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1.A. Exotic framed knots

Problem� �
Does every smooth 4-manifold admit

an exotic (i.e. homeo but non-diffeo) smooth structure?� �
We consider a special class of 4-manifolds:

A framed knot (i.e. knot + integer) in S3 gives a 4-mfd

by attaching 2-handle D2 ×D2 to D4 along the framed knot.

A pair of framed knots in S3 is said to be exotic

if they represent homeo but non-diffeo 4-mfds.

Problem� �
Find exotic pairs of framed knots!� �

Remark. ∃ framed knot admitting NO exotic framed knot



1.A. Exotic framed knots

Problem� �
Find exotic pairs of framed knots!� �

Theorem (Akbulut ’91)

∃ an exotic pair of −1-framed knots.

Theorem (Kalmár-Stipsicz ’13)

∃ an infinite family of exotic pairs of −1-framed knots.

Remark. Framings of these examples are all −1.
For each pair, one 4-mfd is Stein, but the other is non-Stein.



1.A. Exotic framed knots

Theorem (Y)� �
∀n ∈ Z, ∃ infinitely many exotic pairs of n-framed knots.

Furthermore, both knots in each pair gives Stein 4-mfds.� �
Moreover, we give machines which produce vast examples.

Recall:

A knot P in S1 ×D2 induces a satellite map

P : {knot in S3} → {knot in S3}
by identifying reg. nbd of a knot with S1 ×D2 via 0-framing.



1.A. Exotic framed knots

Machines producing vast examples:

Main Theorem (Y)� �
∀n ∈ Z, ∃ satellite maps Pn, Qn s.t.

for any knot K in S3 with

2g4(K)− 2 = ad(K) and n ≤ t̂b(K),

n-framed Pn(K) and Qn(K) are an exotic pair.� �
Remark.

For each n, there are many K satisfying the assumption.

If K satisfies the assumption, then Pn(K) and Qn(K) satisfy.



1.A. Different viewpoint: exotic satellite maps

For a satellite map P : {knot} → {knot} and n ∈ Z,
we define a 4-dimensional n-framed satellite map

P (n) : {knot in S3} → {smooth 4-mfd}
by P (n)(K) = 4-manifold represented by n-framed P (K).

P (n) and Q(n) are called smoothly the same,

if P (n)(K) and Q(n)(K) are diffeo for any knot K

New difference between smooth and topological categories:

Theorem (Y)� �
∀n ∈ Z, ∃ 4-dim n-framed satellite maps

which are topologically the same but smoothly distinct.� �



1.A. Different viewpoint: exotic satellite maps

For a satellite map P : {knot} → {knot} and n ∈ Z,
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1.B. Application to knot concordance

n-surgery on a knot K in S3 := boundary of the 4-mfd

represented by n-framed K.

Two oriented knots K0, K1 are concordant

if ∃ S1 × I ↪→ S3 × I s.t. S1 × i = Ki × i (i = 0, 1).

Conjecture (Akbulut-Kirby 1978)� �
If 0-surgeries on two knots in S3 give the same 3-mfd,

then the knots (with relevant ori) are concordant.� �
Remark. Quotation from Kirby’s problem list (’97):

all known concordance invariants of the two knots
are the same.



1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)� �
If 0-surgeries on two knots in S3 give the same 3-mfd,

then the knots (with relevant ori) are concordant.� �
Theorem (Cochran-Franklin-Hedden-Horn 2013)

∃ infinitely many pairs of non-concordant knots

with homology cobordant 0-surgeries.

Theorem (Abe-Tagami)

If the slice-ribbon conjecture is true,
then the Akbulut-Kirby conjecture is false.



1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)� �
If 0-surgeries on two knots in S3 give the same 3-mfd,

then the knots (with relevant ori) are concordant.� �
Theorem (Y)� �
∃ infinitely many counterexamples to AK conjecture.� �

In fact, our exotic 0-framed knots are counterexamples.

Corollary (Y)� �
Knot concordance invariants g4, τ, s are NOT invariants

of 3-manifolds given by 0-surgeries on knots.� �



1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)� �
If 0-surgeries on two knots in S3 give the same 3-mfd,

then the knots (with relevant ori) are concordant.� �
Simple counterexample
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1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)� �
If 0-surgeries on two knots in S3 give the same 3-mfd,

then the knots (with relevant ori) are concordant.� �
Question.

