Cyclotomic Zariski tuples with abelian fundamental group. From the pair to the complement

Enrique ARTAL BARTOLO

Departamento de Matemáticas Facultad de Ciencias Instituto Universitario de Matemáticas y sus Aplicaciones Universidad de Zaragoza

Branched Coverings, Degenerations, and Related Topics 2019 Hiroshima, March 2019

Joint work with J.I. Cogolludo and J. Martín

 $\mathcal{M}^{2d}_{3(d,d+1)}$

$$\mathscr{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

Set of projective plane curves in $\mathbb{P}^2 := \mathbb{CP}^2$ of degree d with three singular types of topological type as $v^d - u^{d+1} = 0$.

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

$$\blacktriangleright \ \mathcal{C} \cdot \mathcal{L} = 2d, \ (\mathcal{C} \cdot \mathcal{L})_P, (\mathcal{C} \cdot \mathcal{L})_Q \ge d$$

$$\mathscr{M}^{2d}_{3(d,d+1)}$$

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

$$\triangleright \ \mathcal{C} \cdot \mathcal{L} = 2d, \ (\mathcal{C} \cdot \mathcal{L})_P, (\mathcal{C} \cdot \mathcal{L})_Q \ge d \Longrightarrow \begin{cases} (\mathcal{C} \cdot \mathcal{L})_P = (\mathcal{C} \cdot \mathcal{L})_Q = d \\ \mathcal{C} \cap \mathcal{L} = \{P, Q\}. \end{cases}$$

$$\mathscr{M}^{2d}_{3(d,d+1)}$$

Set of projective plane curves in $\mathbb{P}^2 := \mathbb{CP}^2$ of degree d with three singular types of topological type as $v^d - u^{d+1} = 0$.

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

$$\triangleright \ \mathcal{C} \cdot \mathcal{L} = 2d, \ (\mathcal{C} \cdot \mathcal{L})_P, (\mathcal{C} \cdot \mathcal{L})_Q \ge d \Longrightarrow \begin{cases} (\mathcal{C} \cdot \mathcal{L})_P = (\mathcal{C} \cdot \mathcal{L})_Q = d \\ \mathcal{C} \cap \mathcal{L} = \{P, Q\}. \end{cases}$$

Special form

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

Set of projective plane curves in $\mathbb{P}^2 := \mathbb{CP}^2$ of degree d with three singular types of topological type as $v^d - u^{d+1} = 0$.

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

Special form

 $\qquad \quad \blacksquare \Phi \in \mathrm{PGL}(3;\mathbb{C}) \ni \Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\}.$

$$\mathcal{M}^{2d}_{3(d,d+1)}$$

Set of projective plane curves in $\mathbb{P}^2 := \mathbb{CP}^2$ of degree d with three singular types of topological type as $v^d - u^{d+1} = 0$.

$$\mathcal{C} \in \mathscr{M}^{2d}_{3(d,d+1)}$$

- ▶ $\operatorname{Sing}(\mathcal{C}) = \{P, Q, R\}, \mathcal{L} \text{ line } P, Q \in \mathcal{L}.$
- $ightharpoonup \mathcal{C}$ irreducible: all its singular points locally irreducible.

Special form

- ▶ Replace C by $\Phi(C)$: Sing $(C) = \{[1:0:0], [0:1:0], [0:0:1]\}.$

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal}$$

$$\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

$$C = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (C, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

Diagonal automorphisms

$$\Phi(\operatorname{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

$$\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

- Newton polygon of F(X, Y, 1).
- One tangent line $\neq X, Y$

Diagonal automorphisms

 $\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$

Finding equations

 $\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$

- Newton polygon of F(X, Y, 1).
- One tangent line $\neq X, Y$
- Apply to F(X, 1, Z), F(1, Y, Z)

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

$$\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

- Newton polygon of F(X, Y, 1).
- One tangent line $\neq X, Y$
- Apply to F(X, 1, Z), F(1, Y, Z)
- $Y^d(X + \alpha Z)^d \stackrel{\Phi_1}{\mapsto} Y^d(X + Z)^d$

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

$$\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

- Newton polygon of F(X, Y, 1).
- One tangent line $\neq X, Y$
- Apply to F(X, 1, Z), F(1, Y, Z)
- $Y^d(X + \alpha Z)^d \stackrel{\Phi_1}{\mapsto} Y^d(X + Z)^d$
- $X^d(Y + \alpha Z)^d \stackrel{\Phi_2}{\mapsto} X^d(Y + Z)^d$

Diagonal automorphisms

$$\Phi(\mathrm{Sing}(\mathcal{C})) = \{[1:0:0], [0:1:0], [0:0:1]\} \Longleftrightarrow \Phi \text{ diagonal }$$

$$\mathcal{C} = \{F_{2d}(X, Y, Z) = 0\}, Z = 0 \text{ not tangent line for } (\mathcal{C}, [0:1:0]) \Longrightarrow \text{coefficient of } (XY)^d \text{ is } \neq 0 \ (\Rightarrow \text{ is } 1)$$

- Newton polygon of F(X, Y, 1).
- One tangent line $\neq X, Y$
- Apply to F(X, 1, Z), F(1, Y, Z)
- $Y^d(X + \alpha Z)^d \stackrel{\Phi_1}{\mapsto} Y^d(X + Z)^d$
- $X^d(Y + \alpha Z)^d \stackrel{\Phi_2}{\mapsto} X^d(Y + Z)^d$
- $Z^d(Y + \omega Z)^d, \omega^d = 1.$

Apply Φ_1 and Φ_2

 \bullet $\, \mathcal{C} \,$ has the previous Newton polygon.

