Degeneration of Fermat hypersurfaces in positive characteristic

Hoang Thanh Hoai

Hiroshima University

March 7, 2016

The context

- Introduction
- The main theorems and corollaries
 - Theorem 2.2 and corollaries.
 - Theorem 2.5
- The proof of the main theorems
 - The proof of the Theorem 2.2
- The case of plane curves

- Introduction
- - Theorem 2.2 and corollaries
 - Theorem 2.5
- - The proof of the Theorem 2.2

Introduction

We work over an algebraically closed field k of positive characteristic p. Let q be a power of p. We denote by $M_{n+1}(k)$ the set of square matrices of size n+1 with coefficients in k. For a nonzero matrix $A = (a_{ii})_{0 \le i,i \le n} \in M_{n+1}(k)$, we denote by X_A the hypersurface of degree q + 1 defined by the equation

$$\sum a_{ij}x_ix_j^q=0$$

in the projective space \mathbb{P}^n with homogeneous coordinates $(x_0, x_1, \ldots, x_n).$

The well-known proposition

Proposition 1.1 (Lang 1956, Beauville 1986, Shimada 2001)

Let $A = (a_{ii})_{0 \le i,i \le n} \in M_{n+1}(k)$ and $X_A \subset \mathbb{P}^n$ be as above. Then the following conditions are equivalent:

- (i) rank(A) = n + 1,
- (ii) X_A is smooth,
- (iii) X_A is isomorphic to the Fermat hypersurface of degree q+1, and
- (iv) there exists a linear transformation of coordinates $T \in GL_{n+1}(k)$ such that ${}^{t}TAT^{(q)} = I_{n+1}$, where ${}^{t}T$ is the transpose of T. $T^{(q)}$ is the matrix obtained from T by raising each coefficient to its q-th power, and I_{n+1} is the identity matrix.

The Fermat hypersurfaces

The Fermat hypersurface of degree q+1 defined over an algebraically closed field of positive characteristic p has been a subject of numerous papers. It has many interesting properties:

- Supersingularity (Tate 1965, Shioda 1974, Shioda and Katsura 1979)
- Unirationality (Shioda 1974, Shioda and Katsura 1979, Shimada 1992), etc....

Moreover, the hypersurface X_A associated with the matrix A with coefficients a_{ii} in the finite field \mathbb{F}_{a^2} , which is called a Hermitian variety, has also been studied for many applications, such as coding theory (Høholdt, van Lint and Pellikaan 1998).

The quadratic form

In the case where characteristic $p \neq 2$, the hypersurface defined by the quadratic form $\sum a_{ii}x_ix_i=0$ is projectively isomorphic to the hypersurface defined by

$$x_0^2 + \cdots + x_{r-1}^2 = 0$$

where r is the rank of $A = (a_{ij})$. Recently, the case where characteristic 2 has been extended by Dolgachev and Duncan.

The Hermitian form

Question:

What is the normal form of the hypersurfaces defined by a form

$$\sum a_{ij}x_ix_j^q=0.$$

When A satisfies ${}^{t}A = A^{(q)}$ and hence this form is the Hermitian form over \mathbb{F}_{q^2} , the hypersurface X_A is projectively isomorphic over \mathbb{F}_{q^2} to

$$x_0^{q+1} + \cdots + x_{r-1}^{q+1} = 0,$$

where r is the rank of A (Hirschfeld 1991).

The purposes

We classify the hypersurfaces X_A associated with the matrices A of rank n over an algebraically closed field and determine their projective isomorphism classes.

- The main theorems and corollaries
 - Theorem 2.2 and corollaries.
 - Theorem 2.5
- - The proof of the Theorem 2.2

Some definitions and notions

Definition 2.1

Two hypersurfaces X_A , $X_{A'}$ associated with the matrices A, A' are projectively isomorphic if and only if there exists a linear transformation $T \in GL_{n+1}(k)$ such that $A' = {}^tTAT^{(q)}$. In this case, we denote $A \sim A'$.

