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» L(K,L)y=nifL=n-CeH (S*\ K;Z) = Z{(C).
> Projection of K = K: L(K, K) invariant of the projection.
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Algebraic curves

Regular neighbourhood

n
> C= U C; C P? plane algebraic curve, degC; = d;.
i=1
» Minimal sequence of blow-ups o : X — P? such that o= 1(C) is
normal crossing divisor (smooth components).

strict transforms  exceptional components

T s r+s
» o 1(C) = U ¢ U U Ey = U A;; T dual graph
1 k=1 Jj=1

Jj=
weighted by (g;, ;) = (9(4;), A7).
» T(C) regular neighbourhood of ~1(C) C X, plumbed union of
tubular neighbourhoods m; : T(A;) — A; (Euler number A3).
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Algebraic curves

Regular neighbourhood

>

>

n
C= U C; C P? plane algebraic curve, degC; = d;.

i=1
Minimal sequence of blow-ups o : X — P? such that 0=*(C) is
normal crossing divisor (smooth components).

strict transforms  exceptional components

T s r+s
o7 l(C) = U ¢ U U Ey = U A;; T dual graph
1 k=1 Jj=1

Jj=
weighted by (g;, ;) = (9(4;), A7).
T (C) regular neighbourhood of o~1(C) C X, plumbed union of
tubular neighbourhoods m; : T(A;) — A; (Euler number A3).

o(T(C)) = R(C) C P2, 3T (C) = OR(C)



Combinatorics

» Combinatorics of C =T" + marked components at (fj



Combinatorics

» Combinatorics of C =T" + marked components at (fj

» OR(C) is a combinatorial invariant.



Combinatorics

» Combinatorics of C =T" + marked components at (fj
» OR(C) is a combinatorial invariant.
» Study j : OR(C) — P?\ C.



Combinatorics

Combinatorics of C =I' + marked components at éj

OR(C) is a combinatorial invariant.

Study j : OR(C) — P2\ C.

Line arrangements and homotopy level: Florens-Guerville-Marco
(generalizing E. Hironaka).

vV v v v



Combinatorics

Combinatorics of C =I' + marked components at éj

OR(C) is a combinatorial invariant.

Study j : OR(C) — P2\ C.

Line arrangements and homotopy level: Florens-Guerville-Marco
(generalizing E. Hironaka).

Je s Hi(OR(C); Z) — H,1(P*\ C; Z).

vV v v v

v



Combinatorics

Combinatorics of C =T' + marked components at C;

OR(C) is a combinatorial invariant.

Study j : OR(C) — P2\ C.

Line arrangements and homotopy level: Florens-Guerville-Marco

(generalizing E. Hironaka).

gu : H1(OR(C); Z) — H1(P?\ C;Z).
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Combinatorics

Combinatorics of C =I' + marked components at éj

OR(C) is a combinatorial invariant.

Study j : OR(C) — P2\ C.

Line arrangements and homotopy level: Florens-Guerville-Marco
(generalizing E. Hironaka).

Jx : HH(OR(C); Z) — Hl(IP’2 \C;Z).
Zpi ® - @ Zpy
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> Hl(P2\C,Z): <d1M1_’_ +d,u > ng_l@Z/ng(dl,...,dr).
> @Hl C;;7)® Ar @® H,(T;Z)
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Combinatorics

Combinatorics of C =I' + marked components at éj

OR(C) is a combinatorial invariant.

Study j : OR(C) — P2\ C.

Line arrangements and homotopy level: Florens-Guerville-Marco

(generalizing E. Hironaka).

> j.: H1(OR(C);Z) — Hl(IP’2 \C;Z).
Zpi ® - @ Zpy

<d1M1 + -+ depir)

vV v v v

> Hi(P*\C;Z) =

> @Hl C;;7)® Ar @® H,(T;Z)
229 Zr1@Z/ ged(dr,..dr)?

> Goal: Define a Imkmg number for cycles in T’ (see also
Guerville-Meilhan).

