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Introduction

Introduction

We work over an algebraically closed field k of positive characteristic
p. Let q be a power of p. We denote by Mn+1(k) the set of square
matrices of size n + 1 with coefficients in k . For a nonzero matrix
A = (aij)0≤i ,j≤n ∈ Mn+1(k), we denote by XA the hypersurface of
degree q + 1 defined by the equation∑

aijxix
q
j = 0

in the projective space Pn with homogeneous coordinates
(x0, x1, . . . , xn).
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Introduction

The well-known proposition

Proposition 1.1 (Lang 1956, Beauville 1986, Shimada 2001)

Let A = (aij)0≤i ,j≤n ∈ Mn+1(k) and XA ⊂ Pn be as above. Then the
following conditions are equivalent:

(i) rank(A) = n + 1,

(ii) XA is smooth,

(iii) XA is isomorphic to the Fermat hypersurface of degree q+1, and

(iv) there exists a linear transformation of coordinates T ∈ GLn+1(k)
such that tTAT (q) = In+1, where

tT is the transpose of T , T (q)

is the matrix obtained from T by raising each coefficient to its
q-th power, and In+1 is the identity matrix.
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Introduction

The Fermat hypersurfaces

The Fermat hypersurface of degree q + 1 defined over an
algebraically closed field of positive characteristic p has been a
subject of numerous papers. It has many interesting properties :

Supersingularity (Tate 1965, Shioda 1974, Shioda and Katsura
1979)

Unirationality (Shioda 1974,Shioda and Katsura 1979, Shimada
1992), etc....

Moreover, the hypersurface XA associated with the matrix A with
coefficients aij in the finite field Fq2 , which is called a Hermitian
variety, has also been studied for many applications, such as coding
theory (Høholdt, van Lint and Pellikaan 1998).
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Introduction

The quadratic form

In the case where characteristic p ̸= 2, the hypersurface defined by
the quadratic form

∑
aijxixj = 0 is projectively isomorphic to the

hypersurface defined by

x20 + · · ·+ x2r−1 = 0,

where r is the rank of A = (aij). Recently, the case where
characteristic 2 has been extended by Dolgachev and Duncan.
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Introduction

The Hermitian form

Question :

What is the normal form of the hypersurfaces defined by a form∑
aijxix

q
j = 0.

When A satisfies tA = A(q) and hence this form is the Hermitian form
over Fq2 , the hypersurface XA is projectively isomorphic over Fq2 to

xq+1
0 + · · ·+ xq+1

r−1 = 0,

where r is the rank of A (Hirschfeld 1991).
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Introduction

The purposes

We classify the hypersurfaces XA associated with the matrices A of
rank n over an algebraically closed field and determine their projective
isomorphism classes.
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The main theorems and corollaries

Some definitions and notions

Definition 2.1

Two hypersurfaces XA, XA′ associated with the matrices A,A′ are
projectively isomorphic if and only if there exists a linear
transformation T ∈ GLn+1(k) such that A′ = tTAT (q). In this case,
we denote A ∼ A′.

We define Is to be the s × s identity matrix, and Er to be the r × r
matrix 

0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

In particular, E1 = (0) and E0 is the 0× 0 matrix.
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The main theorems and corollaries Theorem 2.2 and corollaries

Theorem 2.2

Theorem 2.2

Let A = (aij)0≤i ,j≤n be a nonzero matrix in Mn+1(k), and let XA be
the hypersurface of degree q + 1 defined by

∑
aijxix

q
j = 0 in the

projective space Pn with homogeneous coordinates (x0, x1, . . . , xn).
Suppose that the rank of A is n. Then the hypersurface XA is
projectively isomorphic to one of the hypersurfaces Xs associated
with the matrices

Ws =

(
Is

En−s+1

)
,

where 0 ≤ s ≤ n. Moreover, if s ̸= s ′, then Xs and Xs′ are not
projectively isomorphic.
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The main theorems and corollaries Theorem 2.2 and corollaries

The corollaries

Corollary 2.3

If A is a general point of {A ∈ Mn+1(k)| rank(A) = n}, then
A ∼ Wn−1.