We define I_s to be the $s \times s$ identity matrix, and E_r to be the $r \times r$ matrix

$$\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix}.$$

In particular, $E_1 = (0)$ and E_0 is the 0×0 matrix.

Theorem 2.2

Theorem 2.2

Let $A = (a_{ii})_{0 \le i,i \le n}$ be a nonzero matrix in $M_{n+1}(k)$, and let X_A be the hypersurface of degree q + 1 defined by $\sum a_{ii}x_ix_i^q = 0$ in the projective space \mathbb{P}^n with homogeneous coordinates (x_0, x_1, \dots, x_n) . Suppose that the rank of A is n. Then the hypersurface X_A is projectively isomorphic to one of the hypersurfaces X_s associated with the matrices

$$W_s = \left(\begin{array}{c|c} I_s & \\ \hline E_{n-s+1} \end{array}\right),$$

where 0 < s < n. Moreover, if $s \neq s'$, then X_s and $X_{s'}$ are not projectively isomorphic.

The corollaries

Corollary 2.3

If A is a general point of $\{A \in M_{n+1}(k) | rank(A) = n\}$, then $A \sim W_{n-1}$.

Corollary 2.4

Suppose that $n \ge 2$, s < n and $(n, s) \ne (2, 0)$. Then X_s is rational.

Theorem 2.5 (1)

For $M \in GL_{n+1}(k)$, we denote by $[M] \in PGL_{n+1}(k)$ the image of M by the natural projection.

Theorem 2.5

Let X_s be the hypersurface associated with the matrix W_s in the projective space \mathbb{P}^n . The projective automorphism group $\operatorname{Aut}(X_s)$ with $s \le n-2$ is the group consisting of [M], with

$$M = \begin{pmatrix} T & {}^{t}\mathbf{a} & 0 \\ \hline 0 & d & 0 \\ \hline \mathbf{c} & e & 1 \end{pmatrix},$$

where $T \in GL_{n-1}(k)$, \mathbf{a}, \mathbf{c} are row vectors of dimension n-1, and $d, e \in k$, and they satisfy the following conditions:

Theorem 2.5 (2)

(i) $[T] \in \operatorname{Aut}(X_s^{n-2})$, ${}^tTW_s'T^{(q)} = \delta W_s'$, $\delta = \delta^q \neq 0$, where X_s^{n-2} is the hypersurface defined in \mathbb{P}^{n-2} by the matrix

$$W_s' = \left(\begin{array}{c|c} I_s & \\ \hline & E_{n-s-1} \end{array}\right)$$

- (ii) $d = \delta$,
- (iii) $[aW'_{c} + d(0, \dots, 0, 1)] \cdot T^{(q)} = \delta(0, \dots, 0, 1).$
- (iv) ${}^tTW_c' \cdot {}^t\mathbf{a}^{(q)} + {}^t\mathbf{c}d^q = 0.$
- (v) $[\mathbf{a}W_c' + d(0, \dots, 0, 1)] \cdot {}^t\mathbf{a}^{(q)} + ed^q = 0.$

Theorem 2.5 (3)

Moreover, we have

$$\operatorname{Aut}(X_n) = \left\{ \begin{bmatrix} T_n \\ \hline \mathbf{u} & 1 \end{bmatrix} \middle| \begin{array}{l} {}^tT_nT_n^{(q)} = \lambda I_n, T_n \in GL_n(k), \\ \lambda \neq 0, \\ \mathbf{u} \text{ is a row vector of dimension } n \end{array} \right\},$$

and

$$\operatorname{Aut}(X_{n-1}) = \left\{ \begin{bmatrix} T_{n-1} & & \\ & \beta & \\ & & 1 \end{bmatrix} \middle| \begin{array}{l} {}^{t}T_{n-1}T_{n-1}^{(q)} = \beta^{q}I_{n-1}, \\ T_{n-1} \in GL_{n-1}(k), \\ 0 \neq \beta \in k \end{array} \right.$$