If two 0-framed knots in S3 give the same smooth 4-mfd,

are the knots (with relevant ori) concordant?

Remark

Abe-Tagami’s proof shows the answer is no,
if the slice-ribbon conjecture is true.



2. Brief review of corks

C : cpt contractible 4-mfd, τ : ∂C → ∂C: involution,

Definition

(C, τ) is a cork ⇔ τ extends to a self-homeo of C,

but cannot extend to any self-diffeo of C.

Suppose C ⊂ X4.

The following operation is called a cork twist of X:

X ⇝ (X − C) ∪τ C.

C C
cork twist

X



2. Brief review of corks

Theorem(Curtis-Freedman-Hsiang-Stong ’96, Matveyev ’96)

X,Y : simp. conn. closed ori. smooth 4-mfds

If Y is an exotic copy of X,

then Y is obtained from X by a cork twist.

C C
cork twist

X Y

exotic

Smooth structures are determined by corks !!

Remark
Cork twists do NOT always produce exotic smooth structures.



2. Brief review of corks: examples

Definition L = K0 ⊔K1 is a symmetric Mazur link if

• K0 and K1 are unknot, lk(K0, K1) = 1.
• ∃ involution of S3 which exchanges K0 and K1.

A symmetric Mazur link L gives

a contractible 4-mfd CL and an involution τL : ∂CL → ∂CL.
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2. Brief review of corks: examples

Definition L = K0 ⊔K1 is a symmetric Mazur link if

• K0 and K1 are unknot, lk(K0, K1) = 1.
• ∃ involution of S3 which exchanges K0 and K1.

Theorem (Akbulut ’91) There exists a cork.
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2. Brief review of corks: examples

Theorem (Akbulut-Matveyev ’97, cf. Akbulut-Karakurt ’12)

For a symmetric Mazur link L, (CL, τL) is a cork

if CL becomes a Stein handlebody in a ‘natural way’.

Theorem (Akbulut ’91, Akbulut-Y ’08).

(Wn, fn) is a cork for n ≥ 1.

nWn := n+1

0

Theorem(Y)

For a symmetric Mazur link L, (CL, τL) is NOT a cork

if L becomes a trivial link by one crossing change.



2. Brief review of corks: examples

Theorem (Akbulut-Matveyev ’97, cf. Akbulut-Karakurt ’12)

For a symmetric Mazur link L, (CL, τL) is a cork

if CL becomes a Stein handlebody in a ‘natural way’.

Theorem(Y)

For a symmetric Mazur link L, (CL, τL) is NOT a cork

if L becomes a trivial link by one crossing change.
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2. Brief review of corks: applications

Theorem (Akbulut ’91, Akbulut-Matveyev 97’)

∃ exotic pair of simp. conn. 4-manifold with b2 = 1.
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2. Brief review of corks: applications

2-handlebody := handlebody consisting of 0-, 1-, 2-handles.

Thm (Akbulut-Y ’13)

∀X: 4-dim cpt ori 2-handlebody with b2(X) ̸= 0, ∀n ∈ N,
∃X1, X2, . . . , Xn: 4-mfds admitting Stein str. s.t.

• X1, X2, . . . , Xn are pairwise exotic.

• H∗(Xi) ∼= H∗(X), π1(Xi) ∼= π1(X), QXi
∼= QX ,

H∗(∂Xi) ∼= H∗(∂X).

• Each Xi can be embedded into X.

Cor (Akbulut-Y ’13)

For a large class of 4-manifolds with ∂,

their topological invariants are realized as
those of arbitrarily many pairwise exotic 4-mfds



2. Brief review of corks: applications

Thm (Akbulut-Y ’13)

Z, Y : cpt conn. ori. 4-mfds, Y ⊂ Z.

Z − intY is a 2-handlebody with b2 ̸= 0.

Then ∀n ∈ N, ∃Y1, Y2, . . . , Yn ⊂ Z: cpt 4-mfds s.t.

• Yi is diffeo to Yj (∀i ̸= j).

• (Z, Yi) is homeo but non-diffeo to (Z, Yj) (i ̸= j).

• H∗(Yi) ∼= H∗(Y ), π1(Yi) ∼= π1(Y ), QYi
∼= QY ,

H∗(∂Yi) ∼= H∗(∂Yi).