Corollary 2.4

Suppose that n ≥ 2, s < n and (n, s) ̸= (2, 0). Then Xs is rational.
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The main theorems and corollaries Theorem 2.5

Theorem 2.5 (1)

For M ∈ GLn+1(k), we denote by [M] ∈ PGLn+1(k) the image of M
by the natural projection.

Theorem 2.5

Let Xs be the hypersurface associated with the matrix Ws in the
projective space Pn. The projective automorphism group Aut(Xs)
with s ≤ n − 2 is the group consisting of [M], with

M =

 T ta 0
0 d 0
c e 1

 ,

where T ∈ GLn−1(k), a, c are row vectors of dimension n − 1, and
d , e ∈ k, and they satisfy the following conditions:
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The main theorems and corollaries Theorem 2.5

Theorem 2.5 (2)

(i) [T ] ∈ Aut(X n−2
s ), tTW ′

sT
(q) = δW ′

s , δ = δq ̸= 0, where X n−2
s is

the hypersurface defined in Pn−2 by the matrix

W ′
s =

(
Is

En−s−1

)
(ii) d = δ,

(iii) [aW ′
s + d(0, · · · , 0, 1)] · T (q) = δ(0, · · · , 0, 1),

(iv) tTW ′
s · ta(q) + tcdq = 0,

(v) [aW ′
s + d(0, · · · , 0, 1)] · ta(q) + edq = 0.
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The main theorems and corollaries Theorem 2.5

Theorem 2.5 (3)

Moreover, we have

Aut(Xn) =


[
Tn

u 1

] ∣∣∣∣∣∣
tTnT

(q)
n = λIn,Tn ∈ GLn(k),

λ ̸= 0,
u is a row vector of dimension n

 ,

and

Aut(Xn−1) =


 Tn−1

β
1

 ∣∣∣∣∣∣
tTn−1T

(q)
n−1 = βqIn−1,

Tn−1 ∈ GLn−1(k),
0 ̸= β ∈ k

 .

Hoang Thanh Hoai (Hiroshima University) Degeneration of Fermat hypersurfaces in positive characteristicMarch 7, 2016 16 / 27



The proof of the main theorems

1 Introduction

2 The main theorems and corollaries
Theorem 2.2 and corollaries
Theorem 2.5

3 The proof of the main theorems
The proof of the Theorem 2.2

4 The case of plane curves

Hoang Thanh Hoai (Hiroshima University) Degeneration of Fermat hypersurfaces in positive characteristicMarch 7, 2016 17 / 27



The proof of the main theorems The proof of the Theorem 2.2

The lemma (1)

Lemma 3.1

Put

Bs =


Ds

bs

0
... En−s+1

0

 ,

where s ≥ 1, n − s + 1 ≥ 1, Ds ∈ Ms(k), and bs is a row vector of
dimension s. Suppose that the rank of Bs is n. Then
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The proof of the main theorems The proof of the Theorem 2.2

The lemma (2)

Bs ∼ Ws =

(
Is

En−s+1

)
,

or

Bs ∼ Bs−1 =


Ds−1

bs−1

0
... En−s+2

0

 ,

where Ds−1 ∈ Ms−1(k), and bs−1 is a row vector of dimension s − 1.

Remark 3.2

When s = 1, we have Bs−1 = B0 ∼ En+1 = W0.
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The proof of the main theorems The proof of the Theorem 2.2

The proof of the Theorem 2.2 (1)

Because the rank of the matrix A is n, Proposition 1.1 implies that
XA is singular. By using a linear transformation of coordinates if
nessesary, we can assume that XA has a singular point (0, · · · , 0, 1).
Then we have ain = 0 for any 0 ≤ i ≤ n. The matrix A is now of the
form

A =

(
Dn

bn

)
= Bn,

where Dn ∈ Mn(k), and bn is a row vector of dimension n. Using
Lemma 3.1 repeatedly and Remark 3.2, we have that XA is
isomorphic to one of the hypersurfaces defined by Ws with 0 ≤ s ≤ n.
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The proof of the main theorems The proof of the Theorem 2.2

The proof of the Theorem 2.2 (2)

Next we prove that s ̸= s ′ implies Ws ̸∼ Ws′ . For this, we introduce
some notions. Let X n

s be the hypersurface defined by the matrix Ws

in the projective space Pn. The defining equation of X n
s can be

written as
Fqxn + Fq+1 = 0,

where

Fq =

{
0 if s = n

xqn−1 if s < n,

and

Fq+1 =

{
xq+1
0 + · · ·+ xq+1

n−1 if s = n

xq+1
0 + · · ·+ xq+1

s−1 + xqs xs+1 + · · ·+ xqn−2xn−1 if s < n.

