangent lines at inflexion points.}}^{\mathcal{C}_2 \cup \mathcal{C}_3} = 0 \} :$$

$$\mathcal{C}_1 \xrightarrow{\mathcal{C}_2 \cup \mathcal{C}_3} \mathcal{C}_2 \cup \mathcal{C}_3$$

$$\mathcal{C}_3 = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$
nodal cubic and two tangent lines at inflexion points.

•
$$\xi(\mu_1) = 1$$
, $\xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta$, $\xi(\mu_3) = \overline{\zeta}$

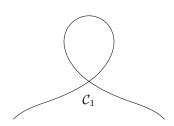




$$\mathcal{C}_1 \xrightarrow{\mathcal{C}_2 \cup \mathcal{C}_3} \mathcal{C}_2 \cup \mathcal{C}_3$$

$$\mathcal{C}_3 = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$
nodal cubic and two tangent lines at inflexion points.

•
$$\xi(\mu_1) = 1$$
, $\xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta$, $\xi(\mu_3) = \overline{\zeta}$

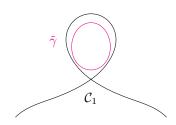


$$\mathcal{C}_1 \xrightarrow{\mathcal{C}_2 \cup \mathcal{C}_3} \mathcal{C}_2 \cup \mathcal{C}_3$$

$$\mathcal{C}_3 = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$

$$\text{nodal cubic and two tangent lines at inflexion points.}$$

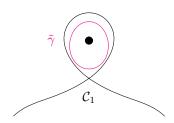
•
$$\xi(\mu_1) = 1$$
, $\xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta$, $\xi(\mu_3) = \overline{\zeta}$



$$\mathcal{C}_1 \xrightarrow{\mathcal{C}_2 \cup \mathcal{C}_3} \mathcal{C}_2 \cup \mathcal{C}_3$$

$$\mathcal{C}_3 = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$
nodal cubic and two tangent lines at inflexion points.

• $\xi(\mu_1) = 1, \ \xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta, \ \xi(\mu_3) = \overline{\zeta}$



$$\mathcal{C} = \{ \underbrace{(xyz + x^3 - y^3)}_{\text{C2}} \underbrace{(z^2 - 3(x - y)z + 9(x^2 - xy + y^2))}_{\text{C2}} = 0 \} :$$
 nodal cubic and two tangent lines at inflexion points.

- $\xi(\mu_1) = 1$, $\xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta$, $\xi(\mu_3) = \overline{\zeta}$
- $\blacktriangleright \ \xi(\tilde{\gamma}) = \zeta.$

$$\mathcal{C} = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$
nodal cubic and two tangent lines at inflexion points.

- $\xi(\mu_1) = 1, \ \xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta, \ \xi(\mu_3) = \overline{\zeta}$
- $\blacktriangleright \ \xi(\tilde{\gamma}) = \zeta.$
- $\rho: Y \to \mathbb{P}^2$ branched covering associated to ξ

$$[x:y:z] \mapsto [3xyz - (\zeta - 1)(\overline{\zeta}x^3 - y^3) : -3xyz + (\overline{\zeta} - 1)(\zeta x^3 - y^3) : 9xyz]$$

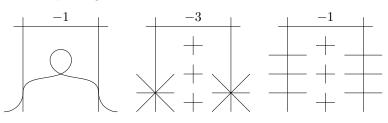
The preimage of C_1 : three lines.

$$\mathcal{C}_1 \xrightarrow{\mathcal{C}_2 \cup \mathcal{C}_3} \mathcal{C}_2 = \{ (xyz + x^3 - y^3) (z^2 - 3(x - y)z + 9(x^2 - xy + y^2)) = 0 \}:$$
 nodal cubic and two tangent lines at inflexion points.

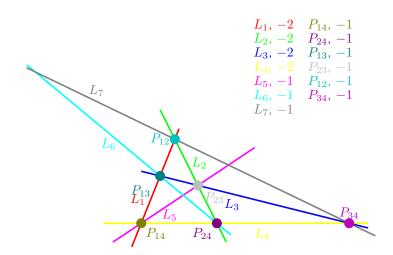
- $\xi(\mu_1) = 1$, $\xi(\mu_2) = \exp(\frac{2i\pi}{3}) =: \zeta$, $\xi(\mu_3) = \overline{\zeta}$
- $\blacktriangleright \xi(\tilde{\gamma}) = \zeta.$
- $ho: Y \to \mathbb{P}^2$ branched covering associated to ξ

$$[x:y:z]\mapsto [3xyz-(\zeta-1)(\overline{\zeta}x^3-y^3):-3xyz+(\overline{\zeta}-1)(\zeta x^3-y^3):9xyz]$$

