Certain right-angled Artin groups in mapping class groups

Takuya Katayama (w/ Erika Kuno)

Hiroshima University

Hiroshima University, March 9, 2018

Contents

- Embeddings of RAAGs into MCGs (Main Theorem)
- Embeddings between finite index subgroups of MCGs (applications)

Right-angled Artin groups

 Γ : a finite (simplicial) graph $V(\Gamma) = \{v_1, v_2, \dots, v_n\}$: the vertex set of Γ $E(\Gamma)$: the edge set of Γ

Definition

The right-angled Artin group (RAAG) $G(\Gamma)$ on Γ is the group given by the following presentation:

$$G(\Gamma) = \langle v_1, v_2, \dots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \not\in E(\Gamma) \rangle.$$

 $G(\Gamma_1)\cong G(\Gamma_2)$ if and only if $\Gamma_1\cong \Gamma_2$. e.g. $G(ullet ullet ullet)\cong \mathbb{Z}^3$

$$G(\bullet \bullet \bullet) \cong \mathbb{Z} \times F_2$$

$$G(\bullet \bullet \bullet) \cong \mathbb{Z} * \mathbb{Z}^2$$

$$G(\checkmark)\cong F_3$$

The mapping class groups of surfaces

 $\Sigma := \Sigma_{g,p}$: the orientable surface of genus g with p punctures The mapping class group of Σ is defined as follows.

$$\operatorname{Mod}(\Sigma) := \operatorname{Homeo}_+(\Sigma)/\mathsf{isotopy}$$

Ori. pres. homeomorphisms can interchange punctures.

 α : an essential closed curves on Σ

The Dehn twist along α :

The co-curve graphs of surfaces

 $\Sigma := \Sigma_{g,p}$: the orientable surface of genus g with p punctures The co-curve graph $\bar{\mathcal{C}}(\Sigma)$ is a graph such that

- $V(\bar{\mathcal{C}}(\Sigma)) = \{\text{isotopy classes of escc on } \Sigma\}$
- escc α, β span an edge iff $i(\alpha, \beta) > 0$.

e.g.

Note: the co-curve graph is the complement graph of $C(\Sigma)$ which is the 1-skeleton of the curve complex.

Fact (Subgroup generated by two Dehn twists)

Let α and β be non-isotopic escc on $\Sigma_{g,p}$.

- (1) If $i(\alpha, \beta) = 0$, then the Dehn twists T_{α} and T_{β} generate $\mathbb{Z}^2 \cong G(\bullet \bullet)$ in $\operatorname{Mod}(\Sigma_{g,p})$.
- (2) If $i(\alpha, \beta) = 1$, then T_{α} and T_{β} generate $SL(2, \mathbb{Z})$ or B_3 (the braid group on 3 strands).
- (3) If $i(\alpha, \beta) \geq 2$, then T_{α} and T_{β} generate $F_2 \cong G(\bullet \bullet)$ (Ishida, 1996).

Mostly the subgroup generated by two Dehn twists is a right-angled Artin group.

Theorem (Koberda, 2012)

 Γ : a finite graph, $\chi(\Sigma_{g,p}) < 0$.

If $\Gamma \leq \bar{\mathcal{C}}(\Sigma_{g,p})$, then sufficiently high powers of "the Dehn twists corresponding to $V(\Gamma)$ " generate $G(\Gamma)$ in $\operatorname{Mod}(\Sigma_{g,p})$.

Theorem (Koberda, 2012)

Λ: a finite graph, $\chi(\Sigma_{g,p}) < 0$. If $\Lambda \leq \bar{\mathcal{C}}(\Sigma_{g,p})$, then $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$.

Here, an injective map $\iota \colon V(\Lambda) \to V(\Gamma)$ is called a full embedding if $\{u,v\} \in E(\Lambda) \Leftrightarrow \{\iota(u),\iota(v)\} \in E(\Gamma)$ for all $u,v \in V(\Lambda)$.

A fully embedded image $\iota(\Lambda)$ is called a full subgraph.

