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Thurston norm

We study now the relation between the profinite completion, and the
Thurston norm of a 3-manifold.

M is still a compact, orientable, aspherical 3-manifold, with 9M empty or
an union of tori.

The complexity of a compact orientable surface F with connected
components Fi, ..., Fi is defined to be

d
Y-(F) = 3" max{~x(Fy),0}.
i=1

The Thurston norm of a cohomology class ¢ € HY(M;Z) is defined as

xm (@) := min{x_(F) | F C M properly embedded and dual to ¢}.

xpm extends to a seminorm on H*(M;R).
S



Regular isomorphism
Let M; and M, be two 3-manifolds such that there exists an isomorphism

f: 7T1(M1) — 7T1(M2).

Such an isomorphism induces an isomorphism Hl(/l\/l?Z) — Hi(My; Z).

Thus Hi(My;Z) and Hi(My;Z) are abstractly isomorphic.

—_—

In general the isomorphism Hy(My; Z) — Hi(Ma; Z) is not induced by
an isomorphism Hi(My; Z) — Hi(Ma; Z).

To compare the Thurston norms of M; and M, let introduce the
following :

Definition

An isomorphism /f\ﬂjl\?l) — @) is regular if the induced

isomorphism Hy(My;Z) — Hi1(Ma; Z) is induced by an isomorphism
f:k : Hl(Ml; Z) — H1(M2; Z).
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Fibered class

Definition
A class ¢ € HY(N;R) is called fibered if there is a fibration p : M — S*
such that ¢ = p, : m(M) — Z.

Thm (B-Friedl 2015)
Let My and M, be two aspherical 3-manifolds with empty or toroidal
boundary. If f : m1(My) — w1(Ma) is a regular isomorphism, then :

(1) for any class ¢ € HY(Mp; R), xp, (¢) = xpp, (F* ).
(2) 6 € HY(Ms; R) is fibered <«  f*¢ € HY(My;R) is fibered.

When OM; # () and ¢ is a fibered class, this result has been obtained by
A. Reid and M. Bridson, by a different method.
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Twisted Alexander polynomials
Let X be a CW-complex, ¢ € H*(X;Z) and a: 71(X) — GL(k,F), F
being a field.

Set F[t*1]* := FX @7 Z[t*'] and consider the tensor representation :
a®¢: m(X) — AUtF[tiI](F[til]k), given by :

g = (X vi@pi(t) = X alg)(vi) @ t&)pi(t)) .

So one can view F[t*1]% as a left Z[mr1(X)]-module.

The twisted homology groups H,-C“®¢(X;]F[ti1]k) are naturally
F[t*!]-modules.

Definition

The i-th twisted Alexander polynomial A% , ; € F[t*!] is the order of the
F[t=1]-module H*®?(X; F[t¥1]¥).

The twisted Alexander polynomials are well-defined up to multiplication by
some atk where a € T\ {0} and k € Z (i.e. a unit in F[t*1]).
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Fiberedness and Thurston norm

For a polynomial f(t) = >"7_, axtk € F[t*1] with a, # 0 and as # 0
define deg(f(t)) = s — r. For the zero polynomial set deg(0) := +o0.

Thm (Friedl-Vidussi 2013 ; Friedl-Nagel 2015)

Let M be a compact, aspherical, orientable 3-manifold with empty or
toroidal boundary and ¢ # 0 € HY(M;Z) :

(1) The class ¢ is fibered < Ay , 1 # 0 for all primes p and all
representations o : w1 (M) — GL(k Fp).

(2) There exists a prime p and a representation « : m1(M) — GL(k,F)p)
such that

1
xm(¢) = max {07 p (—deg (AR p0) + deg (AR 51) — deg (A%//,@z))} :

v

The proof is building on the work of Agol, Przytycki-Wise and Wise.
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Degrees of twisted Alexander polynomials
Given a group 7, ¢ € HY(m;Z) = Hom(r,Z) and n € N, set
On: T g 7. — T

For a representation o : m — GL(k,F) and n € N, let
F[Z,)* = FK @7 Z[Z,] and a ® ¢, : @ — Aut(F[Z,]¥) the induced
representation.

