On algebraic description of the Goldman-Turaev Lie bialgebra

Yusuke Kuno

Tsuda College

7 March 2016

(joint work with Nariya Kawazumi (University of Tokyo))

Contents

Introduction

2 Goldman bracket

Turaev cobracket

The Goldman-Turaev Lie bialgebra

 Σ : a compact oriented surface $\hat{\pi} = \hat{\pi}(\Sigma) := \pi_1(\Sigma)/\text{conjugacy} \cong \operatorname{Map}(S^1, \Sigma)/\text{homotopy}$

Two operations to loops on Σ

Goldman bracket ('86)

$$[\ ,\]\colon (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1})\otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1})\to \mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}, \quad \alpha\otimes\beta\mapsto [\alpha,\beta]$$

 $\mathbf{1} \in \hat{\pi}$: the class of a constant loop

Turaev cobracket ('91)

$$\delta \colon \mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1} \to (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}) \otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1})$$

Theorem (Goldman (bracket) +Turaev (cobracket, Lie bialgebra)+Chas (involutivity)) The triple $(\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}, [\ ,\], \delta)$ is an involutive Lie bialgebra.

Lie bialgebra

The operation [,] is defined by using the intersection of two loops, while the operation δ by using the self-intersection of a loop.

Theorem (bis)

The triple $(\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1},[\ ,\],\delta)$ is an involutive Lie bialgebra.

Definition

A triple $(\mathfrak{g}, [\ ,\], \delta)$ is a Lie bialgebra if

- lacktriangle the pair $(\mathfrak{g}, [\ ,\])$ is a Lie algebra,
- 3 the maps [,] and δ satisfy a comatibility condition:

$$\forall \alpha, \beta \in \mathfrak{g}, \quad \delta[\alpha, \beta] = \alpha \cdot \delta(\beta) - \beta \cdot \delta(\alpha).$$

Moreover, if $[\ ,\]\circ\delta=0$ then $(\mathfrak{g},[\ ,\],\delta)$ is called involutive.

Fundamental group and tensor algebra

We have a binary operation [,] and a unary operation δ on $\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}$. The goal is to express them algebraically, i.e., by using tensors.

Assume $\partial \Sigma \neq \emptyset$ (e.g., $\Sigma = \Sigma_{g,1}$, $\Sigma = \Sigma_{0,n+1}$). Then any "group-like" Magnus expansion θ gives an isomorphism (of complete Hopf algebras)

$$\theta \colon \widehat{\mathbb{Q}\pi_1(\Sigma)} \stackrel{\cong}{\longrightarrow} \widehat{T}(H)$$

onto the complete tensor algebra generated by $H:=H_1(\Sigma;\mathbb{Q})$. Moreover, we have an isomorphism (of \mathbb{Q} -vector spaces)

$$\theta \colon \widehat{\mathbb{Q}}\widehat{\pi} \stackrel{\cong}{\longrightarrow} \widehat{T}(H)^{\mathsf{cyc}}.$$

Here,

- **1** the source $\widehat{\mathbb{Q}}\widehat{\pi}$ is a certain completion of $\mathbb{Q}\widehat{\pi}$,
- ocyc means taking the space of cyclic invariant tensors.

Algebraic description of the Goldman bracket

We can define $[\ ,\]^{\theta}$ by the commutativity of the following diagram.

$$\mathbb{Q}\hat{\pi} \otimes \mathbb{Q}\hat{\pi} \xrightarrow{\left[\begin{array}{c} [\ ,\] \end{array}\right]} \mathbb{Q}\hat{\pi}$$

$$\theta \otimes \theta \downarrow \qquad \qquad \downarrow \theta$$

$$\widehat{T}(H)^{cyc} \widehat{\otimes} \widehat{T}(H)^{cyc} \xrightarrow{\left[\begin{array}{c} [\ ,\]^{\theta} \end{array}\right]} \widehat{T}(H)^{cyc}$$

Theorem(Kawazumi-K., Massuyeau-Turaev), stated roughly

For some choice of θ , $[\ ,\]^{\theta}$ has a simple, θ -independent expression.

