Corks, exotic 4-manifolds and knot concordance

Kouichi Yasui Hiroshima University

March 10, 2016

I. Background and Main results

Exotic 4-manifolds represented by framed knots Application to knot concordance

II. Brief review of corks

III. Proof of the main results

Problem

Does every smooth 4-manifold admit an exotic (i.e. homeo but non-diffeo) smooth structure?

We consider a special class of 4-manifolds:

A framed knot (i.e. knot + integer) in S^3 gives a 4-mfd by attaching 2-handle $D^2 \times D^2$ to D^4 along the framed knot.

A pair of framed knots in S^3 is said to be **exotic** if they represent homeo but non-diffeo 4-mfds.

Problem

Find exotic pairs of framed knots!

Remark. \exists framed knot admitting NO exotic framed knot

Problem

Find exotic pairs of framed knots!

Theorem (Akbulut '91)

 \exists an exotic pair of -1-framed knots.

Theorem (Kalmár-Stipsicz '13)

 \exists an infinite family of exotic pairs of -1-framed knots.

Remark. Framings of these examples are all -1.

For each pair, one 4-mfd is Stein, but the other is non-Stein.

Theorem (Y)

 $\forall n \in \mathbb{Z}, \ \exists$ infinitely many exotic pairs of n-framed knots. Furthermore, both knots in each pair gives Stein 4-mfds.

Moreover, we give machines which produce vast examples.

Recall:

A knot P in $S^1 \times D^2$ induces a satellite map

 $P: \{ \mathsf{knot} \ \mathsf{in} \ S^3 \} \to \{ \mathsf{knot} \ \mathsf{in} \ S^3 \}$

by identifying reg. nbd of a knot with $S^1 \times D^2$ via 0-framing.

Machines producing vast examples:

Main Theorem (Y)

 $\forall n \in \mathbb{Z}, \exists \text{ satellite maps } P_n, Q_n \text{ s.t.}$

for any knot K in S^3 with

$$2g_4(K) - 2 = \overline{ad}(K)$$
 and $n \leq \widehat{tb}(K)$,

n-framed $P_n(K)$ and $Q_n(K)$ are an exotic pair.

Remark.

For each n, there are many K satisfying the assumption.

If K satisfies the assumption, then $P_n(K)$ and $Q_n(K)$ satisfy.

1.A. Different viewpoint: exotic satellite maps

For a satellite map $P: \{ \mathsf{knot} \} \to \{ \mathsf{knot} \}$ and $n \in \mathbb{Z}$, we define a **4-dimensional** $n\text{-}\mathsf{framed}$ satellite map $P^{(n)}: \{ \mathsf{knot} \text{ in } S^3 \} \to \{ \mathsf{smooth} \text{ 4-mfd} \}$ by $P^{(n)}(K) = 4\text{-}\mathsf{manifold}$ represented by $n\text{-}\mathsf{framed}$ P(K).

 $P^{(n)}$ and $Q^{(n)}$ are called smoothly the same, if $P^{(n)}(K)$ and $Q^{(n)}(K)$ are diffeo for any knot K

New difference between smooth and topological categories:

Theorem (Y) —

 $\forall n \in \mathbb{Z}, \quad \exists \text{ 4-dim } n\text{-framed satellite maps}$ which are topologically the same but smoothly distinct.

1.A. Different viewpoint: exotic satellite maps

For a satellite map $P: \{ \mathsf{knot} \} \to \{ \mathsf{knot} \}$ and $n \in \mathbb{Z}$, we define a **4-dimensional** $n\text{-}\mathsf{framed}$ satellite map $P^{(n)}: \{ \mathsf{knot} \text{ in } S^3 \} \to \{ \mathsf{smooth} \text{ 4-mfd} \}$ by $P^{(n)}(K) = 4\text{-}\mathsf{manifold}$ represented by $n\text{-}\mathsf{framed}$ P(K).

 $P^{(n)}$ and $Q^{(n)}$ are called topologically the same, if $P^{(n)}(K)$ and $Q^{(n)}(K)$ are homeo for any knot K.

New difference between smooth and topological categories:

Theorem (Y) —

 $\forall n \in \mathbb{Z}, \quad \exists \text{ 4-dim } n\text{-framed satellite maps}$ which are topologically the same but smoothly distinct.

n-surgery on a knot K in $S^3:=$ boundary of the 4-mfd represented by n-framed K.

Two oriented knots K_0, K_1 are **concordant**

if
$$\exists S^1 \times I \hookrightarrow S^3 \times I$$
 s.t. $S^1 \times i = K_i \times i$ $(i = 0, 1)$.

Conjecture (Akbulut-Kirby 1978) —

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Remark. Quotation from Kirby's problem list ('97): all known concordance invariants of the two knots are the same.

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Theorem (Cochran-Franklin-Hedden-Horn 2013)

∃ infinitely many pairs of non-concordant knots with homology cobordant 0-surgeries.

