RAAGs in knot groups

Takuya Katayama

Hiroshima University

March 8, 2016

In this talk, we consider the following question.

Question

For a given non-trivial knot in the 3-sphere, which right-angled Artin group admits an embedding into the knot group?

The goal of this talk

To give a complete classification of right-angled Artin groups which admit embeddings into the knot group, for each non-trivial knot in the 3-sphere by means of Jaco-Shalen-Johnnson decompositions.

Definition of RAAGs

Γ: a finite simple graph (Γ has no loops and multiple-edges) $V(Γ) = \{v_1, v_2, \cdots, v_n\}$: the vertex set of ΓE(Γ): the edge set of Γ

Definition

The right-angled Artin group (RAAG), or the graph group on Γ is a group given by the following presentation:

$$A(\Gamma) = \langle v_1, v_2, \ldots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \in E(\Gamma) \rangle.$$

Example

$$A(\bullet \bullet \bullet \cdot \cdot \cdot \bullet) \cong F_n.$$

$$A(\text{the complete graph on } n \text{ vertices}) \cong \mathbb{Z}^n$$

$$A(\bullet \bullet \bullet \cdot \cdot \bullet \bullet)$$

$$A(\bullet \bullet \bullet \bullet \bullet \bullet) \cong \mathbb{Z} \times F_n.$$

Embeddings of low dim manifold groups into RAAGs

```
Theorem (Crisp-Wiest, 2004)
```

S: a connected surface If $S \not\cong \# \mathbb{RP}^2$ (n = 1, 2, 3), then $\exists a RAAG A s.t. \pi_1(S) \hookrightarrow A$.

Theorem (Agol, Liu, Przytycki, Wise...et al.)

```
M : a compact aspherical 3-manifold
The interior of M admits a complete Riemannian metric with non-positive
curvature
\Leftrightarrow \pi_1(M) admits a virtual embedding into a RAAG.
i.e., \pi_1(M)
```

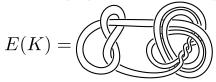
finite index \lor

 $\exists H \hookrightarrow \exists A: a RAAG$

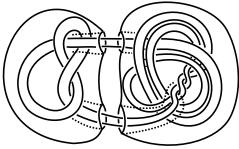
Theorem (Jaco-Shalen, Johannson, Thurston's hyperbolization thm) If K is a knot in S^3 , then the knot exterior E(K) of K has a canonical decomposition by tori into hyperbolic pieces and Seifert pieces. Moreover, each Seifert piece is homeomorphic to one of the following spaces: a composing space, a cable space and a torus knot exterior.

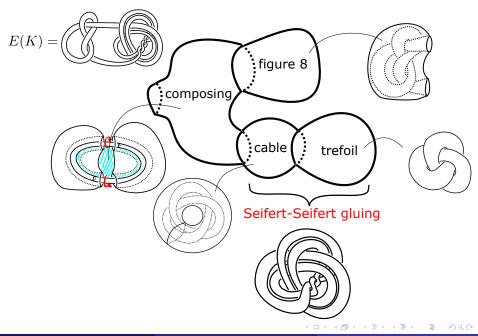
Each cable space has a finite covering homeomorphic to a composing space, and π_1 of a composing space is isomorphic to A(). Hence π_1 of the cable space is virtually a RAAG.

K := (figure eight knot) # (cable on trefoil knot)



We now cut E(K) along tori...





Question (recall)

For a given non-trivial knot in the 3-sphere, which RAAG admits an embedding into the knot group?

Main Theorem (K.)

K: a non-trivial knot, $G(K) := \pi_1(E(K))$, Γ : a finite simple graph **Case 1.** If E(K) has only hyperbolic pieces,

then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of $\bullet \bullet \bullet \cdots \bullet$ and $\coprod \bullet \bullet \cdots \bullet$. **Case 2.** If E(K) is Seifert fibered (i.e., E(K) is a torus knot exterior), then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a star graph or $\bullet \bullet \cdots \bullet$.

Case 3. If E(K) has both a Seifert piece and a hyperbolic piece, and has no Seifert-Seifert gluing, then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of star graphs.

Case 4. If E(K) has a Seifert-Seifert gluing, then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a forest.

Here a simplicial graph Γ is said to be a forest if each connected component of Γ is a tree.

Takuya Katayama (Hiroshima Univ.)

Definition

Lemma

 Γ : a finite simple graph. If Λ is a full subgraph of Γ , then $\langle V(\Lambda) \rangle \cong A(\Lambda)$.

Lemma

 $A(\Gamma)$: the RAAG on a finite simple graph Γ If $A(\Gamma)$ admits an embedding into a knot group, then Γ is a forest.