- For $\Sigma = \Sigma_{g,1}$, it equals the associative version of the Lie algebra of symplectic derivations introduced by Kontsevich.
- ② For $\Sigma = \Sigma_{0,n+1}$, it equals the Lie algebra of special derivations in the sense of Alekseev-Torossian (c.f. the work of Ihara).

Algebraic description of the Turaev cobracket

Similarly, we can define δ^{θ} by the commutativity of the following diagram.

$$\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1} \xrightarrow{\delta} (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}) \otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}) \\
\theta \downarrow \qquad \qquad \downarrow \theta \otimes \theta \\
\widehat{T}(H)^{cyc} \xrightarrow{\delta^{\theta}} \widehat{T}(H)^{cyc} \otimes \widehat{T}(H)^{cyc}$$

Question

Can we have a simple expression for δ^{θ} ?

Our motivation: the Johnson homomorphism

 $\mathcal{I}(\Sigma)$: the Torelli group of Σ

 $\mathfrak{h}(\Sigma)$: Morita's Lie algebra (Kontsevich's "lie")

$$\mathcal{I}(\Sigma) \overset{\tau}{\hookrightarrow} \mathfrak{h}(\Sigma) \overset{\mathsf{Kawazumi-K}}{\hookrightarrow} \widehat{\mathbb{Q}} \widehat{\hat{\pi}} \overset{\delta}{\longrightarrow} \widehat{\mathbb{Q}} \widehat{\hat{\pi}} \widehat{\otimes} \widehat{\mathbb{Q}} \widehat{\hat{\pi}}.$$

Then $\operatorname{Im}(\tau) \subset \operatorname{Ker}(\delta)$. For instance, the Morita trace factors through δ .

Introduction

2 Goldman bracket

Turaev cobracket

Definition of the Goldman bracket

Recall: $\hat{\pi} = \hat{\pi}(\Sigma) = \text{Map}(S^1, \Sigma)/\text{homotopy}$.

Definition (Goldman)

 $\alpha, \beta \in \hat{\pi}$: represented by free loops in general position

$$[\alpha,\beta] := \sum_{\boldsymbol{p} \in \alpha \cap \beta} \varepsilon_{\boldsymbol{p}}(\alpha,\beta) \alpha_{\boldsymbol{p}} \beta_{\boldsymbol{p}} \in \mathbb{Q}\hat{\pi}.$$

Here, $\varepsilon_p(\alpha, \beta) = \pm 1$ is the local intersection number of α and β at p, and α_p is the loop α based at p.

This formula induces a Lie bracket on $\mathbb{Q}\hat{\pi}$, and $\mathbf{1} \in \hat{\pi}$ is centeral.

Background

Study of the Poisson structures on $\operatorname{Hom}(\pi_1(\Sigma), G)/G$.

The action σ

For $*_0, *_1 \in \partial \Sigma$, $\Pi \Sigma (*_0, *_1) := \operatorname{Map}(([0, 1], 0, 1), (\Sigma, *_0, *_1)) / \operatorname{homotopy}.$

Definition (Kawazumi-K.)

For $\alpha \in \hat{\pi}$ and $\beta \in \Pi\Sigma(*_0, *_1)$,

$$\sigma(\alpha)\beta := \sum_{\boldsymbol{\rho} \in \alpha \cap \beta} \varepsilon_{\boldsymbol{\rho}}(\alpha, \beta) \beta_{*_{\boldsymbol{0}}\boldsymbol{\rho}} \alpha_{\boldsymbol{\rho}} \beta_{\boldsymbol{\rho}*_{\boldsymbol{1}}} \in \mathbb{Q} \Pi \Sigma (*_{\boldsymbol{0}}, *_{\boldsymbol{1}}).$$

This formula induces a Q-linear map

$$\sigma = \sigma_{*_0,*_1} \colon \mathbb{Q}\hat{\pi} \to \mathrm{End}(\mathbb{Q}\Pi\Sigma(*_0,*_1)).$$