Theorem (Abe-Tagami)

If the slice-ribbon conjecture is true, then the Akbulut-Kirby conjecture is false.

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Theorem (Y)

∃ infinitely many counterexamples to AK conjecture.

In fact, our exotic 0-framed knots are counterexamples.

Corollary (Y)

Knot concordance invariants g_4, τ, s are NOT invariants of 3-manifolds given by 0-surgeries on knots.

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Simple counterexample

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Question.

If two 0-framed knots in S^3 give the same smooth 4-mfd, are the knots (with relevant ori) concordant?

Remark

Abe-Tagami's proof shows the answer is no, if the slice-ribbon conjecture is true.

2. Brief review of corks

 $C: \mathsf{cpt}\ \mathsf{contractible}\ \mathsf{4-mfd}, \quad \tau: \partial C \to \partial C: \mathsf{involution},$

Definition

 (C, τ) is a **cork** $\Leftrightarrow \tau$ extends to a self-homeo of C, but cannot extend to any self-diffeo of C.

Suppose $C \subset X^4$.

The following operation is called a **cork twist** of X:

$$X \leadsto (X - C) \cup_{\tau} C$$
.

2. Brief review of corks

Theorem(Curtis-Freedman-Hsiang-Stong '96, Matveyev '96) X, Y: simp. conn. closed ori. smooth 4-mfds If Y is an exotic copy of X, then Y is obtained from X by a cork twist.

Smooth structures are determined by corks !!

Remark

Cork twists do NOT always produce exotic smooth structures.

Definition $L = K_0 \sqcup K_1$ is a symmetric Mazur link if

- K_0 and K_1 are unknot, $lk(K_0, K_1) = 1$.
- \exists involution of S^3 which exchanges K_0 and K_1 .

A symmetric Mazur link L gives a contractible 4-mfd C_L and an involution $\tau_L: \partial C_L \to \partial C_L$.

Definition $L = K_0 \sqcup K_1$ is a symmetric Mazur link if

- K_0 and K_1 are unknot, $lk(K_0, K_1) = 1$.
- \bullet \exists involution of S^3 which exchanges K_0 and K_1 .

Theorem (Akbulut '91) There exists a cork.

Theorem (Akbulut-Matveyev '97, cf. Akbulut-Karakurt '12) For a symmetric Mazur link L, (C_L, τ_L) is a cork if C_L becomes a Stein handlebody in a 'natural way'.

Theorem (Akbulut '91, Akbulut-Y '08). (W_n, f_n) is a cork for $n \ge 1$.

$$Wn := \begin{bmatrix} n \\ n+1 \end{bmatrix}$$

Theorem(Y)

For a symmetric Mazur link L, (C_L, τ_L) is NOT a cork if L becomes a trivial link by one crossing change.

Theorem (Akbulut-Matveyev '97, cf. Akbulut-Karakurt '12) For a symmetric Mazur link L, (C_L, τ_L) is a cork if C_L becomes a Stein handlebody in a 'natural way'.

Theorem(Y)

For a symmetric Mazur link L, (C_L, τ_L) is NOT a cork if L becomes a trivial link by one crossing change.

2. Brief review of corks: applications

Theorem (Akbulut '91, Akbulut-Matveyev 97')

 \exists exotic pair of simp. conn. 4-manifold with $b_2 = 1$.

2. Brief review of corks: applications

2-handlebody := handlebody consisting of 0-, 1-, 2-handles.

Thm (Akbulut-Y '13)

 $\forall X$: 4-dim cpt ori 2-handlebody with $b_2(X) \neq 0$, $\forall n \in \mathbb{N}$,

 $\exists X_1, X_2, \dots, X_n$: 4-mfds admitting Stein str. s.t.

- X_1, X_2, \ldots, X_n are pairwise exotic.
- $H_*(X_i) \cong H_*(X)$, $\pi_1(X_i) \cong \pi_1(X)$, $Q_{X_i} \cong Q_X$, $H_*(\partial X_i) \cong H_*(\partial X)$.
- Each X_i can be embedded into X.

Cor (Akbulut-Y '13)

For a large class of 4-manifolds with ∂ , their topological invariants are realized as those of arbitrarily many pairwise exotic 4-mfds

2. Brief review of corks: applications

Thm (Akbulut-Y '13)

Z, Y: cpt conn. ori. 4-mfds, $Y \subset Z$.

 $Z - \text{int } Y \text{ is a 2-handlebody with } b_2 \neq 0.$

Then $\forall n \in \mathbb{N}$, $\exists Y_1, Y_2, \dots, Y_n \subset Z$: cpt 4-mfds s.t.

- Y_i is diffeo to Y_i $(\forall i \neq j)$.
- (Z, Y_i) is homeo but non-diffeo to (Z, Y_j) $(i \neq j)$.
- $H_*(Y_i) \cong H_*(Y)$, $\pi_1(Y_i) \cong \pi_1(Y)$, $Q_{Y_i} \cong Q_Y$, $H_*(\partial Y_i) \cong H_*(\partial Y_i)$.