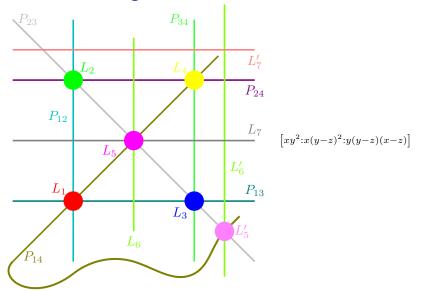
The preimage of C_1 : three lines.



Extended Ceva arrangement

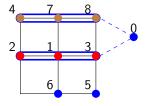


Extended Ceva arrangement



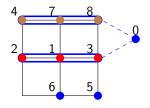
Zariski pairs of arrangements via linking numbers

Extended McLane arrangements



Zariski pairs of arrangements via linking numbers

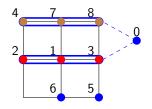
Extended McLane arrangements



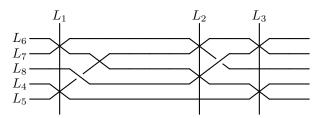
 $\xi: (\mu_0, \dots, \mu_8) \mapsto (1, \zeta, \zeta, \zeta, \overline{\zeta}, 1, 1, \overline{\zeta}, \overline{\zeta}), \text{ cycle } L_0, L_5, L_6.$

Zariski pairs of arrangements via linking numbers

Extended McLane arrangements

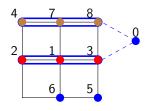


$$\xi: (\mu_0, \dots, \mu_8) \mapsto (1, \zeta, \zeta, \zeta, \overline{\zeta}, 1, 1, \overline{\zeta}, \overline{\zeta})$$
, cycle L_0, L_5, L_6 .



Zariski pairs of arrangements via linking numbers

Extended McLane arrangements



$$\xi: (\mu_0, \dots, \mu_8) \mapsto (1, \zeta, \zeta, \zeta, \overline{\zeta}, 1, 1, \overline{\zeta}, \overline{\zeta}), \text{ cycle } L_0, L_5, L_6.$$

Guerville's arrangement

Linking number oriented Zariski 4-tuple with equations in $\mathbb{Q}(\exp(\frac{2i\pi}{5}))$.

▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- ▶ $\Lambda := \mathbb{C}[H]$ group algebra $(h = 1 \Rightarrow \text{ring of Laurent polynomials})$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\Lambda := \mathbb{C}[H]$ group algebra $(h = 1 \Rightarrow \text{ring of Laurent polynomials})$.
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\Lambda := \mathbb{C}[H]$ group algebra $(h = 1 \Rightarrow \text{ring of Laurent polynomials})$.
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\blacktriangleright \ \Lambda := \mathbb{C}[H] \ \text{group algebra} \ \big(h=1 \Rightarrow \text{ring of Laurent polynomials}\big).$
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

Alexander Invariant

• $\rho: Z_H \to Z$ the universal abelian unramified covering associated to $G \twoheadrightarrow H$.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\blacktriangleright \ \Lambda := \mathbb{C}[H] \ \text{group algebra} \ \big(h=1 \Rightarrow \text{ring of Laurent polynomials}\big).$
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

- $\rho: Z_H \to Z$ the universal abelian unramified covering associated to $G \twoheadrightarrow H.$
- ▶ $C_*(Z_H; \mathbb{C})$ cellular Λ -complex of Z_H (finitely generated).

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\blacktriangleright \ \Lambda := \mathbb{C}[H] \ \text{group algebra} \ \big(h=1 \Rightarrow \text{ring of Laurent polynomials}\big).$
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

- $\rho: Z_H \to Z$ the universal abelian unramified covering associated to $G \twoheadrightarrow H.$
- ▶ $C_*(Z_H; \mathbb{C})$ cellular Λ -complex of Z_H (finitely generated).
- $M_G \equiv M_Z := H_1(C_*(Z_H;\mathbb{C})) = H_1(Z_H;\mathbb{C}) = G'/G'' \otimes \mathbb{C}$ \Lambda-module.