Proposition

Let X be a CW-complex, ¢ € HY(X;Z)\ 0, o : m1(X) — GL(k,F,), then :
(1) deg A% ,o(t) = max{dim]pp <H§‘®¢"(X;IFP[Z,,]")> ne N}

(2) deg A% 4.1(t) =

max {dimFP (Hf‘®¢"(X; Fp[zn]k)) — dimg, (H3®¢"(X; Fp[zn]k))

neN}
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twisted homology
Now the proof follows from the following two results :

Proposition

Let m and 7 be good groups and f: 71 — 7 an isomorphism. Let
B: mp — GL(k,Fp) be a representation. Then for any i there is an
isomorphism

Hiﬁof(ﬂ'l;IFl,;) = Hiﬁ(ﬂ'z;Fz).

Since 3-manifold groups are good, one gets :
Corollary

Let My and My be two 3-manifolds. Suppose f : 7['1/(-/\71) — ﬂm) is a
regular isomorphism. Then for any ¢ # 0 € HY(M,Z) and any
representation « : w1 (M>) — GL(k,F,) one has :

deg (AM1 gof ;) = deg (Aﬁ‘/,z’(z)’,-), i=0,1,2. |
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by =1

When Mj and M, have by = 1, we do not need the regular assumption
because of the following lemma :

Lemma

Let M be a 3-manifold with Hi(M;Z) = Z and 3: m1(M) — GL(k,F},) a
representation. Let ¢n: w1 (M) — Z, and ¢ 71 (M) — Z, be two
epimorphisms. Then given any i there exists an isomorphism
HEEO (M; Bp[Z,]F) = HI®V" (M Fp[Z,]*).

Knot exteriors in S3 are typical examples of manifolds with first Betti
number 1.
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Knot exteriors
The exterior E(K) = S3\ V(K) of a knot K C S3 is a compact orientable
3-manifold with by = 1.

m1(E(K)) is the group of the knot K.

There is a canonical epimorphism 71(E(K)) — H1(E(K); Z)

1%

Z.
For the corresponding class ¢ € HY(N;Z) :

xg(k)(¢) = 28(K) + 1, where g(K) is the Seifert genus of K.
The knot K is said fibered if ¢ € HY(N;Z) is a fibered class.

The unknot is the only knot with abelian group. So :

Lemma

—_—

Let U be the unknot. If K is a knot with m1(E(U)) = m1(E(K)), then
K=U.
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Knots

Thm (B-Friedl 2015)

—_—

Let K1 and Ky be two knots in S3 with 71 (E(K1)) = m1(E(K2)). Then :

(1) They have the same Seifert genus : g(K1) = g(K2)

(2) K is fibered iff Ky is fibered

(3) If Ak, has not a zero that is a root of unity, then Ak, = £k,
(4) If K is a torus knot, K1 = K>.

(5) If K1 is the figure-8 knot, K1 = K.

(6) If E(K1) and E(K>2) are hyperbolic and have a homeomorphic finite
cyclic cover, either K1 = Ko or Ak, and Ak, are product of cyclotomic
polynomials.

The statements (1) and (2) are direct consequence of the previous
Theorem
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cyclic coverings

The statement (3) follows from the next lemma.

Given a knot K denote by E,(K) the n-fold cyclic cover of E(K).
m1(En(K)) = ker(m1(E(K)) — Hi(E(K); Z) — Z/nZ)

Lemma

Let K1 and Ky be two knots such that Wl(/ER{)) = wl(/E-(E)). Then :
(i) For any n Hi(En(K1;Z)) = Hi(En(K2); Z).

(ii) Ak, has a zero that is an n-th root of unity < Ak, has a zero that is
an n-th root of unity.

Assertion (i) follows from the following fact :

B s e

m1(E(K1)) = m(E(K2)) = m1(En(K1)) = m1(En(K2)).
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Cyclic coverings

Assertion (ii) follows from the Fox's formula :

Hi(Eq(K); Z) 2 Z & A, with |A| = |[Th_; Ak (e2™k/7)]

In particular by(En(K)) = 1 iff no n-th root of unity is a zero of Ak.
Statement (3) follows now from :

Thm (D. Fried 1988)

The Alexander polynomial of a knot can be recovered from the torsion
parts of the first homology groups of the n-fold cyclic covers of its exterior,
provided that no zero is a root of unity.