Cor (Akbulut-Y '13) Every cpt. ori. 4-manifold Z admits arbitrarily many pairwise exotic embedding of a 4-mfd into Z.

3. Proof: new presentations of cork twists

Lemma (Y). (V_m, g_m) is a cork for $m \ge 0$.

Remark. (V_{-1}, g_{-1}) is NOT a cork.

Definition

Theorem (Y) [hook surgery]

There exists a diffeomorphism $g_m^*: \partial V_m \to \partial V_m^*$ s.t.

- ullet g_m^* sends the knot γ_K to γ_K^* for any knot K in S^3 .
- $g_m^* \circ g_m^{-1} : \partial V_m \to \partial V_m^*$ extends to a diffeo $V_m \to V_m^*$.

Theorem (Y) [hook surgery]

There exists a diffeomorphism $g_m^*: \partial V_m \to \partial V_m^*$ s.t.

- ullet g_m^* sends the knot γ_K to γ_K^* for any knot K in S^3 .
- $g_m^* \circ g_m^{-1} : \partial V_m \to \partial V_m^*$ extends to a diffeo $V_m \to V_m^*$.

Corollary X: 4-mfd, $V_m \subset X$.

The cork twist $(X - V_m) \cup_{g_m} V_m$ is diffeomorphic to the hook surgery $(X - V_m) \cup_{g_m^*} V_m^*$.

3. Proof: satellite maps

Machines producing vast examples:

Main Theorem (Y)

 $\forall n \in \mathbb{Z}, \exists \text{ satellite maps } P_n, Q_n \text{ s.t.}$

for any knot K in S^3 with

$$2g_4(K) - 2 = \overline{ad}(K)$$
 and $n \leq \widehat{tb}(K)$,

n-framed $P_n(K)$ and $Q_n(K)$ are an exotic pair.

3. Proof: satellite maps

 $P_{m,n},\ Q_{m,n}:$ (pattern) knots in $S^1\times D^2$

The case m=0:

3. Proof: satellite maps

 $P_{m,n},\ Q_{m,n}:$ (pattern) knots in $S^1\times D^2$

Remark.

- $Q_{m,n}(K)$ is concordant to K.
- $g_4(Q_{m,n}(K)) = g_4(K)$, $g_4(P_{m,n}(K)) \le g_4(K) + 1$.

Definition.

 $P_{m,n}^{(n)}(K) :=$ 4-manifold represented by n-framed $P_{m,n}(K)$.

 $Q_{m,n}^{(n)}(K) :=$ 4-manifold represented by n-framed $Q_{m,n}(K)$.

Lemma.

Therefore $P_{m,n}^{(n)}(K)$ is homeo to $Q_{m,n}^{(n)}(K)$

 $\mathcal{L}(K) := \{ \text{Legendrian knot isotopic to } K \}$ $\overline{ad}(K) := \max\{ad(\mathcal{K}) := tb(\mathcal{K}) - 1 + |r(\mathcal{K})| \mid \mathcal{K} \in \mathcal{L}(K) \}$ $\widehat{tb}(K) := \max\{tb(\mathcal{K}) \mid \mathcal{K} \in \mathcal{L}(K), \ ad(\mathcal{K}) = \overline{ad}(K) \}$ $g_s^{(n)}(K) := \min\{g(\Sigma) \mid [\Sigma] \text{ is a generator of } H_2(K^{(n)}) \}$

Fact (adjunction inequality).

For
$$n < \widehat{tb}(K)$$
, $\overline{ad}(K) \le 2g_s^{(n)}(K) - 2$.

Main Theorem (Y)

Fix $m \geq 0$. Assume a knot K and $n \in \mathbb{Z}$ satisfies $2g_4(K) - 2 = \overline{ad}(K)$ and $n \leq \widehat{tb}(K)$.

Then $P_{m,n}^{(n)}(K)$ and $Q_{m,n}^{(n)}(K)$ are homeo but not diffeo.

Main Theorem (Y) –

Fix $m \geq 0$. Assume a knot K and $n \in \mathbb{Z}$ satisfies

$$2g_4(K) - 2 = \overline{ad}(K)$$
 and $n \leq \widehat{tb}(K)$.

Then $P_{m,n}^{(n)}(K)$ and $Q_{m,n}^{(n)}(K)$ are homeo but not diffeo.

By finding Legendrian realization of $P_{m,n}(K)$, we see

$$\overline{ad}(P_{m,n}(K)) \ge \overline{ad}(K) + 2, \quad \widehat{tb}(P_{m,n}(K)) \ge n + 2.$$

$$\implies g_s^{(n)}(P_{m,n}(K)) = g_4(K) + 1$$

Since
$$g_s^{(n)}(Q_{m,n}(K)) \le g_4(K)$$
, $P_{m,n}^{(n)}(K) \not\cong Q_{m,n}^{(n)}(K)$.