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Right-angled Artin groups

I a finite (simplicial) graph

V(I ={vi, v, -+, v,}: the vertex set of I
E(I): the edge set of
Definition

The right-angled Artin group (RAAG) G(I') on T is the group given
by the following presentation:

G(N) = (vi,va,..., vy | [vi,v] =1if {vi,v;} & E(I)).
(M) = G(IL) if and only if [} & Ty,

)

G(V)=F,

Takuya Katayama (Hiroshima Univ.) RAAGs in MCGs 3/42



The mapping class groups of surfaces

Y =Y, the orientable surface of genus g with p punctures
The mapping class group of X is defined as follows.

Mod(X) := Homeo, (X)/isotopy

Ori. pres. homeomorphisms can interchange punctures.
«: an essential closed curves on
The Dehn twist along a:

[

« (8
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The co-curve graphs of surfaces

Y =%, the orientable surface of genus g with p punctures
The co-curve graph C(X) is a graph such that

e V(C(X)) = {isotopy classes of escc on X}
e escc «, (3 span an edge iff i(a, §) > 0.

e.g.

(XQ X)X)) e—eo—o—s

Note: the co-curve graph is the complement graph of C(X) which is
the 1-skeleton of the curve complex.
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Fact (Subgroup generated by two Dehn twists)

Let o and /3 be non-isotopic escc on X, .

(1) If i(ov, B) = 0, then the Dehn twists T, and Tj generate
7? >~ G(e e)in Mod(%,,).

(2) If i(ov, B) =1, then T, and Tz generate SL(2,Z) or B; (the
braid group on 3 strands).

(3) If i(a, B) > 2, then T, and Tj generate F, = G(e—s) (Ishida,
1996).

Mostly the subgroup generated by two Dehn twists is a right-angled
Artin group.

Theorem (Koberda, 2012)

[ a finite graph, x(Z,,) < 0.
If I < C(X,p), then sufficiently high powers of “the Dehn twists
corresponding to V/(I')" generate G(I') in Mod(X; ).
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Theorem (Koberda, 2012)

A: a finite graph, x(%,) < 0.
If A < C(%,,), then G(A) — Mod(Z,,).

Here, an injective map ¢: V(A) — V(I') is called a full embedding if
{u,v} € E(N) & {i(u),(v)} € E(T) for all u,v € V(A).

A fully embedded image ¢(A) is called a full subgraph.

We denote by A < I if Ais a full subgraph of I'.

e.g.

*—o

® @ is a subgraph but not full...
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Motivation

Problem (Kim—Koberda, 2014)
Decide whether G(I') is embedded into Mod(X, ,).

Theorem (Birman-Lubotzky—McCarthy, 1983)
Z" — Mod(X, ) if and only if n < 3g — 3+ p.

Theorem (McCarthy, 1985)
F, — Mod(X, ) if and only if (g, p) # (0, < 3).

Theorem (Koberda, Bering IV-Conant-Gaster, K, 2017)

Fy x F3 X -+ x Fp =< Mod(X, ) if and only if the number of the
direct factors F; is at most g — 1+ [£32].
Here, o x Fo X -+ X [, 2 G(e—elle—e ] - Lle—ae).
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Main Theorem

Pp.: the path graph on m vertices Pn

Main Theorem (K.—Kuno)
G(Pn) — Mod(X, ) if and only if m satisfies the following

inequality.
0
2
m<<¢ p—1
p+2

((g,p) = (0,0),(0,1),(0,2),(0,3))
((g,p) =(0,4),(1,0),(1,1))
(=0, p>5)

(=1, p=>2)

26+tp+1 (g22)
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Application
Let g be a positive integer > 2.
Theorem (Birman—Hilden 1973 and Farb—Margalit 2011)

If p <2g+2, then Mod(X,) contains a finite index subgroup of
MOd(Zo7p).

Main Theorem implies the following.

Corollary A (K.—Kuno)

Suppose that Mod(X,) contains a finite index subgroup of
MOd(ZQP).

Then, p < 2g + 2.

Note: residual finiteness of the mapping class groups guarantees that
a large supply of finite index subgroups of the mapping class groups.
NH (H < Mod(X,,): finite index) = 1.
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Theorem (Birman—Hilden 1973 and Perron—Vannier 1999)
If n <2g, then Mod(X,) contains the braid group B, on n strands.

v

Theorem (K.)