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- ▶ G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\blacktriangleright \ \Lambda := \mathbb{C}[H] \ \text{group algebra} \ \big(h=1 \Rightarrow \text{ring of Laurent polynomials}\big).$
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

- $\rho: Z_H \to Z$ the universal abelian unramified covering associated to $G \twoheadrightarrow H.$
- ▶ $C_*(Z_H; \mathbb{C})$ cellular Λ -complex of Z_H (finitely generated).
- $M_G \equiv M_Z := H_1(C_*(Z_H;\mathbb{C})) = H_1(Z_H;\mathbb{C}) = G'/G'' \otimes \mathbb{C}$ \Lambda-module.
- ▶ $J_k(Z) \equiv J_k(G) \subset \Lambda$ be the Fitting ideals of M_G .

- ▶ Z topological space (homotopy equivalent to a finite CW-complex) $\pi_1(Z) =: G$.
- G is a finitely presented group, $H := G/G' \cong \mathbb{Z}^r \oplus \operatorname{Tor}(H)$.
- $\blacktriangleright \ \Lambda := \mathbb{C}[H] \ \text{group algebra} \ \big(h=1 \Rightarrow \text{ring of Laurent polynomials}\big).$
- ▶ $\mathbb{T}_Z = \operatorname{Spec}(H)$ complex abelian Lie group diffeomorphic to h disjoint copies of tori $(\mathbb{C}^*)^r$.

Alexander Invariant

- $\rho: Z_H \to Z$ the universal abelian unramified covering associated to $G \twoheadrightarrow H.$
- $C_*(Z_H; \mathbb{C})$ cellular Λ -complex of Z_H (finitely generated).
- $M_G \equiv M_Z := H_1(C_*(Z_H; \mathbb{C})) = H_1(Z_H; \mathbb{C}) = G'/G'' \otimes \mathbb{C}$ A-module.
- ▶ $J_k(Z) \equiv J_k(G) \subset \Lambda$ be the Fitting ideals of M_G .

Definition

The characteristic variety $V_k'(G) \equiv V_k'(Z) \subset \mathbb{T}_Z$ is the zero locus of $J_k(G)$.



Twisted cohomology

- ▶ For $\xi \in \mathbb{T}_Z$, \mathbb{C}_{ξ} is the Λ -module structure of \mathbb{C} defined by ξ .

- $T_Z \equiv H^1(Y; \mathbb{C}^*) = \text{Hom}(G, \mathbb{C}^*).$
- ▶ For $\xi \in \mathbb{T}_Z$, \mathbb{C}_{ξ} is the Λ -module structure of \mathbb{C} defined by ξ .
- $ightharpoonup C_*^{\xi}(Z_H;\mathbb{C}) := C_*(Z_H;\mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi} \text{ cellular } \mathbb{C}\text{-complex twisted by } \xi.$

- $T_Z \equiv H^1(Y; \mathbb{C}^*) = \text{Hom}(G, \mathbb{C}^*).$
- ▶ For $\xi \in \mathbb{T}_Z$, \mathbb{C}_ξ is the Λ-module structure of \mathbb{C} defined by ξ .
- $C_*^{\xi}(Z_H; \mathbb{C}) := C_*(Z_H; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ cellular \mathbb{C} -complex twisted by ξ .
- $H_1(Z; \mathbb{C}_{\xi}) \equiv H_1(G; \mathbb{C}_{\xi}) := H_1(C_*^{\xi}(Z_H; \mathbb{C}))$

Twisted cohomology

- ▶ For $\xi \in \mathbb{T}_Z$, \mathbb{C}_ξ is the Λ-module structure of \mathbb{C} defined by ξ .
- $C_*^{\xi}(Z_H;\mathbb{C}) := C_*(Z_H;\mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ cellular \mathbb{C} -complex twisted by ξ .
- ► $H_1(Z; \mathbb{C}_{\xi}) \equiv H_1(G; \mathbb{C}_{\xi}) := H_1(C_*^{\xi}(Z_H; \mathbb{C}))$

Definition

$$V_k''(Z) \equiv V_k''(G) := \{ \xi \in \mathbb{T}_Z \mid \dim H^1(Y; \mathbb{C}_\xi) \ge k \}$$

Twisted cohomology

- $T_Z \equiv H^1(Y; \mathbb{C}^*) = \text{Hom}(G, \mathbb{C}^*).$
- ▶ For $\xi \in \mathbb{T}_Z$, \mathbb{C}_ξ is the Λ-module structure of \mathbb{C} defined by ξ .
- $C_*^{\xi}(Z_H;\mathbb{C}) := C_*(Z_H;\mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ cellular \mathbb{C} -complex twisted by ξ .
- ► $H_1(Z; \mathbb{C}_{\xi}) \equiv H_1(G; \mathbb{C}_{\xi}) := H_1(C_*^{\xi}(Z_H; \mathbb{C}))$

Definition

$$V_k''(Z) \equiv V_k''(G) := \{ \xi \in \mathbb{T}_Z \mid \dim H^1(Y; \mathbb{C}_\xi) \ge k \}$$

Remark

These two definitions may differ only in $1 \in \mathbb{T}_Z$.