It is easy to see that X n
s has only one singular point

P0 = (0, · · · , 0, 1).
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The proof of the main theorems The proof of the Theorem 2.2

The proof of the Theorem 2.2 (3)

Let φ be the map defined by

φ : Pn \ {P0} −→ Pn−1 ∼= {the lines passing throught P0}
P 7−→ PP0.

Let X n
s = φ(X n

s \ {P0}). For any line l ∈ X n
s , then

φ−1(l)∩(X n
s \{P0}) =


∅ if Fq = 0 and Fq+1 ̸= 0,

{a single point} if Fq ̸= 0,

l \ {P0} if Fq = 0 and Fq+1 = 0.
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The proof of the main theorems The proof of the Theorem 2.2

The proof of the Theorem 2.2 (4)

Putting Vs = {Fq = 0, Fq+1 = 0} ⊂ Pn−1, and
Hs = {Fq = 0} ⊂ Pn−1, we have

Vs =


X n−2
s if s ≤ n − 2,

nonsingular Fermat hypersurface in Pn−1 if s = n,

nonsingular Fermat hypersurface in Pn−2 if s = n − 1,

where X n−2
s is the hypersurface in Pn−2 associated with the matrix(

Is
En−s−1

)
.
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The proof of the main theorems The proof of the Theorem 2.2

The proof of the Theorem 2.2 (5)

For any s ̸= s ′, suppose that X n
s and X n

s′ are isomorphic and let
ψ : X n

s −→ X n
s′ be an isomorphism. Because each of X n

s and X n
s′ has

only one singular point P0, we have ψ(P0) = P0, and hence ψ
induces an isomorphism ψ from X n

s to X n
s′ . For any line l ∈ X n

s and
l ′ ∈ X n

s′ such that ψ(l) = l ′, we have

♯(φ−1(l) ∩ (X n
s \ {P0})) = ♯(φ−1(l ′) ∩ (X n

s′ \ {P0})).

Thus Vs
∼= Vs′ and Hs

∼= Hs′ . Hence for any s ̸= s ′, if Vs ̸∼= Vs′ or
Hs ̸∼= Hs′ then X n

s ̸∼= X n
s′ .

In the case n = 1, we have that X 1
0 consists of two points, and X 1

1

consists of a single point. In the case n = 2, we have that X 2
0 consists

of two irreducible components, X 2
1 is irreducible, and X 2

2 consists of
(q + 1) lines. Hence, in the case n = 1 and n = 2, we see that s ̸= s ′

implies Ws ̸∼ Ws′ . By induction on n, we have the proof.
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The case of plane curves

The case of plane curves (1)

Theorem 4.1

Let A = (aij)0≤i ,j≤2 ∈ M3(k) be a nonzero matrix and let XA be the
curve defined by

∑
aijxix

q
j = 0 in P2. Suppose that the rank of A is

smaller than 3.

(i) When the rank of A is 1, the curve XA is projectively isomorphic
to one of the following curves

Z0 : x
q+1
0 = 0, or Z1 : x

q
0 x1 = 0.

(ii) When the rank of A is 2, the curve XA is projectively isomorphic
to one of the following curves

X0 : x
q
0 x1+xq1 x2 = 0, X1 : x

q+1
0 +xq1 x2 = 0, or X2 : x

q+1
0 +xq+1

1 = 0.
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The case of plane curves

The case of plane curves (2)

Remark 4.2

In fact, the case when the plane curve XA of degree p + 1 has been
proved by Homma.

Note that the plane curve X1 is strange. Moreover this curve is
irreducible and nonreflexive. Ballico and Hefez (1991) proved that a
reduced irreducible nonreflexive plane curve of degree q + 1 is
isomorphic to one of the following curves:

(1) XI : xq+1
0 + xq+1

1 + xq+1
2 = 0,

(2) a nodal curve whose defining equation is given by Fukasawa
(2013), Hoang and Shimada (2015),

(3) strange curves.
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