We denote by $\Lambda \leq \Gamma$ if Λ is a full subgraph of Γ .

e.g.

● is a subgraph but not full...

Motivation

Problem (Kim-Koberda, 2014)

Decide whether $G(\Gamma)$ is embedded into $\operatorname{Mod}(\Sigma_{g,p})$.

Theorem (Birman-Lubotzky-McCarthy, 1983)

 $\mathbb{Z}^n \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if $n \leq 3g - 3 + p$.

Theorem (McCarthy, 1985)

 $F_2 \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if $(g,p) \neq (0, \leq 3)$.

Theorem (Koberda, Bering IV-Conant-Gaster, K, 2017)

 $F_2 \times F_2 \times \cdots \times F_2 \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if the number of the direct factors F_2 is at most $g-1+\lfloor \frac{g+p}{2} \rfloor$. Here, $F_2 \times F_2 \times \cdots \times F_2 \cong G(\bullet - \bullet \sqcup \bullet - \bullet \sqcup \cdots \sqcup \bullet - \bullet)$.

Main Theorem

•••

 P_m : the path graph on m vertices

Main Theorem (K.-Kuno)

 $G(P_m) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if m satisfies the following inequality.

$$m \leq \begin{cases} 0 & ((g,p) = (0,0), (0,1), (0,2), (0,3)) \\ 2 & ((g,p) = (0,4), (1,0), (1,1)) \\ p-1 & (g=0, p \geq 5) \\ p+2 & (g=1, p \geq 2) \\ 2g+p+1 & (g \geq 2) \end{cases}$$

Application

Let g be a positive integer ≥ 2 .

Theorem (Birman-Hilden 1973 and Farb-Margalit 2011)

If $p \leq 2g + 2$, then $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of $\operatorname{Mod}(\Sigma_{0,p})$.

Main Theorem implies the following.

Corollary A (K.-Kuno)

Suppose that $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of $\operatorname{Mod}(\Sigma_{0,p})$.

Then, $p \leq 2g + 2$.

Note: residual finiteness of the mapping class groups guarantees that a large supply of finite index subgroups of the mapping class groups. $\cap H$ ($H \leq \operatorname{Mod}(\Sigma_{g,p})$: finite index) = 1.

Theorem (Birman-Hilden 1973 and Perron-Vannier 1999)

If $n \leq 2g$, then $\operatorname{Mod}(\Sigma_g)$ contains the braid group B_n on n strands.

Theorem (K.)

Suppose that $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of B_n . Then $n \leq 2g$.

This generalizes the following theorem.

Theorem (Castel, 2016)

Suppose that $\operatorname{Mod}(\Sigma_g)$ contains B_n .

Then $n \leq 2g$.

Summary

The following hold.

- (1) $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of $\operatorname{Mod}(\Sigma_{0,p})$ if and only if p < 2g + 2.
- (2) $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of B_n if and only if n < 2g.

Quick Review: Birman-Hilden double branched cover (1/3)

Theorem

 $B_{2g} \hookrightarrow \operatorname{Mod}(\Sigma_g).$

 $B_{2g} := \operatorname{Mod}(\Sigma_{2g}^1) \cong \operatorname{SMod}(\Sigma_{g-1}^2) \hookrightarrow \operatorname{Mod}(\Sigma_g)$. SMod: fib. pres. $PB_{2g} \cong \operatorname{PMod}(\Sigma_{0,2g+1}) \times \mathbb{Z}$ (Clay-Leininger-Margalit).

Corollary

 $\operatorname{PMod}(\Sigma_{0,p}) \hookrightarrow \operatorname{Mod}(\Sigma_g)$ for $\forall p \leq 2g+1$.

Quick Review: Birman-Hilden double branched cover (2/3)

Theorem

 $\operatorname{SMod}(\Sigma_g)/\langle\iota\rangle\cong\operatorname{Mod}(\Sigma_{0,2g+2}).$

Pick a finite index subgroup H of $\operatorname{SMod}(\Sigma_g)$ avoiding ι . Then H is embedded in $\operatorname{Mod}(\Sigma_{0,2g+2})$ as a finite index subgroup. Natural inclusion $H \subset \operatorname{Mod}(\Sigma_g)$ is a desired embedding.