Cor (Akbulut-Y ’13) Every cpt. ori. 4-manifold Z admits

arbitrarily many pairwise exotic embedding of a 4-mfd into Z.



3. Proof: new presentations of cork twists

Lemma (Y). (Vm, gm) is a cork for m ≥ 0.

1

0

1 1

−m

Vm :

Remark. (V−1, g−1) is NOT a cork.

Definition

0−m

−2Vm
* :



Theorem (Y) [hook surgery]� �
There exists a diffeomorphism g∗m : ∂Vm → ∂V ∗

m s.t.

• g∗m sends the knot γK to γ∗
K for any knot K in S3.

• g∗m ◦ g−1
m : ∂Vm → ∂V ∗

m extends to a diffeo Vm → V ∗
m.� �

1

0

1 1

−m

n

K

1

0

1 1

−m

n

K

n

K

cork twist

cork twist

≅

0−m

−2

diffeo

gm*

gm

K

K
*

Vm

Vm*



Theorem (Y) [hook surgery]� �
There exists a diffeomorphism g∗m : ∂Vm → ∂V ∗

m s.t.

• g∗m sends the knot γK to γ∗
K for any knot K in S3.

• g∗m ◦ g−1
m : ∂Vm → ∂V ∗

m extends to a diffeo Vm → V ∗
m.� �

Corollary X : 4-mfd, Vm ⊂ X.

The cork twist (X − Vm) ∪gm Vm is diffeomorphic to

the hook surgery (X − Vm) ∪g∗m V ∗
m.



3. Proof: satellite maps

Machines producing vast examples:

Main Theorem (Y)� �
∀n ∈ Z, ∃ satellite maps Pn, Qn s.t.

for any knot K in S3 with

2g4(K)− 2 = ad(K) and n ≤ t̂b(K),

n-framed Pn(K) and Qn(K) are an exotic pair.� �



3. Proof: satellite maps

Pm,n, Qm,n : (pattern) knots in S1 ×D2

n

Pm,n : Qm,n :

−m
−m

−2

n

The case m = 0 :

−3

n n

P0,n : Q0,n :



3. Proof: satellite maps

Pm,n, Qm,n : (pattern) knots in S1 ×D2

n

Pm,n : Qm,n :

−m
−m

−2

n

Remark.

• Qm,n(K) is concordant to K.

• g4(Qm,n(K)) = g4(K), g4(Pm,n(K)) ≤ g4(K) + 1.

Definition.

P
(n)
m,n(K) := 4-manifold represented by n-framed Pm,n(K).

Q
(n)
m,n(K) := 4-manifold represented by n-framed Qm,n(K).



n

Pm,n : Qm,n :

−m
−m

−2

n

Lemma.

1

0

1 1

−m

n

K

n

K

0−m

−2

Pm,n(K) ≅(n) Qm,n(K) ≅(n)

cork twist

Therefore P
(n)
m,n(K) is homeo to Q

(n)
m,n(K)



L(K) := {Legendrian knot isotopic to K}
ad(K) := max{ad(K) := tb(K)− 1 + |r(K)| | K ∈ L(K)}

t̂b(K) := max{tb(K) | K ∈ L(K), ad(K) = ad(K)}
g
(n)
s (K) := min{g(Σ) | [Σ] is a generator of H2(K

(n))}

Fact (adjunction inequality).

For n < t̂b(K), ad(K) ≤ 2g
(n)
s (K)− 2.

Main Theorem (Y)� �
Fix m ≥ 0. Assume a knot K and n ∈ Z satisfies

2g4(K)− 2 = ad(K) and n ≤ t̂b(K).

Then P
(n)
m,n(K) and Q

(n)
m,n(K) are homeo but not diffeo.� �



Main Theorem (Y)� �
Fix m ≥ 0. Assume a knot K and n ∈ Z satisfies

2g4(K)− 2 = ad(K) and n ≤ t̂b(K).

Then P
(n)
m,n(K) and Q

(n)
m,n(K) are homeo but not diffeo.� �

By finding Legendrian realization of Pm,n(K), we see

ad(Pm,n(K)) ≥ ad(K) + 2, t̂b(Pm,n(K)) ≥ n+ 2.

=⇒ g
(n)
s (Pm,n(K)) = g4(K) + 1

Since g
(n)
s (Qm,n(K)) ≤ g4(K), P

(n)
m,n(K) ̸∼= Q

(n)
m,n(K).