Since the trefoil and the figure-8 are the only fibered knots of genus 1 :

Corollary
Let J be the trefoil or the figure-8 knot. If K is a knot with
m(E(J)) = m1(E(K)), then J = K.
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Torus knots

Let T, 4 be a torus knot of type (p, ) with 0 < p < q. By the results
above :

—

Corollary
m1(E(Tpq)) = m(E(T,5))  (p.q) = (1,5) J

Each torus knot is profinitely rigid because :

Proposition

—_—

Let J be a torus knot. If K is a knot with m1(E(J)) = m1(E(K), then K is
a torus knot.

The proof of the last statement (6) uses the fact that the logarithmic
Mahler measure of the Alexander polynomial is a profinite invariant and
the study of knots with cyclically commensurable exteriors.
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Rigidity of knots
Prime knots with isomorphic groups have homeomorphic complements. So
the following question makes sense :

Question

—_—

Let K1 and Ky be two prime knots in S3. If m1(E(K1)) = m1(E(K2)), does
it follow that K1 = K 7

The group of a prime knot K does not necessarily determine the knot
exterior E(k),among 3-manifolds, if it contains a properly embedded
essential annulus.

However one may ask :

Question

Let M be a compact orientable aspherical 3-manifold and let K C S be a
knot. Does 71 (M) = 71 (E(K)) imply that m1(M) is isomorphic to a knot
group ?
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Virtual Thurston norms

We study to which degree does the virtual Thurston norms determine the
type of the JSJ-decomposition of the 3-manifold.

Given a compact orientable aspherical 3-manifold M with empty or
toroidal boundary, define :

o bi(M) = dimg(H:(M;R)) ,

e k(M) = dimp(ker(xpm)),

o r(M) = ;(("A/Q) if by(M) > 0 and 0 otherwise.

A covering f: M — Mis subregular if f can be written as a composition of
regular coverings fi: M; — M;_1, i=1,..., k with M, = M and My = M.

Let C(M) = the class of all finite subregular covers M of M.
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Volume
Definition
For a 3-manifold M let define :
o P(M)= sup r(M).
Mec(M)
o p(M)= _inf r(M).
Mec(M)

o p(M) = supﬁ/]ec(M) p(M).

Thm (B-Friedl 2015)

Let M be a compact, connected, orientable, aspherical 3-manifold with
empty or toroidal boundary.

e M is a hyperbolic manifold < T(M) =0
e vol(M) # 0 < p(M) =0.
e M is a graph manifold < p(M) = 1.

v
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Virtual Thurston norms

Proposition (Graph manifolds)

Let M be an aspherical graph manifold. Then ¥ € > 0 there exists a finite
regular cover N of M such that for any finite cover N of N we have
r(N) >1—e.

The idea is to increase by finite coverings the Euler characteristic of the
bases of the Seifert pieces of the JSJ-decomposition of M much more than
the numbers of JSJ-tori in order that r(N) = k(N) L

Since the property of being aspherical and not being a graph manifold is
preserved by finite cover, for Vol(M) # 0 it suffises to show :

Proposition (Vol(M) # 0)

If Vol(M) # 0, then given any € > 0, there exists a finite subregular cover
N of M such that r(N) < e. In particular p(M) = 0.
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Pro-virtual abelian completion

The pro-virtually abelian completion 7, of a group 7 is defined in the
same way as the profinite completion 7 using virtually abelian quotients
instead of finite quotients.

From the definition there exists a continuous homomorphism 7, — 7.
Co-virtually abelian normal subgroups of 7,, are open.

Any homomorphism between two finitely generated pro-virtually abelian
groups is continuous.

Proposition

An isomorphism between the pro-virtual abelian completions of two groups
induces regular isomorphisms between the profinite completions of their
corresponding finite index subroups.

Corollary

—

The pro-virtually abelian completion 71(M),, determines the Thurston
norm of the finite coverings of M.

Hiroshima-2016 13 mars 2016 19 /19