Theorem (Papakyriakopoulos-Conner, 1956)

G(K): the knot group of a non-trivial knot K Then there is an embedding $\mathbb{Z}^2 \hookrightarrow G(K)$ and is no embedding $\mathbb{Z}^3 \hookrightarrow G(K)$.

Theorem (Droms, 1985)

 $A(\Gamma)$: the RAAG on a finite simple graph Γ Then $A(\Gamma)$ is a 3-manifold group iff each connected component of Γ is a triangle or a tree.

Hence, in the proof of Main Theorem, we may assume Γ is a finite forest, and so every connected subgraph Λ of Γ is a full subgraph $(A(\Lambda) \hookrightarrow A(\Gamma))$.

Main Theorem(2)

M: a Seifert piece in a knot exterior, Γ : a finite simple graph Then $A(\Gamma) \hookrightarrow \pi_1(M)$ iff Γ is a star graph or •••••••.

We treat only the case M is a non-trivial torus knot exterior (because the other case can be treated similarly). Let G(p,q) be the (p,q)-torus knot group.

Proof of the if part. It is enough to show that $A(\checkmark) \cong \mathbb{Z} \times F_n \hookrightarrow G(p,q)$ for some $n \ge 2$. Note that $[G(p,q), G(p,q)] \cong F_n$ for some $n \ge 2$. Then $Z(G(p,q)) \times [G(p,q), G(p,q)]$ is a subgroup of G(p,q) isomorphic to $\mathbb{Z} \times F_n$, as required.

The only if part of Main Theorem(2)

M: a Seifert piece in a knot exterior, Γ : a finite simple graph Suppose $A(\Gamma) \hookrightarrow \pi_1(M)$. Then Γ is a star graph or $\bullet \bullet \bullet \cdots \bullet$.

Note that, in general, the following three facts hold.

(1) If Γ is disconnected, then $A(\Gamma)$ is centerless.

(2) $A(\bullet \bullet \bullet \bullet)$ is centerless.

(3) If Γ has $\bullet \bullet \bullet \bullet \bullet$ as a (full) subgraph, then $A(\bullet \bullet \bullet \bullet) \hookrightarrow A(\Gamma)$. Now suppose that $A(\Gamma) \hookrightarrow G(p,q)$ and $E(\Gamma) \neq \emptyset$.

Then Γ is a forest.

On the other hand, our assumptions imply that $A(\Gamma)$ has a non-trivial center.

Hence (1) implies that Γ is a tree.

Moreover, (2) together with (3) implies that Γ does not contain

• • • as a subgraph.

Thus Γ is a star graph.

Main Theorem(4)

Γ: a finite simple graph, $\{C_1, C_2\}$: a Seifert-Seifert gluing in a knot exterior, T: the JSJ torus $C_1 \cap C_2$ If Γ is a forest, then $A(\Gamma) \hookrightarrow \pi_1(C_1) \underset{\pi_1(T)}{*} \pi_1(C_2)$.

It is enough to show the following two lemmas. (A) If Γ is a forest, then $A(\Gamma) \hookrightarrow A(\bullet \bullet \bullet \bullet)$. (B) $A(\bullet \bullet \bullet \bullet) \hookrightarrow \pi_1(C_1) \underset{\pi_1(T)}{*} \pi_1(C_2)$.

Main Theorem(4)

Γ: a finite simple graph, $\{C_1, C_2\}$: a Seifert-Seifert gluing in a knot exterior, T: the JSJ torus $C_1 \cap C_2$ If Γ is a forest, then $A(\Gamma) \hookrightarrow \pi_1(C_1) \underset{\pi_1(T)}{*} \pi_1(C_2)$.

It is enough to show the following two lemmas. (A) If Γ is a forest, then $A(\Gamma) \hookrightarrow A(\bullet \bullet \bullet \bullet)$. (Kim-Koberda) (B) $A(\bullet \bullet \bullet \bullet) \hookrightarrow \pi_1(C_1) \underset{\pi_1(T)}{*} \pi_1(C_2)$. (Niblo-Wise) Let Γ be a finite simple graph and v a vertex of Γ .

St(v): the full subgraph induced by v and the vertices adjacent to v. $D_v(\Gamma)$: the *double* of Γ along the full subgraph St(v), namely, $D_v(\Gamma)$ is obtained by taking two copies of Γ and gluing them along copies of St(v).

The Seifert-van Kampen theorem implies the following.