Finite covers

 $\blacktriangleright \ \xi \in \mathbb{T}_Z \ \text{of finite order} \ N.$

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\blacktriangleright \ \rho_{\xi}: Z^{\xi} \to Z \ \text{unbranched} \ N\text{-fold covering defined by} \ \xi.$

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

 $H_1^{\xi}(Z;\mathbb{C})$ ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C})$

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

$$H_1^{\xi}(Z;\mathbb{C})$$
 ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

$$H_1^{\xi}(Z;\mathbb{C})$$
 ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}:Z^{\xi} \to Z$ unbranched N-fold covering defined by $\xi.$

Theorem (Sakuma)

 $H_1^\xi(Z;\mathbb{C}) \ \xi\text{-eigenspace of} \ H_1(Z^\xi;\mathbb{C}) \Rightarrow H_1^\xi(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_\xi).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

Z quasi-projective, $\Sigma \neq \Sigma'$ irreducible components of $V_k(Z)$, $V_\ell(Z)$

 $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $ho_{\xi}:Z^{\xi}
 ightarrow Z$ unbranched N-fold covering defined by $\xi.$

Theorem (Sakuma)

 $H_1^\xi(Z;\mathbb{C}) \ \xi\text{-eigenspace of} \ H_1(Z^\xi;\mathbb{C}) \Rightarrow H_1^\xi(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_\xi).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- If $\dim \Sigma > 0$, $\exists \tau : Z \to C_{\mathrm{orb}}$ such that Σ is the pull-back of a component of $V_k(C_{\mathrm{orb}})$.

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

 $H_1^{\xi}(Z;\mathbb{C}) \ \xi$ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- ▶ If dim $\Sigma > 0$, $\exists \tau : Z \to C_{\rm orb}$ such that Σ is the pull-back of a component of $V_k(C_{\rm orb})$.
- $ightharpoonup \Sigma \cap \Sigma'$ is composed of finitely many isolated points in $V_{k+\ell}$.

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

$$H_1^{\xi}(Z;\mathbb{C})$$
 ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- ▶ If dim $\Sigma > 0$, $\exists \tau : Z \to C_{\rm orb}$ such that Σ is the pull-back of a component of $V_k(C_{\rm orb})$.

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

$$H_1^{\xi}(Z;\mathbb{C})$$
 ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- ▶ If dim $\Sigma > 0$, $\exists \tau : Z \to C_{\rm orb}$ such that Σ is the pull-back of a component of $V_k(C_{\rm orb})$.
- ▶ dim $\Sigma > 2 \Rightarrow$ the parallell component through 1 is in V_1 .

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $\rho_{\xi}: Z^{\xi} \to Z$ unbranched N-fold covering defined by ξ .

Theorem (Sakuma)

 $H_1^{\xi}(Z;\mathbb{C})$ ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi}).$

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- ▶ If dim $\Sigma > 0$, $\exists \tau : Z \to C_{\rm orb}$ such that Σ is the pull-back of a component of $V_k(C_{\rm orb})$.
- $\dim \Sigma = 2 \Rightarrow$ the parallell component through 1 is in V_1 if Z rational.

Finite covers

- ▶ $\xi \in \mathbb{T}_Z$ of finite order N.
- $ho_{\xi}:Z^{\xi}
 ightarrow Z$ unbranched N-fold covering defined by $\xi.$

Theorem (Sakuma)

 $H_1^{\xi}(Z;\mathbb{C})$ ξ -eigenspace of $H_1(Z^{\xi};\mathbb{C}) \Rightarrow H_1^{\xi}(Z;\mathbb{C}) \equiv H_1(Z;\mathbb{C}_{\xi})$.

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)

Z quasi-projective, $\Sigma \neq \Sigma'$ irreducible components of $V_k(Z)$, $V_\ell(Z)$

- $ightharpoonup \Sigma$ is a subtorus translated by a torsion element.
- ▶ If dim $\Sigma > 0$, $\exists \tau : Z \to C_{\rm orb}$ such that Σ is the pull-back of a component of $V_k(C_{\rm orb})$.