Quick Review: Birman-Hilden double branched cover (3/3)

Hence, the conditions arise from topological context.

Summary

The following hold.

- (1) $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of $\operatorname{Mod}(\Sigma_{0,p})$ if p < 2g + 2.
- (2) $\operatorname{Mod}(\Sigma_g)$ contains the braid group B_n on n strands if $n \leq 2g$.

Proof of Main Theorem and Corollary A

Embeddability of RAAGs in MCGs

Theorem (Kim-Koberda)

Suppose that $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ with $\chi(\Sigma_{g,p}) < 0$. Then there is an embedding $\psi \colon G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ such that $\forall v \in V(\Lambda)$, \exists Dehn twists $T_{v,1}, \ldots, T_{v,m_v}$; $\psi(v) = T_{v,1}^{e_{v,m_v}} \cdots T_{v,m_v}^{e_{v,m_v}}$, where $T_{v,i}$ and $T_{v,i}$ are commutative.

Note: $\{T_{v,i}|v\in V(\Lambda)\}$ induces a full subgraph $\Gamma\leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Multi-valued projection of graphs

Definition

Let Λ and Γ be graphs.

A multi-valued projection $p:\Gamma\rightrightarrows\Lambda$ is a correspondence from $V(\Gamma)$ to $V(\Lambda)$ satisfying the following.

- (0) The vertex-images p(v) are non-empty sets of vertices.
- (1) If $v_1, v_2 \in V(\Gamma)$ are adjacent, then any pair of vertices u_1 and u_2 , where $u_1 \in p(v_1)$ and $u_2 \in p(v_2)$, are adjacent.
- (2) The correspondence p is surjective.

KK embedding induces an MV projection

Theorem (Kim-Koberda, recall)

Suppose that $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$.

Then there is an embedding $\psi \colon G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ such that $\exists \Gamma \leq \bar{\mathcal{C}}(\Sigma_{g,p}); \ \psi(v)$ is a product of non-adjacent vertices of Γ .

Observation

The above embedding ψ induces an MV projection $p: \Gamma \Longrightarrow \Lambda$ by setting $T_{v,i} \stackrel{p}{\mapsto} v$.

Proof.

Pick $u_1 \in p(T_{v_1,i})$ and $u_2 \in p(T_{v_2,j})$ with $\{T_{v_1,i}, T_{v_2,j}\} \in E(\Gamma)$.

Since the vertices $T_{v_1,i}$ and $T_{v_2,j}$ are non-commutative and since ψ is injective, the vertices u_1, u_2 must be non-commutative (adjacent).

Hence, p satisfies the axiom (1).

Moreover, p is surjective (2), because $\psi(v)$ is non-trivial.

Path-lifting Lemma (1/5)

Lemma (K.)

Let $p \colon \Gamma \rightrightarrows \Lambda$ be an MV projection associated to a KK embedding $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$.

For any full embedding $\iota \colon P_n \to \Lambda$, there is a full embedding $\tilde{\iota} \colon P_n \to \Gamma$ such that $p \circ \tilde{\iota} = \iota$. In particular, $G(P_n) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ implies $P_n \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Recall: $\Gamma \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Path-lifting Lemma (2/5)

Lemma (K.)

Let $p \colon \Gamma \rightrightarrows \Lambda$ be an MV projection associated to a KK embedding $\psi \colon G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$.

For any full embedding $\iota \colon P_n \to \Lambda$, there is a full embedding $\tilde{\iota} \colon P_n \to \Gamma$ such that $p \circ \tilde{\iota} = \iota$.

In particular, $G(P_n) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ implies $P_n \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

- n = 1 case: obvious.
- n=2 case: a full embedding $P_2 \to \Lambda$
- "=" a pair of non-commutative vertices

It must have a lift (if not, $\mathrm{Ker}\psi$ contains the commutator of the vertices).

