Limits of periodic minimal surfaces

Shoichi Fujimori (Okayama University)

March 5–8, 2019

Abstract

In this talk, we consider various families of periodic minimal surfaces in \mathbb{R}^3 .

A minimal surface in \mathbb{R}^3 is said to be *periodic* if it is connected and invariant under a group Γ of isometries of \mathbb{R}^3 that acts properly discontinuously and freely. Γ can be chosen to be a rank three lattice Λ in \mathbb{R}^3 (the triply periodic case), a rank two lattice $\Lambda \subset \mathbb{R}^2 \times \{0\}$ generated by two linearly independent translations (the doubly periodic case), or a cyclic group Λ generated by a screw motion symmetry (the singly periodic case). The geometry of a periodic minimal surface can usually be described in terms of the geometry of its quotient surface in the flat three manifold \mathbb{R}^3/Λ . Hence a triply periodic minimal surface (TPMS) is a minimal surface in a flat torus \mathbb{T}^3 , a doubly periodic minimal surface (DPMS) is a minimal surface in $\mathbb{T}^2 \times \mathbb{R}$, and a singly periodic minimal surface is a minimal surface in $S^1 \times \mathbb{R}^2$.

A (non-flat) properly immersed TPMS in \mathbb{R}^3 can be considered as a compact minimal surface of genus $g \geq 3$ in \mathbb{T}^3 . We will focus on the genus-three case. It is known that a compact oriented minimal surface of genus three in a flat three-torus is hyperelliptic, that is, it can be represented as a two-sheeted branched covering of the sphere.

In this talk we study limits of a family of compact oriented embedded TPMS of genus three and show several results obtained in joint work with Norio Ejiri and Toshihiro Shoda, [1] and [2]. We exhibit various graphics of examples as well.

References

- N. Ejiri, S. Fujimori, and T. Shoda, A remark on limits of triply periodic minimal surfaces of genus 3, Topology Appl. 196 (2015), 880–903.
- [2] N. Ejiri, S. Fujimori, and T. Shoda, On limits of triply periodic minimal surfaces, Ann. Mat. Pura Appl. 197 (2018), 1739–1748.