Corollary

Torsion points are dense in $V_k(Z)$.

Fix $\boldsymbol{\xi}$ of finite order N , Z quasi-projective

Fix ξ of finite order N, Z quasi-projective X^{ξ}

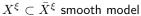
Fix ξ of finite order N, Z quasi-projective $X^{\xi}\subset \bar{X}^{\xi}$ smooth model $H_1\ (\bar{X}^{\xi};\mathbb{C})\subset H_1\ (X^{\xi};\mathbb{C})$ $Z\subset \bar{Z} \text{ smooth model}$

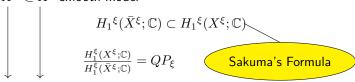
Fix ξ of finite order N, Z quasi-projective $X^{\xi}\subset \bar{X}^{\xi} \text{ smooth model}$ $H_1^{\xi}(\bar{X}^{\xi};\mathbb{C})\subset H_1^{\xi}(X^{\xi};\mathbb{C})$ $Z\subset \bar{Z} \text{ smooth model}$

 $Z \subset \bar{Z}$ smooth model

Fix ξ of finite order N, Z quasi-projective $X^{\xi}\subset \bar{X}^{\xi}$ smooth model $H_1^{\xi}(\bar{X}^{\xi};\mathbb{C})\subset H_1^{\xi}(X^{\xi};\mathbb{C})$ Sakuma's Formula

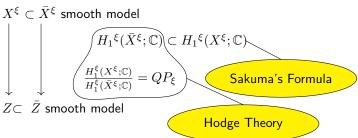
Fix ξ of finite order N, Z quasi-projective





 $Z \subset \bar{Z}$ smooth model

Fix ξ of finite order N, Z quasi-projective



- $\blacktriangleright \ \mathcal{P} = \{ \text{points } P \text{ of multiplicity } m_P \geq 3 \}$

- $ightharpoonup \mathcal{P} = \{ \text{points } P \text{ of multiplicity } m_P \geq 3 \}$
- $\xi \in \mathbb{T}_{\mathbb{P}^2 \backslash \mathcal{C}} \text{ of finite order} \Longleftrightarrow \{t_j \equiv t_{L_j}\}_{j=0}^r \text{ roots of unity such that } \prod_{j=0}^r t_j = 1 \Longleftrightarrow \{q_j \equiv q_{L_j}\}_{j=0}^r \text{ rational numbers in } [0,1) \text{ such that } \ell_\xi = q_0 + \dots + q_r \in \mathbb{Z}.$

Line arrangements

- $ightharpoonup \mathcal{P} = \{ \text{points } P \text{ of multiplicity } m_P \geq 3 \}$
- $\xi \in \mathbb{T}_{\mathbb{P}^2 \setminus \mathcal{C}} \text{ of finite order } \Longleftrightarrow \{t_j \equiv t_{L_j}\}_{j=0}^r \text{ roots of unity such that } \prod_{j=0}^r t_j = 1 \Longleftrightarrow \{q_j \equiv q_{L_j}\}_{j=0}^r \text{ rational numbers in } [0,1) \text{ such that } \ell_{\xi} = q_0 + \dots + q_r \in \mathbb{Z}.$

Theorem (Libgober)

Let
$$\sigma_{\xi}: H^0(\mathbb{P}^2; \mathcal{O}(\ell_{\xi} - 3)) \longrightarrow \bigoplus_{P \in \mathcal{P}} \left(\mathscr{O}_{\mathbb{P}^2, P} / \mathfrak{M}_P^{\left[\sum_{P \in L_j} q_j\right] - 1} \right)$$
. Then, $\dim_{\mathbb{C}} H_1^{\xi}(\bar{X}_{\xi}; \mathbb{C}) = \dim_{\mathbb{C}} \operatorname{coker} \sigma_{\xi} + \dim_{\mathbb{C}} \operatorname{coker} \sigma_{\bar{\xi}}$.