>~ 7" o7/ ged(dy, ..., d,).
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Liftings and characters
» ~ simplicial cycle in T' = 7 lifted 1-cycle in P?\ C
> A; vertex of v: ¥4 p; also a lifted 1-cycle.
> [A;, Ay] edge of v: 4 — py, also a lifted 1-cycle.
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»  simplicial cycle in I' = 7 lifted 1-cycle in P? \ C

> A; vertex of v: 74 pu; also a lifted 1-cycle.

> [A;, Ai] edge of v: § — py also a lifted 1-cycle.

» Fix a character ¢ : H;(P?2\ C;Z) — C*.

ci= U 4, ¢'= |J 4jandCe= |J 4

§(uy)=1 €)1 a;ncz'=0
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Liftings and characters

»  simplicial cycle in I' = 7 lifted 1-cycle in P? \ C
> A; vertex of v: 74 pu; also a lifted 1-cycle.

> [A;, Ai] edge of v: § — py also a lifted 1-cycle.

» Fix a character ¢ : H;(P?2\ C;Z) — C*.

1
»ci= | 4.¢f = | Ajandcc= |J 4
&(ny)=1 £(ni)#1 A;ncEt=0

> I'¢ dual graph of C¢ = H1(C¢; Z) = H1(C¢; Z) ® Ar, ® Hi(De; Z).

Definition
The linking number of (§,7), v € Hi(T¢; Z) is £(7).



Liftings and characters

»  simplicial cycle in I' = 7 lifted 1-cycle in P? \ C

> A; vertex of v: 74 pu; also a lifted 1-cycle.

> [A;, Ai] edge of v: § — py also a lifted 1-cycle.

» Fix a character ¢ : H;(P?2\ C;Z) — C*.

»ci= | 4.¢f = | Ajandcc= |J 4

§(ny)=1 £y A1 4,0CZ =0

> I'¢ dual graph of C¢ = H1(C¢; Z) = H1(C¢; Z) ® Ar, ® Hi(De; Z).
Definition
The linking number of (§,7), v € Hi(T¢; Z) is £(7).

Theorem (AFG)

The linking number of (£,7) is a topological invariant of (P2,C, &) (in the
case of line arrangements).
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Nodal cubic and inflexion tangent lines

C1 C2UCs3

> €= {(zyz +2° = y°) (2" = 3z — )z + 9(a® — 2y + %)) = O}:

nodal cubic and two tangent lines at inflexion points.

> () =1, E(po) = exp(ZF) =: ¢, &(us) =¢

—1
G| G |G
. G VAT
-1 | | A -1
G _242: -1 4_:2 2
-3 -3



Nodal cubic and inflexion tangent lines

Cy CaUC3

> C = {(zyz + 2% — y®) (22 — 3(x — y)z + 9(2? — 2y + y2)) = O}:

nodal cubic and two tangent lines at inflexion points.

> () =1, E(pa) = exp(ZE) =: ¢, &(us) = ¢
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Nodal cubic and inflexion tangent lines
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nodal cubic and two tangent lines at inflexion points.
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Nodal cubic and inflexion tangent lines

C1 CaUC3

> C={(oyz +2° —y°) (28 = 3(z —y)2 + 92" — vy + 7)) = 0

nodal cubic and two tangent lines at inflexion points.
> E(m) =1, E(p2) = exp(3F) =: ¢, €(pa) = ¢
> £(7) =



Nodal cubic and inflexion tangent lines

C1 CaUC3

> C={(zyz +2° — ) (z° = 3(x — y)z + 9(2® — 2y +¢*)) = O}:
nodal cubic and two tangent lines at inflexion points.

> E(m) =1, E(p2) = exp(3F) =: ¢, €(pa) = ¢

> £(7) =

» p:Y — P2 branched covering associated to ¢

[y : 2] = [Bryz—(C—1)(Ca®—y®) + —3wyz+(C-1)(Ca’—y”) : 9zy2]

The preimage of C;: three lines.



Nodal cubic and inflexion tangent lines

Cq CaUC3

> C={(zyz +2° — %) (2° = 3(x — y)2 + 9(2® —xy +y*)) = O}:
nodal cubic and two tangent lines at inflexion points.