Suppose that Mod(X,) contains a finite index subgroup of B,.
Then n < 2g.

This generalizes the following theorem.

Theorem (Castel, 2016)

Suppose that Mod(X,) contains B,,.
Then n < 2g.
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Summary
The following hold.

(1) Mod(X,) contains a finite index subgroup of Mod (X, ,) if and
only if p <2g + 2.

(2) Mod(X,) contains a finite index subgroup of B, if and only if
n<2g.
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Quick Review: Birman—Hilden double branched cover (1/3)

Theorem
Byg — Mod(E,). J

Byg := Mod(X5,) = SMod(XZ ;) < Mod(Xz). SMod: fib. pres.
PByg = PMod(Zo72g+1) x Z (Cla y—Lemmger—Margaht).

Corollary
PMod(Xo,) <= Mod(%,) for Vp < 2g + 1. J
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Quick Review: Birman—Hilden double branched cover (2/3)

L)

Theorem
SMOd(Zg)/<L> = MOd(ZO72g+2). J

Pick a finite index subgroup H of SMod(X,;) avoiding ¢.
Then H is embedded in Mod(Xg 24+2) as a finite index subgroup.
Natural inclusion H C Mod(X,) is a desired embedding.
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Quick Review: Birman—Hilden double branched cover (3/3)

Hence, the conditions arise from topological context.

Summary
The following hold.

(1) Mod(X,) contains a finite index subgroup of Mod(X ) if
p<2g+2.

(2) Mod(X,) contains the braid group B, on n strands if n < 2g.

vy
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Proof of Main Theorem and Corollary A
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Embeddability of RAAGs in MCGs

Theorem (Kim—Koberda)

Suppose that G(A) — Mod(X, ) with x(Xz,) <O0.

Then there is an embedding ¢: G(A) — Mod(X, ,) such that

Vv € V(A), 3 Dehn twists T, 1,..., Ty m,; ¥(v) = T‘,efl’l e T
where T, ; and T, ; are commutative.

Note: {T,,|v € V(A)} induces a full subgraph I < C(Z,,).

G(Cs)—Mod(Z4)
@ > ][Dehn twists
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Multi-valued projection of graphs

e B

Definition

Let A and ' be graphs.

A multi-valued projection p: I = A is a correspondence from V/(I)

to V/(A) satisfying the following.

(0) The vertex-images p(v) are non-empty sets of vertices.

(1) If vi, vo € V(') are adjacent, then any pair of vertices u; and wy,
where u; € p(v1) and u, € p(v»), are adjacent.

(2) The correspondence p is surjective.
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KK embedding induces an MV projection

Theorem (Kim—Koberda, recall)

Suppose that G(A) — Mod (X, ,).
Then there is an embedding 1: G(A) — Mod (%, ) such that
ar < C(X;); ¥(v) is a product of non-adjacent vertices of I".

Observation

The above embedding v/ induces an MV projection p: [ = A by
setting T, v

Proof.

Pick u; € p( Tvl,i) and up, € p( TVQ’J') with {TVLI" TVQ,J'} € E(F)

Since the vertices T,, ; and T,,; are non-commutative and since 1 is
injective, the vertices uy, u, must be non-commutative (adjacent).
Hence, p satisfies the axiom (1).

Moreover, p is surjective (2), because ¥ (v) is non-trivial. O
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Path-lifting Lemma (1/5)

Lemma (K.)

Let p: ' = A be an MV projection associated to a KK embedding
G(N) — Mod(X, p).

For any full embedding ¢: P, — A, there is a full embedding

r: P, — T such that po 7 =.

In particular, G(P,) < Mod(X, ,) implies P, < C(Z4.)-

Recall: T < C(XZ,,)

full
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Path-lifting Lemma (2/5)

Lemma (K.)

Let p: I = A be an MV projection associated to a KK embedding
Y G(A) — Mod(X; ).

For any full embedding ¢: P, — A, there is a full embedding

r: P, — I such that poi =1.

In particular, G(P,) < Mod(X,,) implies P, < C(Z4.)-

e n =1 case: obvious.

e n = 2 case: a full embedding P, — A

“=""a pair of non-commutative vertices

It must have a lift (if not, Kery> contains the commutator of the
vertices).

e n = 3 case: essentially due to Kim—Koberda
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Path-lifting Lemma (3/5)
n=4case: e.g. G(Py) — Mod(X3)
Us Us Ug

Vi Vo V3 VW

1/1(V1) = Uy, w(V2) = Uz Uy, 1/1(V3) = U3Us, w(V4) = Ug (Ui = Tu,-)-
Claim. Kery # 1.