• n = 3 case: essentially due to Kim–Koberda

$$\psi(v_1) = u_1$$
, $\psi(v_2) = u_2u_4$, $\psi(v_3) = u_3u_5$, $\psi(v_4) = u_6$ ($u_i := T_{u_i}$). Claim. $\text{Ker}\psi \neq 1$.

$$[v_1^{v_2v_3}, v_4] = (v_3^{-1}v_2^{-1}v_1v_2v_3)v_4(v_3^{-1}v_2^{-1}v_1^{-1}v_2v_3)v_4^{-1} \neq 1.$$

This is a shortest word representing $[v_1^{v_2v_3}, v_4]$.

We now prove that $[\psi(v_1)^{\psi(v_2)\psi(v_3)}, \psi(v_4)] = 1$.

We first obtain a good representative of $\psi(v_1)^{\psi(v_2)}$.

Path-lifting Lemma (4/5)
$$\psi(v_1) = u_1, \ \psi(v_2) = u_2u_4, \ \psi(v_3) = u_3u_5, \ \psi(v_4) = u_6.$$

Representative of $\psi(v_1)^{\psi(v_2)}$:

$$\psi(v_1)^{\psi(v_2)} = (u_4^{-1}u_2^{-1})u_1(u_2u_4)$$

= $u_2^{-1}u_1u_2$

$$(\psi(v_1)^{\psi(v_2)})^{\psi(v_3)} = (u_5^{-1}u_3^{-1})u_2^{-1}u_1u_2(u_3u_5)$$

= $u_3^{-1}u_2^{-1}u_1u_2u_3$

Thus, $(\psi(v_1)^{\psi(v_2)})^{\psi(v_3)}$ is commutative with $\psi(v_4) = u_6$. i.e. $[(\psi(v_1)^{\psi(v_2)})^{\psi(v_3)}, \psi(v_4)] = 1$. The projection is not induced by an embedding!

Path-lifting Lemma (5/5)

General case: given a full embedding $\iota: P_n \hookrightarrow \Lambda$, consider the commutator $[\psi(\iota(v_1))^{\psi(\iota(v_2))\cdots\psi(\iota(v_{n-1}))}, \psi(\iota(v_n))].$

Then we can prove that the following;

if there is no lift of ι , then $\psi(\iota(v_1))^{\psi(\iota(v_2))\cdots\psi(\iota(v_{n-1}))}$ has a representative consisting of vertices in Γ commutative with $\psi(\iota(v_n))$.

This implies that ι has a lift for any projection associated to an

embedding ψ .

Theorem (Lee-Lee, 2017)

There is a pair of deg 3 tree T and a graph $\Gamma \leq \bar{\mathcal{C}}(\Sigma_{g,p})$ such that $G(T) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ and T has no lift w.r.t. the projection.

Theorem (Kim-Koberda, 2015)

If $3g - 3 + p \ge 4$, then there is a finite graph Λ such that $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ but $\Lambda \not \le \bar{\mathcal{C}}(\Sigma_{g,p})$.

Proof of Main Theorem (1/6)

Main Theorem (recall)

 $G(P_m) \leq \operatorname{Mod}(\Sigma_{g,p})$ if and only if m satisfies the following inequality.

$$m \leq \begin{cases} 0 & ((g,p) = (0,0), (0,1), (0,2), (0,3)) \\ 2 & ((g,p) = (0,4), (1,0), (1,1)) \\ p-1 & (g=0, p \geq 5) \\ p+2 & (g=1, p \geq 2) \\ 2g+p+1 & (g \geq 2) \end{cases}$$

Proof of Main Theorem (2/6)

Lemma

Suppose that $\chi(\Sigma_{g,p}) < 0$. If $G(P_m) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$, then $P_m \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Problem

Decide whether $G(P_m)$ is embedded into $\operatorname{Mod}(\Sigma_{g,p})$.

By Koberda's embedding theorem and the above lemma, the above problem is reduced into the following problem when $\chi < 0$:

Problem

Decide whether $P_m \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Proof of Main Theorem (3/6)

Problem (recall)

Decide whether $P_m \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

A sequence $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ of closed curves on $\Sigma_{g,p}$ is called a linear chain if this sequence satisfies the following.