The Leibniz rule holds: for $\beta_1 \in \Pi\Sigma(*_0, *_1)$ and $\beta_2 \in \Pi\Sigma(*_1, *_2)$,

$$\sigma(\alpha)(\beta_1\beta_2) = (\sigma(\alpha)\beta_1)\beta_2 + \beta_1(\sigma(\alpha)\beta_2).$$

The action σ (continued)

Write $\partial \Sigma = \bigsqcup_i \partial_i \Sigma$ with $\partial_i \Sigma \cong S^1$. For each i, choose $*_i \in \partial_i \Sigma$.

The small category $\mathbb{Q}\Pi\Sigma$

- Objects: $\{*_i\}_i$
- Morphisms: $\mathbb{Q}\Pi\Sigma(*_i,*_i)$

Consider the Lie algebra

$$\mathrm{Der}(\mathbb{Q}\Pi\Sigma)$$

$$:= \! \{ (D_{i,j})_{i,j} \mid D_{i,j} \in \operatorname{End}(\mathbb{Q}\Pi\Sigma(*_i,*_j)), D_{i,j} \text{ satisfy the Leibniz rule.} \}$$

Then the collection $(\sigma_{*_i,*_j})_{i,j}$ defines a Lie algebra homomorphism

$$\sigma: \mathbb{Q}\hat{\pi} \to \mathrm{Der}_{\partial}(\mathbb{Q}\Pi\Sigma).$$

Example

If
$$\partial \Sigma = S^1$$
, we have $\sigma \colon \mathbb{Q}\hat{\pi} \to \mathrm{Der}_{\partial}(\mathbb{Q}\pi_1(\Sigma))$.

Completions

We have a Lie algebra homomorphism

$$\sigma: \mathbb{Q}\hat{\pi} \to \mathrm{Der}_{\partial}(\mathbb{Q}\Pi\Sigma).$$

The augumentation ideal $I \subset \mathbb{Q}\pi_1(\Sigma)$ defines a filtration $\{I^m\}$ of $\mathbb{Q}\pi_1(\Sigma)$. We set

$$\widehat{\mathbb{Q}\pi_1(\Sigma)} := \varprojlim_m \mathbb{Q}\pi_1(\Sigma)/I^m.$$

Likewise, we can consider the completions of $\mathbb{Q}\hat{\pi}$ and $\mathbb{Q}\Pi\Sigma$. For example,

- **1** the Goldman bracket induces a complete Lie bracket $[\ ,\]:\widehat{\mathbb{Q}}\widehat{\pi}\widehat{\otimes}\widehat{\mathbb{Q}}\widehat{\pi}\to\widehat{\mathbb{Q}}\widehat{\pi},$
- we get a Lie algebra homomorphism

$$\sigma \colon \widehat{\mathbb{Q}}\widehat{\pi} \to \mathrm{Der}_{\partial}(\widehat{\mathbb{Q}\Pi\Sigma}).$$

Magnus expansion

Let π be a free group of finite rank.

Set
$$H := \pi^{\mathsf{abel}} \otimes \mathbb{Q} \cong H_1(\pi; \mathbb{Q})$$
 and $\widehat{T}(H) := \prod_{m=0}^{\infty} H^{\otimes m}$.

Definition (Kawazumi)

A map $\theta \colon \pi \to \widehat{T}(H)$ is called a (generalized) Magnus expansion if

- **1** $\theta(x) = 1 + [x] + (\text{terms with deg } \ge 2),$
- $\theta(xy) = \theta(x)\theta(y).$

Definition (Massuyeau)

A Magnus expansion θ is called group-like if $\theta(\pi) \subset Gr(\widehat{T}(H))$.

If θ is a group-like Magnus expansion, then we have an isomorphism

$$\theta \colon \widehat{\mathbb{Q}\pi} \stackrel{\cong}{\longrightarrow} \widehat{T}(H)$$

of complete Hopf algebras.