Line arrangements

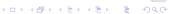
- $ightharpoonup \mathcal{P} = \{ \text{points } P \text{ of multiplicity } m_P \geq 3 \}$
- $\xi \in \mathbb{T}_{\mathbb{P}^2 \setminus \mathcal{C}} \text{ of finite order } \Longleftrightarrow \{t_j \equiv t_{L_j}\}_{j=0}^r \text{ roots of unity such that } \prod_{j=0}^r t_j = 1 \Longleftrightarrow \{q_j \equiv q_{L_j}\}_{j=0}^r \text{ rational numbers in } [0,1) \text{ such that } \ell_{\xi} = q_0 + \dots + q_r \in \mathbb{Z}.$

Theorem (Libgober)

Let
$$\sigma_{\xi}: H^0(\mathbb{P}^2; \mathcal{O}(\ell_{\xi} - 3)) \longrightarrow \bigoplus_{P \in \mathcal{P}} \left(\mathscr{O}_{\mathbb{P}^2, P} / \mathfrak{M}_P^{\left[\sum_{P \in L_j} q_j\right] - 1} \right)$$
. Then, $\dim_{\mathbb{C}} H_1^{\xi}(\bar{X}_{\xi}; \mathbb{C}) = \dim_{\mathbb{C}} \operatorname{coker} \sigma_{\xi} + \dim_{\mathbb{C}} \operatorname{coker} \sigma_{\bar{\xi}}$.

Geometric interpretation

 $\ker\sigma_\xi$: equations of curves of degree $\ell_\xi-3$ passing through the points $P\in\mathcal{P}$ with multiplicity at least $\left\lfloor\sum_{P\in L_j}q_j\right\rfloor-1$.



Theorem (Libgober)

There is a finite polytope stratification of the hypercube $[0,1)^{r+1}$ such that the maps σ_{ξ} are constant on each strata.

Theorem (Libgober)

There is a finite polytope stratification of the hypercube $[0,1)^{r+1}$ such that the maps σ_{ξ} are constant on each strata.

Definition

A character ξ is non-resonant if $t_j \neq 1$, $\forall j = 0, 1, \dots, r$.

Theorem (Libgober)

There is a finite polytope stratification of the hypercube $[0,1)^{r+1}$ such that the maps σ_{ξ} are constant on each strata.

Definition

A character ξ is non-resonant if $t_j \neq 1$, $\forall j = 0, 1, \dots, r$.

Theorem (Libgober)

If a character ξ is non-resonant then $H_1^{\xi}(\bar{X}^{\xi};\mathbb{C})=H_1^{\xi}(X^{\xi};\mathbb{C})$, i.e., $QP_{\xi}=0$.

Theorem (Libgober)

There is a finite polytope stratification of the hypercube $[0,1)^{r+1}$ such that the maps σ_{ξ} are constant on each strata.

Definition

A character ξ is non-resonant if $t_j \neq 1$, $\forall j = 0, 1, \dots, r$.

Theorem (Libgober)

If a character ξ is non-resonant then $H_1^{\xi}(\bar{X}^{\xi};\mathbb{C})=H_1^{\xi}(X^{\xi};\mathbb{C})$, i.e., $QP_{\xi}=0$.

Problem

Compute $\dim_{\mathbb{C}} QP_{\xi}$ for resonant torsion characters.

Theorem

S smooth projective surface, $\mathcal{D} \subset S$ normal crossing divisor, $\mathcal{D} = D_1 \cup \cdots \cup D_s$. Then,

Theorem

S smooth projective surface, $\mathcal{D} \subset S$ normal crossing divisor, $\mathcal{D} = D_1 \cup \cdots \cup D_s$. Then,

$$\blacktriangleright \mathbb{P}^2 \setminus \mathcal{C} \equiv X \setminus \left(\bigcup_{j=0}^r \hat{L}_j \cup \bigcup_{P \in \mathcal{P}} E_P \right) = X \setminus \left(\bigcup_{j=0}^t A_j \right)$$

Theorem

S smooth projective surface, $\mathcal{D} \subset S$ normal crossing divisor, $\mathcal{D} = D_1 \cup \cdots \cup D_s$. Then,

$$\dim_{\mathbb{C}} H_1(S \setminus \mathcal{D}; \mathbb{C}) - \dim_{\mathbb{C}} H_1(S; \mathbb{C}) = \dim_{\mathbb{C}} \ker \left(\bigoplus_{j=1}^s H_2(D_j; \mathbb{C}) \to H_2(S; \mathbb{C}) \right).$$

▶ Smooth model $\rho_{\xi}: \bar{X}^{\xi} \to X$, such that $\bar{X}^{\xi} \setminus X^{\xi} = \mathcal{D}^{\xi}$ normal crossing divisor.

