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Introduction

Introduction

We work over an algebraically closed field k of positive characteristic
p. Let g be a power of p. We denote by M, (k) the set of square
matrices of size n + 1 with coefficients in k. For a nonzero matrix

A = (aj)o<ij<n € Mp11(k), we denote by X, the hypersurface of
degree g + 1 defined by the equation

9 —
g ajXiX; 0

in the projective space P” with homogeneous coordinates
(X0, X1y -+ 3 Xn).
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Introduction

The well-known proposition

Proposition 1.1 (Lang 1956, Beauville 1986, Shimada 2001)

Let A = (aj)o<ij<n € Mp11(k) and Xa C P" be as above. Then the
following conditions are equivalent:
(i) rank(A) = n+1,
(ii) Xa is smooth,
(iii) Xa is isomorphic to the Fermat hypersurface of degree g+ 1, and
(iv) there exists a linear transformation of coordinates T € GL,.1(k)
such that *TAT(9) = |1, where t T is the transpose of T, T(9

is the matrix obtained from T by raising each coefficient to its
g-th power, and I,.1 is the identity matrix.
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The Fermat hypersurfaces

The Fermat hypersurface of degree g + 1 defined over an
algebraically closed field of positive characteristic p has been a
subject of numerous papers. It has many interesting properties :
@ Supersingularity (Tate 1965, Shioda 1974, Shioda and Katsura
1979)
@ Unirationality (Shioda 1974,Shioda and Katsura 1979, Shimada
1992), etc....
Moreover, the hypersurface X, associated with the matrix A with
coefficients aj;; in the finite field IF,2, which is called a Hermitian

variety, has also been studied for many applications, such as coding
theory (Hgholdt, van Lint and Pellikaan 1998).
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The quadratic form

In the case where characteristic p # 2, the hypersurface defined by
the quadratic form ) ajix;x; = 0 is projectively isomorphic to the
hypersurface defined by

X+ +x2y =0,

where r is the rank of A = (a;). Recently, the case where
characteristic 2 has been extended by Dolgachev and Duncan.
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The Hermitian form

Question :
What is the normal form of the hypersurfaces defined by a form

q _
E a,-jx,-xj =0.

When A satisfies tA = A@ and hence this form is the Hermitian form
over [F 2, the hypersurface X, is projectively isomorphic over IF2 to

q+1 q+1
XO +"'+Xr_1—0,

where r is the rank of A (Hirschfeld 1991).
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The purposes

We classify the hypersurfaces X, associated with the matrices A of
rank n over an algebraically closed field and determine their projective
isomorphism classes.
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The main theorems and corollaries

e The main theorems and corollaries
@ Theorem 2.2 and corollaries
@ Theorem 2.5
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The main theorems and corollaries

Some definitions and notions

Definition 2.1
Two hypersurfaces X, Xu associated with the matrices A, A" are

projectively isomorphic if and only if there exists a linear
transformation T € GL,.1(k) such that A’ = t TAT(9)_ In this case,

we denote A ~ A’.

We define /s to be the s x s identity matrix, and E, to be the r x r
matrix

0 O 0
1 0 0
0 1 0

In particular, E; = (0) and Eg is the 0 x 0 matrix.
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LLERUETR TSN NG EIIEI  Theorem 2.2 and corollaries

Theorem 2.2

Let A = (aj)o<ij<n be a nonzero matrix in M,y1(k), and let Xa be
the hypersurface of degree q + 1 defined by a,-jx,-qu =0 in the
projective space P" with homogeneous coordinates (xg, X1, - - - , Xn)-
Suppose that the rank of A is n. Then the hypersurface X, is
projectively isomorphic to one of the hypersurfaces X, associated

with the matrices
/
Ws - : )
( Enferl )

where 0 < s < n. Moreover, if s # s', then Xs and X, are not
projectively isomorphic.
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Theorem 2.2 and corollaries
The corollaries

Corollary 2.3

If A is a general point of {A € M,.1(k)| rank(A) = n}, then
A~ W,_;.

Corollary 2.4

Suppose that n > 2,s < n and (n,s) # (2,0). Then X; is rational.
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Theorem 2.5 (1)

For M € GL,1(k), we denote by [M] € PGL,.1(k) the image of M
by the natural projection.

Theorem 2.5

Let Xs be the hypersurface associated with the matrix W in the
projective space P". The projective automorphism group Aut(X;)
with s < n — 2 is the group consisting of [M], with

Tltal|0
M = 0|d|0 |,
cl|lell

where T € GL,_1(k), a,c are row vectors of dimension n — 1, and
d, e € k, and they satisfy the following conditions:
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Theorem 2.5 (2)

(i) [T] € Aut(XP=2), tTW!T@ = §W/, § = §9 # 0, where X"~2 is

the hypersurface defined in P"~2 by the matrix

b (s
Ws B ( En—s—l )
(ii

) d
(iii) [aW’+ d(0,---,0,1)]- T =4(0,---,0,1),
(iv) ¢TW! . ta<q>+ cd? =0,
(v) [aW!+d(0,---,0,1)] - tal® + ed? = 0.
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The main theorems and corollaries [EEEIEIE W

Theorem 2.5 (3)