The case of $\Sigma = \Sigma_{g,1}$

Definition (Massuyeau)

A group-like expansion $\theta \colon \pi_1(\Sigma) \to \widehat{T}(H)$ is called symplectic if $\theta(\partial \Sigma) = \exp(\omega)$, where $\omega \in H^{\otimes 2}$ corresponds to $1_H \in \operatorname{Hom}(H,H) = H^* \otimes H \overset{\cong}{\underset{P \mid d}{\cong}} H \otimes H.$

Fact: symplectic expansions do exist.

The Lie algebra of symplectic derivations (Kontsevich):

$$\mathrm{Der}_{\omega}(\widehat{T}(H)) := \{D \in \mathrm{End}(\widehat{T}(H)) \mid D \text{ is a derivation and } D(\omega) = 0\}.$$

The restriction map

$$\mathrm{Der}_{\omega}(\widehat{T}(H)) \to \mathrm{Hom}(H, \widehat{T}(H)) \underset{\mathsf{P}, \mathsf{d}}{\cong} H \otimes \widehat{T}(H) \subset \widehat{T}(H), \quad D \mapsto D|_{H}$$

induces a \mathbb{Q} -linear isomorphism $\mathrm{Der}_{\omega}(\widehat{T}(H)) \cong \widehat{T}(H)^{\mathrm{cyc}}$.

The case of $\Sigma = \Sigma_{g,1}$: the Goldman bracket

Consider the diagram

$$\mathbb{Q}\hat{\pi} \otimes \mathbb{Q}\hat{\pi} \xrightarrow{[\ ,\]} \mathbb{Q}\hat{\pi}$$

$$\theta \otimes \theta \downarrow \qquad \qquad \downarrow \theta$$

$$\widehat{T}(H)^{cyc} \widehat{\otimes} \widehat{T}(H)^{cyc} \xrightarrow{[\ ,\]^{\theta}} \widehat{T}(H)^{cyc}$$

where the vertical map
$$\theta$$
 is induced by $\pi \ni x \mapsto -(\theta(x) - 1) \in \widehat{T}(H)$.

Theorem (Kawazumi-K., Massuyeau-Turaev)

If
$$\theta$$
 is symplectic, $[\ ,\]^{\theta}$ equals the Lie bracket in $\widehat{T}(H)^{\operatorname{cyc}} = \operatorname{Der}_{\omega}(\widehat{T}(H))$.

Explicit formula: for
$$X_1, \dots, X_m, Y_1, \dots, Y_n \in H$$
,
$$[X_1 \cdots X_m, Y_1 \cdots Y_n]^{\theta}$$
$$= \sum_{i} (X_i \cdot Y_j) X_{i+1} \cdots X_m X_1 \cdots X_{i-1} Y_{j+1} \cdots Y_n Y_1 \cdots Y_{j-1}.$$

The case of $\Sigma = \Sigma_{g,1}$: the action σ

Consider the diagram

$$\mathbb{Q}\hat{\pi} \otimes \mathbb{Q}\pi_{1}(\Sigma) \xrightarrow{\sigma} \mathbb{Q}\pi_{1}(\Sigma)$$

$$\theta \otimes \theta \downarrow \qquad \qquad \downarrow \theta$$

$$\widehat{T}(H)^{cyc} \widehat{\otimes} \widehat{T}(H) \longrightarrow \widehat{T}(H)$$

Here, the bottom horizontal arrow is the action of $\widehat{T}(H)^{cyc} = \mathrm{Der}_{\omega}(\widehat{T}(H))$ by derivations.

Theorem (Kawazumi-K., Massuyeau-Turaev)

If θ is symplectic, this diagram is commutative.

- Kawazumi-K.: use (co)homology theory of Hopf algebras
- Massuyeau-Turaev: use the notion of Fox paring (see the next page)

The case of $\Sigma = \Sigma_{g,1}$: a refinement

Homotopy intersection form (Turaev, Papakyriakopoulos)

For
$$\alpha, \beta \in \pi_1(\Sigma)$$
, set $\eta(\alpha, \beta) := \sum_{\mathbf{p} \in \alpha \cap \beta} \varepsilon_{\mathbf{p}}(\alpha, \beta) \alpha_{*\mathbf{p}} \beta_{\mathbf{p}*} \in \mathbb{Q}\pi_1(\Sigma)$.