> () =1, E(po) = exp(ZE) =: ¢, &(us) =¢

> {(7) =¢

» p:Y — P? branched covering associated to ¢

[2:y: 2] = [Bayz—(C—1)(Ca®—y?) : =3ayz+((—1)(¢z’—y?) : 9zyz]
The preimage of C;: three lines.
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Extended Ceva arrangement

P14, 71
Lo, =2 Poy, —1
L3, =2 Pi3, —1




Extended Ceva arrangement

Psy

[2y%:2(y—2)%y(y—2) (2—2)]
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Zariski pairs of arrangements via linking numbers

Extended McLane arrangements

§ : (MO? s 7/”'8) = (17<a <7 C7Za 17 17Za Z)' CyCIe L07L57 Lﬁ-

L1 L2 L3

Lg
Ly
Ls




Zariski pairs of arrangements via linking numbers

Extended MclLane arrangements

'l
Y

5 : (HO? s 7.[1’8) — (I,Ca Ca C,Za 13 17 )v Cyde L07L57 LG-

Guerville's arrangement
Linking number oriented Zariski 4-tuple with equations in Q(exp(2)).
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Characteristic Varieties from Alexander Invariant

» 7 topological space (homotopy equivalent to a finite C'W-complex)
7T1(Z) =:G.
#=
» G is a finitely presented group, H := G/G' =2 Z" & Tor(H).
» A := C[H] group algebra (h = 1 = ring of Laurent polynomials).
» T, = Spec(H) complex abelian Lie group diffeomorphic to h
disjoint copies of tori (C*)".

Alexander Invariant

> p: Zy — Z the universal abelian unramified covering associated to
G — H.

> C.(Zp;C) cellular A-complex of Zy (finitely generated).

> Mag=My .= Hl(C*(ZH,C)) = Hl(ZH;(C) = G//GH ® C
A-module.

> Jip(Z) = Ji(G) C A be the Fitting ideals of M.



Characteristic Varieties from Alexander Invariant

» 7 topological space (homotopy equivalent to a finite C'W-complex)
7T1(Z) =:G.
#=
» G is a finitely presented group, H := G/G' =2 Z" & Tor(H).
» A := C[H] group algebra (h = 1 = ring of Laurent polynomials).
» T, = Spec(H) complex abelian Lie group diffeomorphic to h
disjoint copies of tori (C*)".

Alexander Invariant

> p: Zy — Z the universal abelian unramified covering associated to
G — H.

> C.(Zp;C) cellular A-complex of Zy (finitely generated).

> Mg =My :=H(C.(Zy;C)) = H(Zy;C) =G'/G" o C
A-module.

> Ji(Z) = Ji(G) C A be the Fitting ideals of M.

Definition
The characteristic variety V/(G) = V}/(Z) C Ty is the zero locus of 0
Je(G). :
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Characteristic Varieties from Twisted Homology

Twisted cohomology
» Ty = H'(Y;C*) = Hom(G, C*).
> For £ € Tz, C¢ is the A-module structure of C defined by &.
> C:(Zg;C) := C.(Zg;C) @4 Cg¢ cellular C-complex twisted by €.
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Twisted cohomology
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> For £ € Tz, C¢ is the A-module structure of C defined by &.
> C8(Zy;C) := Cy(Zy;C) @5 C¢ cellular C-complex twisted by &.
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Characteristic Varieties from Twisted Homology

Twisted cohomology

» Ty = H'(Y;C*) = Hom(G, C*).
> For £ € Tz, C¢ is the A-module structure of C defined by &.

> C8(Zy;C) := Cy(Zy;C) @5 C¢ cellular C-complex twisted by &.

> Hy(Z;C¢) = Hi(G;Ce) == Hy(CE(Zy; C))

Definition

VINZ)=V/(G) :={¢ €Ty |dim H (Y;C¢) > k}



Characteristic Varieties from Twisted Homology

Twisted cohomology
» Ty = H'(Y;C*) = Hom(G, C*).
> For £ € Tz, C¢ is the A-module structure of C defined by &.
> C8(Zy;C) := Cy(Zy;C) @5 C¢ cellular C-complex twisted by &.
> Hy(Z;C¢) = Hi(G;Ce) := Hi(C5(Zn; C))

Definition

VI(2)=V/(G)={£ €Ty | dimH (Y;C¢) > k}

Remark
These two definitions may differ only in 1 € T.
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Finite covers

> £ € Ty of finite order N.
> p¢ 1 Z5 — Z unbranched N-fold covering defined by &.