Moreover, we have
T T, T = M, T, € GL(K),
Aut(X,) = {u 11 A#0, ,
u is a row vector of dimension n
and
Tnfl t n— lT —1 —Bqln 1,
Aut(Xn—l) = 5 nfl c GLnfl( ),
1 0#£pB€k
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The proof of the main theorems

© The proof of the main theorems
@ The proof of the Theorem 2.2
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LLEN IR RO NN EN RIS EM  The proof of the Theorem 2.2

Lemma 3.1
Put
D,
b,
Bs = 0 )
En—s+1
0

where s > 1, n—s+1>1, Dy € M(k), and b is a row vector of
dimension s. Suppose that the rank of Bs is n. Then
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LLEN IR RO NN EN RIS EM  The proof of the Theorem 2.2

s ™~ Ws =
or
Ds—l
bs—l
Bs ~ Bsfl - 0 ’
En—s+2
0

where Ds_1 € M,_1(k), and bs_; is a row vector of dimension s — 1.

Remark 3.2
When s =1, we have B;_1 = By ~ E, 1 = W,.
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The proof of the Theorem 2.2 (1)

Because the rank of the matrix A is n, Proposition 1.1 implies that
Xa is singular. By using a linear transformation of coordinates if
nessesary, we can assume that Xy has a singular point (0,---,0,1).
Then we have a;, = 0 for any 0 </ < n. The matrix A is now of the

form b
- (84)

where D, € M,(k), and b, is a row vector of dimension n. Using
Lemma 3.1 repeatedly and Remark 3.2, we have that X, is
isomorphic to one of the hypersurfaces defined by W, with 0 < s < n.
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The proof of the Theorem 2.2 (2)

Next we prove that s # s” implies W; ¢ W.,. For this, we introduce
some notions. Let X be the hypersurface defined by the matrix W,
in the projective space P". The defining equation of X! can be

written as
Foxn 4 Fg41 =0,

where
r 0 if s=n
7] x9 ifs<n
n—1 )
and
1 1 :
F Xg++...+ng1 |fS:n
q+1 — +1 +1 .
Xg —1—---—}-qu_1+X§X5+1+"'+Xg_2Xn—1 if s <n.

It is easy to see that X! has only one singular point
Py =(0,---,0,1).
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The proof of the Theorem 2.2 (3)

Let ¢ be the map defined by

@ :P"\{P,} — P"!= {the lines passing throught Py}
P — PR,

Let X7 = (X" \ {Py}). For any line / € X7, then

1] if Fp=0and Fgiq #0,
e (NN(XI\{Po}) = { {a single point} if F, # 0,
I\ {Po} if F;,=0and Fy; =0.
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The proof of the Theorem 2.2 (4)

Putting V, = {F, =0, F,,; =0} C P"! and
Hs = {F,; =0} C P""!, we have

X2 ifs<n-—2,
Vi = < nonsingular Fermat hypersurface in P"~!  if s = n,

nonsingular Fermat hypersurface in P"2  ifs=n—1,

where X~2 is the hypersurface in P"~2 associated with the matrix
Is
En,5,1 '
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The proof of the Theorem 2.2 (5)

For any s # s', suppose that X/ and X are isomorphic and let

P X! — X7 be an isomorphism. Because each of X and X7 has
only one smgular point Py, we have 9)(Py) = Po, and hence ¢
induces an isomorphism 1) from X7 to X” For any line / € X7 and
I' € X7 such that ¥(/) = I', we have

o (N N XN A{P})) = 8™ () N (X2 \ {Po})).

Thus Vi =2 Vi and H; = Hy. Hence for any s £ ¢/, if V, 22 Vi or

Hs % Hy then X[ 2

In the case n = 1, we have that X consists of two points, and X}

consists of a single point. In the case n = 2, we have that X consists

of two irreducible components, X2 is irreducible, and X3 consists of

(g + 1) lines. Hence, in the case n =1 and n = 2, we see that s # s’

implies W, « W, . By induction on n, we have the proof. m
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The case of plane curves

@ The case of plane curves
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The case of plane curves

The case of plane curves (1)

Theorem 4.1

Let A = (aj)o<ij<2 € Ms(k) be a nonzero matrix and let Xa be the

curve defined by > a,-jx,-qu = 0 in IP?. Suppose that the rank of A is
smaller than 3.

(i) When the rank of A is 1, the curve Xa is projectively isomorphic
to one of the following curves

1
Zy:x§ =0, or Zy : x{x, = 0.

(i) When the rank of A is 2, the curve Xy is projectively isomorphic
to one of the following curves

1 1 1
Xo : xgxitxixy =0, Xy 1 x§  4xix = 0,0r Xo : x4 =0
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The case of plane curves (2)

Remark 4.2

In fact, the case when the plane curve X, of degree p + 1 has been
proved by Homma.

Note that the plane curve Xj is strange. Moreover this curve is
irreducible and nonreflexive. Ballico and Hefez (1991) proved that a
reduced irreducible nonreflexive plane curve of degree g + 1 is
isomorphic to one of the following curves:

(1) X = T X gt =0,

(2) a nodal curve whose deflnmg equation is given by Fukasawa
(2013), Hoang and Shimada (2015),

(3) strange curves.
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