Theorem (Massuyeau-Turaev)

If θ is symplectic, then the following diagram is commutative.

$$\begin{array}{ccc}
\mathbb{Q}\pi_1(\Sigma) \times \mathbb{Q}\pi_1(\Sigma) & \xrightarrow{\eta} & \mathbb{Q}\pi_1(\Sigma) \\
\theta \otimes \theta \downarrow & & \downarrow \theta \\
\widehat{T}(H) \widehat{\otimes} \widehat{T}(H) & \xrightarrow{\left(\stackrel{\bullet}{\leadsto} \right) + \rho_s} & \widehat{T}(H).
\end{array}$$

Here,
$$X_1 \cdots X_m \stackrel{\bullet}{\longrightarrow} Y_1 \cdots Y_n = (X_m \cdot Y_1)X_1 \cdots X_{m-1}Y_2 \cdots Y_n$$
 and $\rho_s(a,b) = (a-\varepsilon(a))s(\omega)(b-\varepsilon(b))$, where $s(\omega) = \frac{1}{\omega} + \frac{1}{(e^{-\omega}-1)} = -\frac{1}{2} - \frac{\omega}{12} + \frac{\omega^3}{720} - \frac{\omega^5}{30240} + \cdots$. (Bernoulli numbers appear!)

The case of $\Sigma = \Sigma_{0,n+1}$

We regard $\Sigma_{0,n+1} = D^2 \setminus \bigsqcup_{i=1}^n \operatorname{Int}(D_i)$. Then $H \cong \bigoplus_{i=1}^n \mathbb{Q}[\partial D_i]$.

Definition (Massuyeau (implicit in the work of Alekseev-Enriquez-Torossian))

A Magnus expansion θ is called special if

- $\exists g_i \in \operatorname{Gr}(\widehat{T}(H)) \text{ such that } \theta(\partial D_i) = g_i \exp([\partial D_i])g_i^{-1},$
- $\theta(\partial D^2) = \exp([\partial D^2]).$

The Lie algebra of special derivations (in the sense of Alekeev-Torossian):

$$\operatorname{sder}(\widehat{T}(H))$$

$$:= \{D \in \operatorname{Der}(\widehat{T}(H)) \mid D([\partial D_i]) = [[\partial D_i], \exists u_i], D([\partial D^2]) = 0\}.$$

We can naturally identify $\operatorname{sder}(\widehat{T}(H))$ with $\widehat{T}(H)^{\operatorname{cyc}}$.

Theorem (Kawazumi-K., Massuyeau-Turaev)

If θ is special, then $[\ ,\]^{\theta}$ equals the Lie bracket in $\operatorname{sder}(\widehat{T}(H))$.

General case $(\partial \Sigma \neq \emptyset)$

Write
$$\Sigma = \Sigma_{g,n+1}$$
 and $\partial \Sigma = \bigsqcup_{i=0}^n \partial_i \Sigma$.

Put
$$\overline{\Sigma} := \Sigma \cup (\bigsqcup_{i=0}^n D^2) \cong \Sigma_g$$
.

Choose a section s of $i_*: H_1(\Sigma) \to H_1(\overline{\Sigma})$.

We need

- **①** a notion of Magnus expansion for the small category $\mathbb{Q}\Pi\Sigma$,
- **2** a (s-dependent) boundary condition for such an expansion θ .

Then, we have a simple (s-dependent) expression for $[,]^{\theta}$ and σ^{θ} .

An application:

Theorem (Kawazumi-K., the infinitesimal Dehn-Nielsen theorem)

For any Σ with $\partial \Sigma \neq \emptyset$, the map $\sigma \colon \widehat{\mathbb{Q}}\widehat{\pi} \to \mathrm{Der}_{\partial}(\widehat{\mathbb{Q}}\widehat{\Pi}\widehat{\Sigma})$ is a Lie algebra isomorphism.

