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Problem and Motivation
Main Theorem

Our problem

A complex mfd (M,J) is said to be Kähler if there
exists a symplectic form ω compatible with J , i.e.,
(1) ω(u, Ju) > 0 for any u ̸= 0 ∈ TM ,

(2) ω(u, v) = ω(Ju, Jv) for any u, v ∈ TM .

Problem

Is there any non-Kähler complex structure on R2n?

If n = 1, the answer is “No”.

If n ≥ 3,“Yes” (Calabi-Eckmann).

Then, what about if n = 2?
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Calabi-Eckmann’s construction

H1 : S
2p+1 → CP p, H2 : S

2q+1 → CP q : the Hopf fibrations.
H1 ×H2 : S

2p+1 × S2q+1 → CP p × CP q is a T 2-bundle.
The Calabi-Eckmann manifold Mp,q(τ) is a complex mfd diffeo
to S2p+1 × S2q+1 s.t. H1 ×H2 is a holomorphic torus bundle
(τ is the modulus of a fiber torus).
Ep,q(τ): the top dim cell of the natural cell decomposition.
If p > 0 and q > 0, then it contains holomorphic tori.

So, it is diffeo to R2p+2q+2 and non-Kähler.

This argument doesn’t work if p = 0 or q = 0.
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Non-Kählerness and holomorphic curves

Lemma (1)

If a complex manifold (R2n, J) contains a compact
holomorphic curve C, then it is non-Kähler.

Proof.

Suppose it is Kähler. Then, there is a symp form ω compatible

with J . Then,
∫
C
ω > 0. On the other hand, ω is exact. By

Stokes’ theorem,
∫
C
ω =

∫
C
dα = 0. This is a contradiction.
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Main Theorem

Let P =
{
0 < ρ1 < 1, 1 < ρ2 < ρ−1

1

}
⊂ R2.

Theorem

For any (ρ1, ρ2) ∈ P , there are a complex manifold
E(ρ1, ρ2) diffeomorphic to R4 and a surjective
holomorphic map f : E(ρ1, ρ2) → CP 1 such that
the only singular fiber f−1(0) is an immersed
holomorphic sphere with one node, and the other
fiber is either a holomorphic torus or annulus.
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The Matsumoto-Fukaya fibration
Holomorphic models

The Matsumoto-Fukaya fibration

fMF : S4 → CP 1 is a genus-1 achiral Lefschetz fibration

with only two singularities of opposite signs.
F1: the fiber with the positive singularity

(
(z1, z2) 7→ z1z2

)
F2: the fiber with the negative singularity

(
(z1, z2) 7→ z1z̄2

)

S4 = N1∪N2, where Nj is a tubular nbd of Fj,

N1 ∪ (N2\X) ∼= R4 (X is a nbd of − sing),

In the smooth sense, f is a restriction of fMF .
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Holomorphic models

The Matsumoto-Fukaya fibration 2

Originally, it is constructed by taking the
composition of the Hopf fibration H : S3 → CP 1

and its suspension ΣH : S4 → S3. fMF = H ◦ ΣH.

How to glue ∂N2 to ∂N1 is as the
following pictures (in the next page).
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The Matsumoto-Fukaya fibration
Holomorphic models

Gluing N1 and N2
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The Matsumoto-Fukaya fibration
Holomorphic models

Kirby diagrams

Figure: The Matsumoto-Fukaya fibration on S4.
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The Matsumoto-Fukaya fibration
Holomorphic models

Kirby diagrams 2

Figure: The map f on S4\X ∼= R4.
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The Matsumoto-Fukaya fibration
Holomorphic models

Key Lemma

Lemma (2)

Let us glue A×D2 to N1 so that for each
t ∈ ∂D2 = S1, the annulus A× {t} embeds in the
fiber torus f−1(t) as a thickned meridian, and that
it rotates in the longitude direction once as t ∈ S1

rotates once. Then, the interior of the resultant
manifold is diffeomorphic to R4.

We will realize this gluing by complex
manifolds!
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The Matsumoto-Fukaya fibration
Holomorphic models

Kodaira’s holomorphic model

∆(r) = {z ∈ C | |z| < r},
∆(r1, r2) = {z ∈ C | r1 < |z| < r2}.
Consider an elliptic fibration

π : C∗ ×∆(0, ρ1)/Z → ∆(0, ρ1),

where the action is n · (z, w) = (zwn, w).
It naturally extends to f1 : W → ∆(ρ1).
W is a tubular neighborhood of a singular elliptic
fiber of type I1. It is a holomorphic model of N1.
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The Matsumoto-Fukaya fibration
Holomorphic models

Gluing domains in the two pieces

The model for N2\X is ∆(1, ρ2)×∆(ρ−1
0 ).

The gluing domain is
V2 := ∆(1, ρ2)×∆(ρ−1

1 , ρ−1
0 ) ⊂ ∆(1, ρ2)×∆(ρ−1

0 ).

Y := {(zφ(w), w) ∈ C∗ ×∆(ρ0, ρ1) | z ∈ ∆(1, ρ2)} ,

where φ(w) = exp
(

1
4πi(logw)

2 − 1
2 logw

)
.

φ(rei(θ+2π)) = reiθφ(reiθ) = wφ(w).

Define the gluing domain V1 ⊂ W by V1 = Y/Z.
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The Matsumoto-Fukaya fibration
Holomorphic models

Gluing the two pieces

By the biholomorphism between the gluing domains

Φ : V2 → V1; (z, w
−1) 7→ [(zϕ(w), w)],

we obtain a complex manifold

E(ρ1, ρ2) =
(
∆(1, ρ2)×∆(ρ−1

0 )
)
∪Φ W.

∆(ρ1) and ∆(ρ−1
0 ) are glued to become CP 1.

f is defined to be f1 : W → ∆(ρ1) on W , and
the second projection on ∆(1, ρ2)×∆(ρ−1

0 ).
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Classification of holomorphic curves

Lemma (3)

Any compact holomorphic curve in E(ρ1, ρ2) is a
compact fiber of the map f : E(ρ1, ρ2) → CP 1.

Proof.

Let i : C → E(ρ1, ρ2) be a compact holomorphic curve. The

composition f ◦ i : C → CP 1 is a holomorphic map between

compact Riemann surfaces. It is either a brached covering or a

constant map. Since it is homotopic to a constant map, it is a

constant map.
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Properties of E(ρ1, ρ2)

Thanks to the existence of the fibration f and the previous

lemma, we can show the following properties.

E(ρ1, ρ2) ̸∼= E(ρ′1, ρ
′
2) if (ρ1, ρ2) ̸= (ρ′1, ρ

′
2).

E(ρ1, ρ2)× Cn−2 give uncountably many
non-Kähler complex structures on R2n (n ≥ 3).

Any holomorphic function is constant.

Any meromorphic function is the pullback of
that on CP 1 by f .
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Properties of E(ρ1, ρ2) 2

f ∗ : Pic(CP 1) → Pic(E(ρ1, ρ2)) is injective.

It cannot be holomorphically embedded in any
compact complex surface.
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Thank you for your attention!
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