- Any two distinct curves α_i and α_j are non-isotopic.
- Any two consecutive curves α_i and α_{i+1} intersect non-trivially and minimally.
- Any two non-consecutive curves are disjoint.

If $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ is a linear chain, we call m its length.

Proof of main Theorem (4/6)

Note that if $|\chi(\Sigma_{g,p})| < 0$ and $\Sigma_{g,p}$ is not homeomorphic to neither $\Sigma_{0,4}$ nor $\Sigma_{1,1}$, then there is a linear chain of length m on $\Sigma_{g,p}$ if and only if $P_m \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Proof of main Theorem (5/6)

$$\begin{array}{l} \text{length } 2g+p+1 \\ \rightarrow P_{2g+p+1} \leq \bar{\mathcal{C}}(S_{g,p}) \end{array}$$

Proof of Main Theorem (6/6)

Main Theorem*

 $P_m \leq \bar{\mathcal{C}}(\Sigma_{g,p})$ if and only if m satisfies the following inequality.

$$m \leq \begin{cases} 0 & ((g,p) = (0,0), (0,1), (0,2), (0,3)) \\ 2 & ((g,p) = (0,4), (1,0), (1,1)) \\ p-1 & (g=0, p \geq 5) \\ p+2 & (g=1, p \geq 2) \\ 2g+p+1 & (g \geq 2) \end{cases}$$

Proof) Double induction on the ordered pair (g, p).

$$(g,p) = (0,5)$$
 case:

Suppose that $\alpha_1, \ldots, \alpha_m$ is a linear chain on $\Sigma_{0,5}$.

Then the last curve α_m is separating and $\Sigma_{0,5} \cong \Sigma_{0,3} \cup_{\alpha_m} \Sigma_{0,4}$.

Either $\Sigma_{0,3}$ or $\Sigma_{0,4}$ contains a linear chain of length m-2.

Hence, we have $m-2 \le 2$ i.e. $m \le 4$.

Thus we have Main Thm.

Main Theorem (recall)

 $G(P_m) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if

$$m \leq \begin{cases} 0 & ((g,p) = (0,0), (0,1), (0,2), (0,3)) \\ 2 & ((g,p) = (0,4), (1,0), (1,1)) \\ p-1 & (g=0, p \geq 5) \\ p+2 & (g=1, p \geq 2) \\ 2g+p+1 & (g \geq 2) \end{cases}$$

Proof of Corollary

Lemma

Let H be a group and K a finite index subgroup of H. If a RAAG G is embedded in H, then G is also embedded in K.

Proof.

Suppose that G is embedded in H.

For all n > 0, the RAAG G has property that the "n-th power homomorphism" $v \mapsto v^n$ is injective.

Since K is of finite index, n-th power homomorphism is an embedding of G into K.

Corollary

Let g be an integer ≥ 2 .

Suppose that $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup H of $\operatorname{Mod}(\Sigma_{0,p})$.

Then, $p \leq 2g + 2$.

Proof.

Main Theorem implies $G(P_{p-1}) \hookrightarrow \operatorname{Mod}(\Sigma_{0,p})$.

By previous lemma, we have $G(P_{p-1}) \hookrightarrow H$.

By Main Theorem, the maximum m such that $G(P_m) \hookrightarrow \operatorname{Mod}(\Sigma_g)$ is 2g+1.

Thus we have $p-1 \leq 2g+1$.

If we use the rank of free abelian subgroup, then we have a non-sharp inequality, $p \le 3g$.

We also obtain the following result as a corollary of Main Theorem.

Corollary

Let g and g' be integers ≥ 2 . Suppose that $\operatorname{Mod}(\Sigma_{g,p})$ is virtually embedded into $\operatorname{Mod}(\Sigma_{g',p'})$. Then the following inequalities hold:

- (1) $3g + p \le 3g' + p'$,
- (2) $2g + p \le 2g' + p'$.