Introduction

2 Goldman bracket

3 Turaev cobracket

Definition of the Turaev cobracket

Definition (Turaev)

 $\alpha \in \hat{\pi}$: represented by a generic immersion

$$\delta(\alpha) := \sum_{p \in \Gamma_{\alpha}} \alpha_p^1 \otimes \alpha_p^2 - \alpha_p^2 \otimes \alpha_p^1 \in (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}) \otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}).$$

Here:

- Γ_{α} is the set of double points of α ,
- α_p^1 , α_p^2 are two branches of α created by p. They are arranged so that (α_p^1, α_p^2) gives a positive frame of $T_p(\Sigma)$.

This formula induces a Lie cobracket on $\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}$.

Background

A skein quantization of Poisson algebras on surfaces.

Self-intersection μ

Definition (essentially introduced by Turaev)

 $\alpha \in \pi_1(\Sigma)$: represented by a generic immersion

$$\mu(\alpha) := -\sum_{p \in \Gamma_{\alpha}} \varepsilon_{p}(\alpha) \ \alpha_{*p} \alpha_{p*} \otimes \alpha_{p} \in \mathbb{Q} \pi_{1}(\Sigma) \otimes (\mathbb{Q} \hat{\pi}/\mathbb{Q} \mathbf{1}).$$

This formula induces a Q-linear map

$$\mu \colon \mathbb{Q}\pi_1(\Sigma) \to \mathbb{Q}\pi_1(\Sigma) \otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}).$$

1 μ is a refinement of δ ; we have

$$\delta(|\alpha|) = \text{Alt}(| \otimes id)\mu(\alpha),$$

where $|\cdot|: \mathbb{Q}\pi_1(\Sigma) \to \mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1}$ is the natural projection.

- **②** The operations μ and δ extends naturally to completions.
- **3** There is a framed version of δ , related to the Enomoto-Satoh trace and Alekseev-Torossian's divergence cocycle (Kawazumi).

Algebraic description of μ at the graded level

Define μ^{θ} by the commutativity of the following diagram.

$$\mathbb{Q}\pi_{1}(\Sigma) \xrightarrow{\mu} \mathbb{Q}\pi_{1}(\Sigma) \otimes (\mathbb{Q}\hat{\pi}/\mathbb{Q}\mathbf{1})$$

$$\theta \downarrow \qquad \qquad \downarrow^{\theta \otimes \theta}$$

$$\widehat{T}(H) \xrightarrow{\mu^{\theta}} \widehat{T}(H) \otimes \widehat{T}(H)^{\text{cyc}}$$

Theorem (Kawazumi-K., Massuyeau-Turaev)

For $\Sigma = \Sigma_{g,1}$ and for any symplectic expansion θ ,

$$\mu^{\theta} = \mu^{\text{alg}} + \mu^{\theta}_{(0)} + \mu^{\theta}_{(1)} + \cdots,$$

where $\mu_{(i)}^{\theta}$ is a map of degree i and μ^{alg} a map of degree -2. For $i \geq 1$, $\mu_{(i)}^{\theta}$ depend on the choice of θ , but μ^{alg} does not.

Algebraic description of δ at the graded level

Corollary

For $\Sigma = \Sigma_{g,1}$ and for any symplectic expansion θ ,

$$\delta^{\theta} = \delta^{alg} + \delta^{\theta}_{(1)} + \cdots$$

Explicit formula: for
$$X_1, \ldots, X_m \in H$$
,
$$\delta^{\operatorname{alg}}(X_1 \cdots X_m) = -\sum_{i < j} (X_i \cdot X_j) \operatorname{Alt}(X_{i+1} \cdots X_{j-1} \otimes X_{j+1} \cdots X_m X_1 \cdots X_{i-1}).$$

Open question

Is there a symplectic expansion θ such that $\delta^{\theta} = \delta^{\text{alg}}$?