- - Theorem 2.2 and corollaries
 - Theorem 2.5
- The proof of the main theorems
 - The proof of the Theorem 2.2

The lemma (1)

Lemma 3.1

Put

$$B_s = \left(egin{array}{c|c} D_s & & & & \\ \hline oldsymbol{b}_s & & & & \\ 0 & & & & & \\ dots & E_{n-s+1} & & & \\ \end{array}
ight),$$

where $s \ge 1$, $n - s + 1 \ge 1$, $D_s \in M_s(k)$, and \mathbf{b}_s is a row vector of dimension s. Suppose that the rank of B_s is n. Then

The lemma (2)

$$B_s \sim W_s = \left(\begin{array}{c|c} I_s & \\ \hline & E_{n-s+1} \end{array}\right),$$

or

$$B_s \sim B_{s-1} = \left(egin{array}{c|c} D_{s-1} & & & \ \hline oldsymbol{b}_{s-1} & & \ & 0 & & \ dots & E_{n-s+2} & \ 0 & & \end{array}
ight),$$

where $D_{s-1} \in M_{s-1}(k)$, and \mathbf{b}_{s-1} is a row vector of dimension s-1.

Remark 3.2

When s = 1, we have $B_{s-1} = B_0 \sim E_{n+1} = W_0$.

The proof of the Theorem 2.2 (1)

Because the rank of the matrix A is n, Proposition 1.1 implies that X_A is singular. By using a linear transformation of coordinates if nessesary, we can assume that X_A has a singular point $(0, \dots, 0, 1)$. Then we have $a_{in} = 0$ for any 0 < i < n. The matrix A is now of the form

$$A = \left(\begin{array}{c|c} D_n \\ \hline \mathbf{b}_n \end{array}\right) = B_n,$$

where $D_n \in M_n(k)$, and \mathbf{b}_n is a row vector of dimension n. Using Lemma 3.1 repeatedly and Remark 3.2, we have that X_A is isomorphic to one of the hypersurfaces defined by W_s with 0 < s < n.

The proof of the Theorem 2.2 (2)

Next we prove that $s \neq s'$ implies $W_s \not\sim W_{s'}$. For this, we introduce some notions. Let X_s^n be the hypersurface defined by the matrix W_s in the projective space \mathbb{P}^n . The defining equation of X_{ε}^n can be written as

$$F_q x_n + F_{q+1} = 0,$$

where

$$F_q = \begin{cases} 0 & \text{if } s = n \\ x_{n-1}^q & \text{if } s < n, \end{cases}$$

and

$$F_{q+1} = \begin{cases} x_0^{q+1} + \dots + x_{n-1}^{q+1} & \text{if } s = n \\ x_0^{q+1} + \dots + x_{s-1}^{q+1} + x_s^q x_{s+1} + \dots + x_{n-2}^q x_{n-1} & \text{if } s < n. \end{cases}$$

It is easy to see that X_s^n has only one singular point $P_0 = (0, \cdots, 0, 1).$

The proof of the Theorem 2.2 (3)

Let φ be the map defined by

$$\varphi: \mathbb{P}^n \setminus \{P_0\} \longrightarrow \mathbb{P}^{n-1} \cong \{\text{the lines passing throught } P_0\}$$

$$P \longmapsto \overline{PP_0}.$$

Let $\overline{X_s^n} = \varphi(X_s^n \setminus \{P_0\})$. For any line $I \in \overline{X_s^n}$, then

$$\varphi^{-1}(I)\cap (X_s^n\setminus \{P_0\}) = \begin{cases} \emptyset & \text{if } F_q = 0 \text{ and } F_{q+1} \neq 0, \\ \{\text{a single point}\} & \text{if } F_q \neq 0, \\ I\setminus \{P_0\} & \text{if } F_q = 0 \text{ and } F_{q+1} = 0. \end{cases}$$

Hoang Thanh Hoai (Hiroshima University) Degeneration of Fermat hypersurfaces in posi

The proof of the Theorem 2.2 (4)