Theorem (Sakuma)
H(Z;C) ¢-eigenspace of Hy(Z¢;C) = H*(Z;C) = Hy(Z; Ce).
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Sakuma’'s Formula

Finite covers

» £ € Ty of finite order .
> p¢ : Z% — Z unbranched N-fold covering defined by &.

Theorem (Sakuma)
HE(Z;C) ¢-eigenspace of Hy(Z¢;C) = H5(Z;C) = H\(Z; Ce).

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)
Z quasi-projective, ¥ # X' irreducible components of Vi.(Z), Vi(Z)
> > is a subtorus translated by a torsion element.

> I[fdimX > 0, 37 : Z — Cyyp such that X is the pull-back of a
component of Vi, (Copp).

» XN Y is composed of finitely many isolated points in Viy.



Sakuma’'s Formula

Finite covers

> £ € Ty of finite order V.
> p¢: Z% — Z unbranched N-fold covering defined by ¢.

Theorem (Sakuma)
HS(Z;C) ¢-eigenspace of Hy(Z¢;C) = HY(Z;C) = H.(Z;Cy).

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)
Z quasi-projective, ¥ # ¥ irreducible components of Vi,(Z), Vy(Z)
> 3 is a subtorus translated by a torsion element.

> Ifdim Y >0, 37 : Z — Cop such that X is the pull-back of a
component of Vi,(Corp).

> dim¥=1=1¢%.



Sakuma’'s Formula

Finite covers

» £ € Ty of finite order .
> pe: Z& — Z unbranched N-fold covering defined by €.

Theorem (Sakuma)
H(Z;C) ¢-eigenspace of Hy(Z;C) = HS(Z;C) = Hi(Z;Cy).

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)
7 quasi-projective, ¥ # ¥ irreducible components of Vi,(Z), Vy(Z)
» X is a subtorus translated by a torsion element.

> [fdim3 > 0, 37 : Z — Cyyp such that 33 is the pull-back of a
component of Vi,(Corb).

» dim ¥ > 2 = the parallell component through 1 is in V7.



Sakuma’'s Formula

Finite covers

» £ € Ty of finite order V.
> p¢ : Z% — Z unbranched N-fold covering defined by &.

Theorem (Sakuma)
Hf(Z;(C) &-eigenspace of Hy(Z%;C) = Hf(Z;(C) = H.(Z;Cye).

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)
Z quasi-projective, ¥ # X' irreducible components of Vi.(Z), Vi(Z)
> Y s a subtorus translated by a torsion element.

> IfdimX > 0, 37 : Z — Cyyp such that X is the pull-back of a
component of Vi, (Cop).

» dim Y = 2 = the parallell component through 1 is in V1 if Z
rational.



Sakuma’'s Formula

Finite covers

> £ € Ty of finite order .
> pe: Z& — Z unbranched N-fold covering defined by €.

Theorem (Sakuma)
Hf(Z;(C) &-eigenspace of H(Z¢;C) = Hf(Z;(C) = H,(Z;Cy).

Theorem (Arapura, Budur, Dimca, Libgober, A-Cogolludo-Matei)
7 quasi-projective, ¥ # ¥ irreducible components of Vi,(Z), Vy(Z)
» X is a subtorus translated by a torsion element.

> [fdim3 > 0, 37 : Z — Cyyp such that 3 is the pull-back of a
component of Vi,(Cob).

Corollary
Torsion points are dense in Vi,(Z).
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Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢ c X¢ smooth model

ZC Z smooth model



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢ c X¢ smooth model

ZC Z smooth model



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢ c X¢ smooth model

ZC Z smooth model



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢ c X¢ smooth model

ng(Xg,(C) (- ng(XE,C

Sakuma’s Formula

ZC Z smooth model



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
X¢ c X¢ smooth model

ng(Xg,(C) (- ng(XE,C

€ xe
% = QP Sakuma's Formula

ZC Z smooth model



Branched and unbranched coverings

Fix & of finite order N, Z quasi-projective
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Hypersurface complement. Projective part.