Note: for g=1, there is a θ such that $\delta^{\theta} \neq \delta^{\mathsf{alg}}$. Namely, $\{\mathsf{symplectic\ expansions}\} \supsetneq \{\theta \mid \delta^{\theta} = \delta^{\mathsf{alg}}\}.$

Algebraic description of δ : the case of $\Sigma_{0,n+1}$

For $\Sigma = \Sigma_{0,n+1}$ and for any special expansion θ ,

$$\delta^{\theta} = \delta^{\mathsf{alg}} + \delta^{\theta}_{(1)} + \cdots,$$

where δ^{alg} is a map of degree -1.

Explicit formula: for $X_1, \ldots, X_m \in H$,

$$\delta^{\text{alg}}(X_1 \cdots X_m)$$

$$= \sum_{i < j} \delta_{X_i, X_j} \text{ Alt} \begin{pmatrix} X_i \cdots X_{j-1} \otimes X_{j+1} \cdots X_m X_1 \cdots X_{i-1} \\ + X_j \cdots X_m X_1 \cdots X_{i-1} \otimes X_{i+1} \cdots X_{j-1} \end{pmatrix}$$

The proof uses a capping argument: consider the embedding

$$\Sigma_{0,n+1} \hookrightarrow \Sigma_{0,n+1} \cup \left(\bigsqcup_{i=1}^n \Sigma_{1,1}\right) = \Sigma_{n,1}.$$

Recent development

Why is δ^{θ} more difficult than $[\ ,\]^{\theta}$? The main reason is that

$$Self(\alpha\beta) = Self(\alpha) \sqcup Self(\beta) \sqcup (\alpha \cap \beta).$$

Partial results

- For $\Sigma = \Sigma_{0,n+1}$, Kawazumi obtained a description of δ^{θ} with respect to the exponential Magnus expansion $(\theta(x_i) = \exp([x_i]))$.
- ② For $\Sigma = \Sigma_{1,1}$, there is a symplectic expansion θ such that $\delta^{\theta} = \delta^{\text{alg}}$ modulo terms of degree ≥ 9 . (K., using computer)

Theorem (Massuyeau '15)

Let $\Sigma = \Sigma_{0,n+1}$. For a special expansion θ arising from the Kontsevich integral, δ^{θ} equals δ^{alg} . (Actually a description for μ^{θ} is obtained.)

Summary

Two operations to loops on Σ

$$[\ ,\] \colon \widehat{\mathbb{Q}}\widehat{\pi}\widehat{\otimes}\widehat{\mathbb{Q}}\widehat{\pi} \to \widehat{\mathbb{Q}}\widehat{\pi}, \quad \stackrel{\mathsf{refinement}}{\leadsto} \quad \eta \colon \widehat{\mathbb{Q}}\pi_1(\widehat{\Sigma})\widehat{\otimes}\widehat{\mathbb{Q}}\pi_1(\widehat{\Sigma}) \to \widehat{\mathbb{Q}}\pi_1(\widehat{\Sigma})$$

$$\delta \colon \widehat{\mathbb{Q}}\widehat{\pi} \to \widehat{\mathbb{Q}}\widehat{\pi}\widehat{\otimes}\widehat{\mathbb{Q}}\widehat{\pi}, \quad \stackrel{\mathsf{refinement}}{\leadsto} \quad \mu \colon \widehat{\mathbb{Q}}\pi_1(\widehat{\Sigma}) \to \widehat{\mathbb{Q}}\pi_1(\widehat{\Sigma})\widehat{\otimes}\widehat{\mathbb{Q}}\widehat{\pi}$$

Current status of finding a simple expression for $[\ ,\]^{\theta}$ and δ^{θ} :

	Magnus expansion	$[\ , \]^{\theta}$	$\delta^{ heta}$
$\Sigma_{g,1}$	symplectic	OK	?
$\Sigma_{0,n+1}$	special	OK	OK (Massuyeau)
general case	a ∂ -condition	OK	?

- **①** We know that $gr(\delta^{\theta}) = \delta^{alg}$.
- ② To get "?", we need a refinement of symplectic/special condition.