Putting
$$V_s=\{F_q=0,\ F_{q+1}=0\}\subset \mathbb{P}^{n-1}$$
, and $H_s=\{F_q=0\}\subset \mathbb{P}^{n-1}$, we have

$$V_s = \begin{cases} X_s^{n-2} & \text{if } s \leq n-2, \\ \text{nonsingular Fermat hypersurface in } \mathbb{P}^{n-1} & \text{if } s = n, \\ \text{nonsingular Fermat hypersurface in } \mathbb{P}^{n-2} & \text{if } s = n-1, \end{cases}$$

where X_s^{n-2} is the hypersurface in \mathbb{P}^{n-2} associated with the matrix

$$\left(\begin{array}{c|c}I_s&\\\hline&E_{n-s-1}\end{array}\right)$$
.

Hoang Thanh Hoai (Hiroshima University) Degeneration of Fermat hypersurfaces in posi

The proof of the Theorem 2.2 (5)

For any $s \neq s'$, suppose that X_s^n and $X_{s'}^n$ are isomorphic and let $\psi: X_s^n \longrightarrow X_{s'}^n$ be an isomorphism. Because each of X_s^n and $X_{s'}^n$ has only one singular point P_0 , we have $\psi(P_0) = P_0$, and hence ψ induces an isomorphism $\overline{\psi}$ from $\overline{X_s^n}$ to $\overline{X_{s'}^n}$. For any line $I \in \overline{X_s^n}$ and $I' \in \overline{X_{c'}^n}$ such that $\overline{\psi}(I) = I'$, we have

$$\sharp(\varphi^{-1}(I)\cap(X_s^n\setminus\{P_0\}))=\sharp(\varphi^{-1}(I')\cap(X_{s'}^n\setminus\{P_0\})).$$

Thus $V_s \cong V_{s'}$ and $H_s \cong H_{s'}$. Hence for any $s \neq s'$, if $V_s \ncong V_{s'}$ or $H_s \ncong H_{s'}$ then $X_s^n \ncong X_{s'}^n$.

In the case n=1, we have that X_0^1 consists of two points, and X_1^1 consists of a single point. In the case n=2, we have that X_0^2 consists of two irreducible components, X_1^2 is irreducible, and X_2^2 consists of (q+1) lines. Hence, in the case n=1 and n=2, we see that $s\neq s'$ implies $W_s \not\sim W_{s'}$. By induction on n, we have the proof.

- - Theorem 2.2 and corollaries
 - Theorem 2.5
- - The proof of the Theorem 2.2
- The case of plane curves

The case of plane curves (1)

Theorem 4.1

Let $A = (a_{ii})_{0 \le i, i \le 2} \in M_3(k)$ be a nonzero matrix and let X_A be the curve defined by $\sum a_{ij}x_ix_i^q=0$ in \mathbb{P}^2 . Suppose that the rank of A is smaller than 3.

(i) When the rank of A is 1, the curve X_A is projectively isomorphic to one of the following curves

$$Z_0: x_0^{q+1} = 0$$
, or $Z_1: x_0^q x_1 = 0$.

(ii) When the rank of A is 2, the curve X_A is projectively isomorphic to one of the following curves

$$X_0: x_0^q x_1 + x_1^q x_2 = 0, \ X_1: x_0^{q+1} + x_1^q x_2 = 0, \text{ or } X_2: x_0^{q+1} + x_1^{q+1} = 0$$

The case of plane curves (2)

Remark 4.2

In fact, the case when the plane curve X_A of degree p+1 has been proved by Homma.

Note that the plane curve X_1 is strange. Moreover this curve is irreducible and nonreflexive. Ballico and Hefez (1991) proved that a reduced irreducible nonreflexive plane curve of degree q+1 is isomorphic to one of the following curves:

- (1) $X_1: x_0^{q+1} + x_1^{q+1} + x_2^{q+1} = 0$.
- (2) a nodal curve whose defining equation is given by Fukasawa (2013), Hoang and Shimada (2015),
- (3) strange curves.