[v)2"%, v4] —(v3 vy v1v2v3)v4(v31v2 vy v2v3) £,

Th|s is a shortest word representmg [vi2"7, va].

We now prove that [tp(vy)¥(v2)¥ (%) w(v4)] =1.
We first obtain a good representative of t(vy)¥(*2).
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Path-lifting Lemma (4/5)
Y(v1) = w1, P(v2) = woug, Y(v3) = usus, Y(va) = .

Representative of (v )¥("2):

P(v1) ) = (uy uy M) un(uzus)

= u{luluz

(¢(V1)w(v2))w(v3) = (ug 'uz M) turun(usus)

= u§1u51u1U2U3

Thus, (¢(v1)¥(2))¥(%) is commutative with 1)(vs) = ue.
e [(v(n)P(2))¥08) 4h(vy)] = 1.
The projection is not induced by an embedding!
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Path-lifting Lemma (5/5)

General case: given a full embedding ¢: P, < A, consider the
commutator [¢)(¢(vy))P02) ¥ lva-1)) 4 (4 (v,))].

Then we can prove that the following;

if there is no lift of ¢, then ¢ (u(vy))¥ (2D ((vn-1)) hag 2
representative consisting of vertices in ' commutative with ¢ ((v,)).
This implies that ¢ has a lift for any projection associated to an
embedding .
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Theorem (Lee-Lee, 2017)

There is a pair of deg 3 tree T and a graph [ < C(X,,) such that
G(T) — Mod(X, ) and T has no lift w.r.t. the projection.

e
e

Theorem (Kim—Koberda, 2015)

If 3¢ — 3+ p > 4, then there is a finite graph A such that
G(N) = Mod(X, ) but A £ C(X, ).

Takuya Katayama (Hiroshima Univ.) RAAGs in MCGs 25 / 42



Proof of Main Theorem (1/6)

Main Theorem (recall)

G(Pn) < Mod(X, ) if and only if m satisfies the following inequality.

,(0,1),(0,2),(0,3))
,(1,0),(1,1)

0

2
m<< p—1

p+2

((g,p) = (O,

0
((g,p) = (0,4
5

(g—O, p>

28 +p+1 (g>2)
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Proof of Main Theorem (2/6)

Lemma

Suppose that x(X,,) < 0. _
If G(Pn) = Mod(Zg.,), then Po, < C(Xg.)-

Problem
Decide whether G(P,,) is embedded into Mod(X, ,).

By Koberda's embedding theorem and the above lemma, the above
problem is reduced into the following problem when y < O:

Problem
Decide whether P,, < C(Z.,).
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Proof of Main Theorem (3/6)

Problem (recall)
Decide whether P,, < C(Z.,)-

A sequence {ay, s, ..., an} of closed curves on ¥, is called a
linear chain if this sequence satisfies the following.
e Any two distinct curves «; and «; are non-isotopic.
e Any two consecutive curves «; and ;1 intersect non-trivially
and minimally.
e Any two non-consecutive curves are disjoint.
If {a1,2,...,an} is a linear chain, we call m its length.
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Proof of main Theorem (4/6)
Note that if |x(X, )| <0 and X, is not homeomorphic to neither
204 nor X1, then there is a linear chain of length m on %, , if and

only if P, < C(Zgp)-

length 2 length p + 2
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Proof of main Theorem (5/6)

—

length 2g + p+1
— Pagipr1 < C(Sgp)

Q
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Proof of Main Theorem (6/6)

Main Theorem*
P, < C(X,,) if and only if m satisfies the following inequality.
0 ((g.p) =(0,0),(0,1),(0,2),(0,3))
2 ((g,p) =(0,4),(1,0),(1,1))
m<{ p-1 (§=0, p>5)
p+2 (=1 p22)
26+p+1 (822)

Proof) Double induction on the ordered pair (g, p).

(g,p) = (0,5) case:

Suppose that a1, ..., ap, is a linear chain on Xg5s.

Then the last curve «, is separating and 295 = >3 U,,, 20.4.
Either Xy 3 or X4 contains a linear chain of length m — 2.
Hence, we have m—2 <2 ie. m <4,
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Thus we have Main Thm.