Lemma

$$A(D_{\nu}(\Gamma)) \hookrightarrow A(\Gamma).$$

Lemma(A)

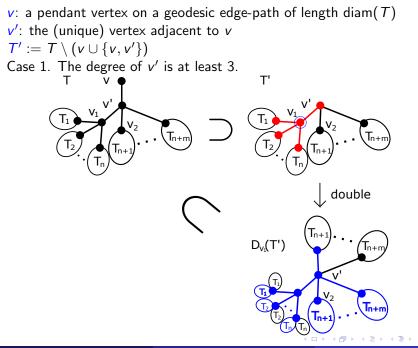
If Γ is a finite forest, then $A(\Gamma) \hookrightarrow A(\bullet \bullet \bullet \bullet)$.

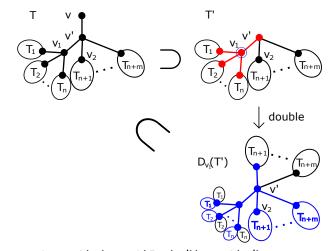
Proof.

Since every finite forest is a full subgraph of a finite tree ${\cal T},$ we may assume that $\Gamma={\cal T}$.

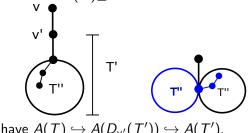
We shall prove this theorem by induction on the ordered pair $(\operatorname{diam}(T), \# \text{ of geodesic edge-paths of length } \operatorname{diam}(T))$ and by using doubled graphs. If $\operatorname{diam}(T) \leq 2$, then T is a star graph, and so we have $A(\bullet \bullet \bullet \bullet) \hookrightarrow A(\bullet \bullet \bullet \bullet \bullet)$. We now consider the case

where the diameter of T is at least 3.





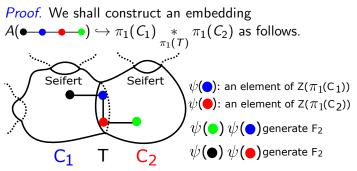
Hence, we have $A(T) \hookrightarrow A(D_{v_1}(T')) \hookrightarrow A(T')$. Removing away v and $\{v, v'\}$ from T implies that either the diam decreases or # of geodesic edge-paths of length diam decreases. Case 2. The degree of v' is equal to 2. We can assume diam(T) \geq 4.



Thus we have $A(T) \hookrightarrow A(D_{v'}(T')) \hookrightarrow A(T')$.

Lemma(B)

 $\begin{array}{l} \mathsf{\Gamma}: \text{ a finite simple graph, } \{C_1, C_2\}: \text{ a Seifert-Seifert gluing in a knot} \\ \text{exterior, } \mathcal{T}: \text{ the JSJ torus } C_1 \cap C_2 \\ \text{Then } A(\bullet \bullet \bullet \bullet) \hookrightarrow \pi_1(C_1) \underset{\pi_1(\mathcal{T})}{*} \pi_1(C_2). \end{array}$



For each i = 1, 2, we take a finite index subgroup of $\pi_1(C_i)$, which is isomorphic to $A(\operatorname{St}_{m_i})$ for some $m_i \ge 2$.

Here,
$$\operatorname{St}_{m_i} = \bigvee$$

(i) $\psi(\bullet) \in A(\operatorname{St}_{m_1}) \cap A(\operatorname{St}_{m_2}) \cap \pi_1(T) \cap Z(\pi_1(C_1)).$
(ii) $\psi(\bullet) \in A(\operatorname{St}_{m_1}) \cap A(\operatorname{St}_{m_2}) \cap \pi_1(T) \cap Z(\pi_1(C_2)).$
(iii) $\psi(\bullet) \in A(\operatorname{St}_{m_1}).$
(iv) $\psi(\bullet) \in A(\operatorname{St}_{m_2}).$
Then the neural form theorem and that ψ is injective and

Then the normal form theorem says that ψ is injective, as desired.

Main Theorem (K.) K: a non-trivial knot, Γ : a finite simplicial graph **Case 1.** If E(K) has only hyperbolic pieces, then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of $\bullet \bullet \bullet \cdots \bullet$ and $\prod \cdots$. **Case 2.** If E(K) is Seifert (i.e. M is a torus knot exterior), then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a star graph or $\bullet \bullet \bullet \cdots \bullet$. **Case 3.** If E(K) has both a Seifert piece and a hyperbolic piece and has no Seifert-Seifert gluing. then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of star graphs. **Case 4.** If E(K) has a Seifert-Seifert gluing, then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a forest.

Question

Which knot group admits an embedding into a RAAG?

Every knot group admits a virtual embedding into a RAAG. This question seems to be connected with the following question.

Question

Which knot group is bi-orderable?

Since every RAAG is bi-orderable (Duchamp-Thibon), every knot group which admits an embedding into a RAAG must be bi-orderable.

Thank you.

- A 🖓

æ