Theorem

S smooth projective surface, $\mathcal{D} \subset S$ normal crossing divisor, $\mathcal{D} = D_1 \cup \cdots \cup D_s$. Then,

$$\dim_{\mathbb{C}} H_1(S \setminus \mathcal{D}; \mathbb{C}) - \dim_{\mathbb{C}} H_1(S; \mathbb{C}) = \dim_{\mathbb{C}} \ker \left(\bigoplus_{j=1}^s H_2(D_j; \mathbb{C}) \to H_2(S; \mathbb{C}) \right).$$

▶ Smooth model $\rho_{\xi}: \bar{X}^{\xi} \to X$, such that $\bar{X}^{\xi} \setminus X^{\xi} = \mathcal{D}^{\xi}$ normal crossing divisor.

$$\blacktriangleright \ \mathcal{D}_{\xi} = \bigcup_{j=0}^{t} \underbrace{\hat{\rho}_{\xi}^{*}(A_{j})}_{\text{strict transform}} \cup \bigcup_{k=1}^{t'} \underbrace{B_{j}}_{\text{collapsed by } \rho_{\xi}}.$$

$$\bigoplus_{j=0}^{t'} H_2(B_j; \mathbb{C}) \oplus \bigoplus_{j=0}^{t} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C}) \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})$$

$$\bigoplus_{j=0}^{t'} H_2(B_j; \mathbb{C})^{\xi} \oplus \bigoplus_{j=0}^{t} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C})^{\xi} \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})^{\xi}$$

$$\bigoplus_{j=0}^{t} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C})^{\xi} \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})^{\xi}$$

▶ $H_2(\hat{\rho}^*_{\xi}(A_j); \mathbb{C})^{\xi} \neq 0 \iff \dim_{\mathbb{C}} H_2(\hat{\rho}^*_{\xi}(A_j); \mathbb{C}) = N \iff \rho_{\xi} \text{ is an unbranched covering over } A_j$

$$\bigoplus_{A_j \subset \mathcal{C}_{\xi}} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C})^{\xi} \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})^{\xi}$$

 $\begin{array}{l} \blacktriangleright \ A_j \subset \mathcal{C}_\xi, \ \tilde{A}_j \ \text{irreducible component of} \ \hat{\rho}_\xi^*(A_j), \ \zeta = \exp \frac{2i\pi}{N}, \\ H_2(\hat{\rho}_\xi^*(A_j); \mathbb{C})^\xi = \mathbb{C}\langle \hat{A}_j \rangle, \end{array}$

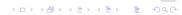
$$\hat{A}_j = \frac{1}{\sqrt{N}} \left(\tilde{A}_j + \bar{\zeta} \cdot \xi(A_j) + \bar{\zeta}^2 \cdot \xi^2(A_j) + \dots + \bar{\zeta}^{N-1} \xi^{N-1}(A_j) \right)$$

$$\bigoplus_{A_j \subset \mathcal{C}_{\xi}} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C})^{\xi} \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})^{\xi}$$

 $\begin{array}{l} \blacktriangleright \ A_j \subset \mathcal{C}_\xi, \ \tilde{A}_j \ \text{irreducible component of} \ \hat{\rho}_\xi^*(A_j), \ \zeta = \exp \frac{2i\pi}{N}, \\ H_2(\hat{\rho}_\xi^*(A_j); \mathbb{C})^\xi = \mathbb{C}\langle \hat{A}_j \rangle, \end{array}$

$$\hat{A}_j = \frac{1}{\sqrt{N}} \left(\tilde{A}_j + \bar{\zeta} \cdot \xi(A_j) + \bar{\zeta}^2 \cdot \xi^2(A_j) + \dots + \bar{\zeta}^{N-1} \xi^{N-1}(A_j) \right)$$

▶ $\mathbf{I}_{\xi} = \left(\hat{A}_j \cdot \hat{A}_k\right)_{A_i, A_k \subset \mathcal{C}_{\varepsilon}} \xi$ -twisted intersection form.



$$\bigoplus_{A_j \subset \mathcal{C}_{\xi}} H_2(\hat{\rho}_{\xi}^*(A_j); \mathbb{C})^{\xi} \longrightarrow H_2(\bar{X}_{\xi}; \mathbb{C})^{\xi}$$

 $\begin{array}{l} \blacktriangleright \ A_j \subset \mathcal{C}_\xi, \ \tilde{A}_j \ \text{irreducible component of} \ \hat{\rho}_\xi^*(A_j), \ \zeta = \exp \frac{2i\pi}{N}, \\ H_2(\hat{\rho}_\xi^*(A_j); \mathbb{C})^\xi = \mathbb{C}\langle \hat{A}_j \rangle, \end{array}$

$$\hat{A}_{j} = \frac{1}{\sqrt{N}} \left(\tilde{A}_{j} + \bar{\zeta} \cdot \xi(A_{j}) + \bar{\zeta}^{2} \cdot \xi^{2}(A_{j}) + \dots + \bar{\zeta}^{N-1} \xi^{N-1}(A_{j}) \right)$$

 $\mathbf{I}_{\xi} = \left(\hat{A}_j \cdot \hat{A}_k\right)_{A_j, A_k \subset \mathcal{C}_{\xi}} \xi$ -twisted intersection form.