It is easy to observe that, if (3g + p, 2g + p) = (3g' + p', 2g' + p'), then (g, p) = (g', p'). Namely, we have;

Corollary

Let g and g' be integers ≥ 2 .

If $\operatorname{Mod}(\Sigma_{g,p}) \underset{virtual}{\hookrightarrow} \operatorname{Mod}(\Sigma_{g',p'})$ and $\operatorname{Mod}(\Sigma_{g',p'}) \underset{virtual}{\hookrightarrow} \operatorname{Mod}(\Sigma_{g,p})$, then (g,p)=(g',p').

Braid groups into closed surface MCGs

Theorem (K.)

Suppose that $\operatorname{Mod}(\Sigma_g)$ contains a finite index subgroup of the braid group B_n on n strands. Then $n \leq 2g$.

Idea) If we try to use free abelian subgroups and $G(P_n)$ in order to deduce the conclusion;

Free abelian: n < 3g - 2

 $G(P_n)$: $n \le 2g + 1$

Hence, we use the right-angled Artin groups of the form $G(C_n) \times \mathbb{Z}$.

Claim. $G(C_p) \leq PMod(\Sigma_{0,p})$.

Hence, $G(C_{n+1}) \times \mathbb{Z} \hookrightarrow B_n$. On the other hand, $C_{2g+2} \leq \bar{C}(\Sigma_g)$.

Braid groups into closed surface MCGs

$$\underline{\mathsf{Claim.}}\ \ C_{2g+2}\sqcup\{\mathrm{pt}\}\not\leq \bar{\mathcal{C}}(\Sigma_g).$$

$$\underline{\mathsf{Claim.}}\ \mathsf{G}(\mathit{C}_{2g+2}) \times \mathbb{Z} \not\hookrightarrow \mathrm{Mod}(\Sigma_g).$$

Thus,
$$B_n \underset{virtual}{\hookrightarrow} \operatorname{Mod}(\Sigma_g)$$
 implies $n+1 \leq 2g+1$.

Future work

Today we discussed embeddablitiy between finite index subgroups of specific MCGs.

Corollary

 $\operatorname{Mod}(\Sigma_{0,p}) \underset{\textit{virtual}}{\hookrightarrow} \operatorname{Mod}(\Sigma_g)$ if and only if $p \leq 2g+2$.

Theorem (Ivanov-McCarthy, 1999)

Suppose that $g \ge 2$ and $(g', p') \ne (2, 0)$.

If $|(3g'+p')-(3g+p)| \leq 1$, then every embedding $\operatorname{Mod}(\Sigma_{g,p})$ into $\operatorname{Mod}(\Sigma_{g',p'})$ is an isomorphism induced by a homeomorphism.

Theorem (Bell-Margalit, 2004)

Let p be an integer ≥ 5 .

Then $\operatorname{Mod}(\Sigma_{0,p})$ is not embedded in $\operatorname{Mod}(\Sigma_{0,p+1})$.

Theorem (Aramayona–Souto, 2012)

Suppose that $g \ge 6$ and $g' \le 2g - 1$;

if g' = 2g - 1, we further assume that p' = 0.

Then every embedding $\operatorname{PMod}(\Sigma_{g,p}) \to \operatorname{PMod}(\Sigma_{g',p'})$ is an isomorphism.

Question

What about the other cases?

Problem (Kim-Koberda, 2014)

Decide whether $G(\Lambda)$ is embedded into $\operatorname{Mod}(\Sigma_{g,p})$.

Theorem (Aougab-Biringer-Gaster, 2017)

There is an algorithm that determines, given a graph Λ and a pair (g, p), whether $\Lambda \leq \bar{\mathcal{C}}(\Sigma_{g,p})$.

Method: give a bound for self-intersection number of the curve systems representing Λ , and check through the bounded complexity triangulations of $\Sigma_{g,p}$ for curve systems embedded in their 1-skeleta.

Question

Algorithm that determines given a graph Λ has the following property; $G(\Lambda) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ iff $\Lambda \leq \overline{\mathcal{C}}(\Sigma_{g,p})$?

Thank you for your attention.