Main Theorem (recall)
G(Pm) = Mod(X, ) if and only if

0 ((g,p) = (0,0),(0,1),(0,2),(0,3))

2 ((g,p) = (0,4),(1,0),(1,1))
m<q p-—1 (g=0,p25)

p+2 (g=1,p2>2)

28+p+1 (g>2)
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Proof of Corollary

Lemma

Let H be a group and K a finite index subgroup of H.
If a RAAG G is embedded in H, then G is also embedded in K.

Proof.

Suppose that G is embedded in H.

For all n > 0, the RAAG G has property that the “n-th power
homomorphism” v — v" is injective.

Since K is of finite index, n-th power homomorphism is an
embedding of G into K. O

Takuya Katayama (Hiroshima Univ.) RAAGs in MCGs 33 /42



Corollary

Let g be an integer > 2.

Suppose that Mod(X,;) contains a finite index subgroup H of
Mod(Xo,p).

Then, p <2g + 2.

Proof.

Main Theorem implies G(P,_1) — Mod(Xo ).

By previous lemma, we have G(P,_1) — H.

By Main Theorem, the maximum m such that G(P,,) — Mod(%,) is
2g + 1.

Thus we have p —1 < 2g + 1. ]

If we use the rank of free abelian subgroup, then we have a non-sharp
inequality, p < 3g.
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We also obtain the following result as a corollary of Main Theorem.

Corollary

Let g and g’ be integers > 2. Suppose that Mod(X, ) is virtually
embedded into Mod(X, ). Then the following inequalities hold:

(1) 3g+p<3g'+7,
(2) 26+p<28"+p.

It is easy to observe that, if (3g + p,2g + p) = (3¢’ + p',2¢" + pP'),
then (g, p) = (g, p'). Namely, we have;

Corollary

Let g and g’ be integers > 2.
If Mod(X,,) — Mod(X, ) and Mod(X, ) — Mod(X, ),

virtual virtual

then (g,p) = (g',p').
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Braid groups into closed surface MCGs

Theorem (K.)

Suppose that Mod(X,) contains a finite index subgroup of the braid
group B, on n strands. Then n < 2g.

Idea) If we try to use free abelian subgroups and G(P,) in order to
deduce the conclusion;

Free abelian: n < 3g —2

G(P,): n<2g+1

Hence, we use the right-angled Artin groups of the form G(C,) x Z.
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Claim. G(C,) < PMod(Xo,).

Hence, G(Cpy1) X Z — B,
On the other hand, G40 < C(X;).
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Braid groups into closed surface MCGs

Claim. C2g+2 LI {pt} $ C_(Zg)

Claim. G(Cyg12) X Z 4 Mod(%,).

Thus, B, — Mod(X,) implies n+1 < 2g + 1.

virtual
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Today we discussed embeddablitiy between finite index subgroups of
specific MCGs.

Corollary
Mod(%o,) — / Mod(X,) if and only if p < 2g + 2.
virtua

Theorem (Ivanov—McCarthy, 1999)

Suppose that g > 2 and (g’, p') # (2,0).
If |(3g"+ p') — (3g + p)| < 1, then every embedding Mod(X, ) into
Mod(X, ) is an isomorphism induced by a homeomorphism.

v
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Theorem (Bell-Margalit, 2004)

Let p be an integer > b.
Then Mod(%, ) is not embedded in Mod(%g p+1)-

Theorem (Aramayona—Souto, 2012)
Suppose that g > 6 and g’ < 2g — 1;
if g’ =2g — 1, we further assume that p’ = 0.

Then every embedding PMod(X, ,) = PMod(X, ) is an
isomorphism.

Question
What about the other cases?
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Problem (Kim—Koberda, 2014)
Decide whether G(A) is embedded into Mod (X, ).

Theorem (Aougab—Biringer—Gaster, 2017)

There is an algorithm that determines, given a graph A and a pair
(g, p), whether A < C(%; ).

Method: give a bound for self-intersection number of the curve
systems representing A, and check through the bounded complexity
triangulations of X, , for curve systems embedded in their 1-skeleta.

Question

Algorithm that determines giv_en a graph A has the following property;
G(N) — Mod(X, ) iff A < C(Xz,)?
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Thank you for your attention.

Takuya Katayama (Hiroshima Univ.)