Theorem

 $\dim_{\mathbb{C}} QP_{\xi} = \operatorname{corank} \mathbf{I}_{\xi}$ (Hodge index theorem).

▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.

- ▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.
- ▶ Gives a way of choosing \tilde{A}_j .

- ▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.
- ▶ Gives a way of choosing \tilde{A}_j .
- \blacktriangleright An oriented edge e induces a cycle γ_e (trivial if $e\subset T_\xi)$

- ▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.
- ▶ Gives a way of choosing \tilde{A}_j .
- \blacktriangleright An oriented edge e induces a cycle γ_e (trivial if $e\subset T_\xi)$
- $\bullet \ e \equiv (P,A_j,A_k) \text{ such that } P \in A_j \cap A_k.$

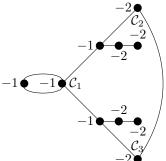
- ▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.
- ▶ Gives a way of choosing \tilde{A}_j .
- ▶ An oriented edge e induces a cycle γ_e (trivial if $e \subset T_\xi$)
- $\qquad \qquad \bullet \ e \equiv (P,A_j,A_k) \ \text{such that} \ P \in A_j \cap A_k.$
- $(\hat{A}_j^{\xi})^2 = (\hat{A}_j)^2$

- ▶ Fix spanning forest $T_{\xi} \subset \Gamma_{\xi}$.
- lackbox Gives a way of choosing \tilde{A}_j .
- ▶ An oriented edge e induces a cycle γ_e (trivial if $e \subset T_\xi$)
- $e \equiv (P, A_j, A_k)$ such that $P \in A_j \cap A_k$.
- $(\hat{A}_j^{\xi})^2 = (\hat{A}_j)^2$
- ▶ If $A_j \cap A_k = \{P_1, \dots, P_m\} \to \{e_1, \dots, e_m\}$,

$$\hat{A}_j^{\xi} \cdot \hat{A}_k^{\xi} = \xi(\tilde{\gamma}_{e_1}) + \dots + \xi(\tilde{\gamma}_{e_m}).$$

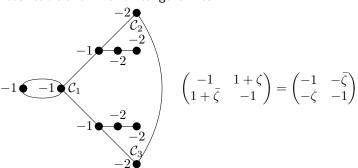
Example

Nodal cubic and inflexion tangent lines



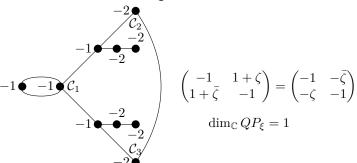
Example

Nodal cubic and inflexion tangent lines



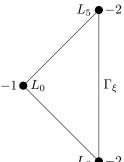
Example

Nodal cubic and inflexion tangent lines



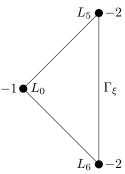
Example

Extended McLane arrangement



Example

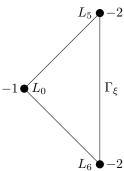
Extended McLane arrangement



$$\begin{pmatrix} -1 & 1 & 1\\ 1 & -2 & \zeta\\ 1 & \bar{\zeta} & -2 \end{pmatrix}$$

Example

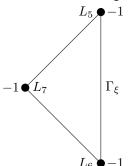
Extended McLane arrangement



$$\begin{pmatrix} -1 & 1 & 1\\ 1 & -2 & \zeta\\ 1 & \bar{\zeta} & -2 \end{pmatrix}$$
$$\dim_{\mathbb{C}} QP_{\xi} = 1$$

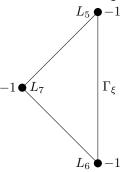
Example

Extended Ceva arrangement



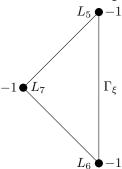
Example

Extended Ceva arrangement



Example

Extended Ceva arrangement



$$\begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & -1\\ 1 & -1 & -1 \end{pmatrix}$$
$$\dim_{\mathbb{C}} QP_{\xi} = 2$$