Line arrangements

» C=LoU---UL,
» P = {points P of multiplicity mp > 3}
> & € Tpa\¢ of finite order <= {t; =1, }37:0 roots of unity such that
[Tj=otj =1 <= {4j = qr,}}—, rational numbers in [0, 1) such that
le=qo+-+qr €L
Theorem (Libgober)

Let o - H"(P%; O(l: — 3)) — P ﬁpz,P/mt,sze”qul . Then,

Pep
dimg Hf()zg; C) = dimc coker o¢ + dimg coker g

Geometric interpretation
ker o¢: equations of curves of degree /¢ — 3 passing through the points

P € P with multiplicity at least {ZPGLi q]-J —1.
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More Libgober's results

Theorem (Libgober)

There is a finite polytope stratification of the hypercube [0,1)" "1 such
that the maps o¢ are constant on each strata.

Definition

A character ¢ is non-resonant if ¢; # 1, Vj =0,1,...,r.

Theorem (Libgober)

If a character ¢ is non-resonant then HS(X¢;C) = HS(X¢;C), ie,
QP: =0.

Problem
Compute dimc QP for resonant torsion characters.
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Quasi-projective part

Theorem

S smooth projective surface, D C S normal crossing divisor,
D=DyU---UDg. Then,

dime Hy(S\ D;0) — dimg Hy (S;C)=dimcker | @) Ha (D;;C) — Ha (S;0)).
j=1

T t
»P\c=X\|{JLiulJEr|=X\|A4
7=0 PepP Jj=0
» Smooth model p¢ : X¢ — X, such that X¢\ X¢ = D¢ normal
crossing divisor.

t t/
> D¢ = U Pe(4;) U B;
j=0 v k=1 ~
strict transform collapsed by p¢
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Computing Q) F

t
P Ha(pz(A;); ©)F — Ha(Xe;C)F
=0

> Ha(pi(A4;); C)F # 0 <= dime Hy(pf(A;); C) = N <= p¢ is an
unbranched covering over A;



Computing QP

@ HQ —> HQ(X&,(C)
A;CCe

> A; C Ce, A irreducible component of Pe(Aj), ¢ =exp 2z
Ha(pg(4); ©)F = C(4;),

A

Aj= (Aj+C-E(A) + (A5 + -+ V1N 1(4))

Ew
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Computing QP

D Ha(p(4));C)F — Ha(Xe;C)F
A;CCe

> A; C Ce, A irreducible component of Pe(4j), ¢ =exp 5F Ux
Ha(pg(4); ©)F = C(4;),

S 1

Ay = o (A4 €A + 8 -+ OV
> I = (fl A )A p e &-twisted intersection form.
AR CC¢
Theorem

dimc QP = corank It (Hodge index theorem).

45))
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Computing I

Fix spanning forest Ty C I'¢.

An oriented edge e induces a cycle v, (trivial if e C T¢)
e = (P,Aj, Ay) such that P € A; N Ay.
> (A5) = (4;)

>
> Gives a way of choosing /Ij.
>
>



Computing I

Fix spanning forest Ty C I'¢.

An oriented edge e induces a cycle v, (trivial if e C T¢)
e = (P,Aj, Ay) such that P € A; N Ay.

(45)? = (4))”

H'-AjﬁAk = {P],...,Pm} — {61,...7€m},

>
> Gives a way of choosing /Ij.
>
>

v

v

Af : Ai = 5(;\(/61) + -+ 5(’7/51,77,)-
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Example

Nodal cubic and inflexion tangent lines
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1 140\
<1+§ 1)_

dimc QPg =1

(
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—C

—C
~1
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Example
Extended Ceva arrangement
L; ®—1
-1 1 1
—1&L; I 1 -1 -1
1 -1 -1
dichP&*:Q
Lse—1