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

Apply Φ_1 and Φ_2

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

• If $\Phi(\mathcal{C})$ is as above:

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

- If $\Phi(\mathcal{C})$ is as above:
 - $\Phi = 1_{\mathbb{P}^2}, \, \omega \mapsto \omega.$

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

- If $\Phi(\mathcal{C})$ is as above:
 - $\bullet \Phi = 1_{\mathbb{P}^2}, \, \omega \mapsto \omega.$
 - $\Phi([X:Y:Z]) = [Y:X:Z], \ \omega \mapsto \omega^{-1}.$

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

- If $\Phi(\mathcal{C})$ is as above:
 - $\bullet \Phi = 1_{\mathbb{P}^2}, \, \omega \mapsto \omega.$
 - $\Phi([X:Y:Z]) = [Y:X:Z], \omega \mapsto \omega^{-1}.$
 - \blacktriangleright $\omega = 1$ and Φ permutation.

Apply Φ_1 and Φ_2

- ullet C has the previous Newton polygon.
- F restricted to the boundary:

$$X^d(Y+Z)^d, Y^d(X+Z)^d, Z^d(Y+\omega X)^d, \quad \omega^d=1.$$

- If $\Phi(\mathcal{C})$ is as above:
 - $\bullet \Phi = 1_{\mathbb{P}^2}, \, \omega \mapsto \omega.$
 - $\Phi([X:Y:Z]) = [Y:X:Z], \, \omega \mapsto \omega^{-1}.$
 - ▶ $\omega = 1$ and Φ permutation.

Decomposition via roots of unity

 $\mathcal{M}^{2d}_{3(d,d+1)}$ decomposes in $\lfloor \frac{d}{2} \rfloor + 1$ subsets $\mathcal{M}^{2d}_{3(d,d+1)}(\omega)$ parametrized by the sets $\{\omega,\omega^{-1}\}$, when $\omega^d=1$.

$$\omega = 1$$
 $(YZ + XZ + XY)^2, \not\exists \mathcal{C}$

 $\omega = 1$ \exists conic tangent to \mathcal{C}_1

 $\boxed{\omega = 1} \ \exists \text{ conic tangent to } \mathcal{C}_1$ $\boxed{\omega = \zeta_3} \ \mathcal{C}_{\zeta_3}, \ \nexists \text{ such a conic}$

 $\boxed{\omega = 1}$ \exists conic tangent to \mathcal{C}_1 $\boxed{\omega = \zeta_3}$ \mathcal{C}_{ζ_3} , \nexists such a conic

A-Carmona: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}_1) = \mathbb{Z}_2 * \mathbb{Z}_3$

 $\omega = 1$ \exists conic tangent to \mathcal{C}_1 $\omega = \zeta_3$ \mathcal{C}_{ζ_3} , \nexists such a conic

A-Carmona: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}_1) = \mathbb{Z}_2 * \mathbb{Z}_3$

A-Carmona: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}_{\zeta_3}) = \mathbb{Z}_2 \times \mathbb{Z}_3$

Theorem

If $d \geq 3$, $\mathcal{M}^{2d}_{3(d,d+1)}$ has $\left\lfloor \frac{d}{2} \right\rfloor + 1$ connected components parametrized by the sets $\{\omega,\omega^{-1}\}$, when $\omega^d=1$.

Theorem

If $d \geq 3$, $\mathcal{M}^{2d}_{3(d,d+1)}$ has $\lfloor \frac{d}{2} \rfloor + 1$ connected components parametrized by the sets $\{\omega,\omega^{-1}\}$, when $\omega^d=1$.

Proof.

Theorem

If $d \geq 3$, $\mathcal{M}^{2d}_{3(d,d+1)}$ has $\left\lfloor \frac{d}{2} \right\rfloor + 1$ connected components parametrized by the sets $\{\omega, \omega^{-1}\}$, when $\omega^d = 1$.

$$\mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$

• $\mathcal{D} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$

Theorem

If $d \geq 3$, $\mathcal{M}^{2d}_{3(d,d+1)}$ has $\left\lfloor \frac{d}{2} \right\rfloor + 1$ connected components parametrized by the sets $\{\omega, \omega^{-1}\}$, when $\omega^d = 1$.

$$\mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$

- $\bullet \ \mathcal{D} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$
- \bullet $\, \mathcal{L}$ line passing through two singular points

Theorem

If $d \geq 3$, $\mathcal{M}_{3(d,d+1)}^{2d}$ has $\left\lfloor \frac{d}{2} \right\rfloor + 1$ connected components parametrized by the sets $\{\omega, \omega^{-1}\}$, when $\omega^d = 1$.

$$\mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$

- $\bullet \ \mathcal{D} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$
- \bullet $\, \mathcal{L}$ line passing through two singular points
- $\mathcal{D} \cdot \mathcal{L} \ge 2(d+2) \Rightarrow \mathcal{L} \subset \mathcal{D}$

Theorem

If $d \geq 3$, $\mathcal{M}_{3(d,d+1)}^{2d}$ has $\lfloor \frac{d}{2} \rfloor + 1$ connected components parametrized by the sets $\{\omega, \omega^{-1}\}$, when $\omega^d = 1$.

$$\mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$

- $\bullet \ \mathcal{D} \in \mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$
- ullet L line passing through two singular points
- $\mathcal{D} \cdot \mathcal{L} \ge 2(d+2) \Rightarrow \mathcal{L} \subset \mathcal{D}$
- $\mathcal{D} = \mathcal{C} \cup L_{QR} \cup L_{PR} \cup L_{PQ}, \ \mathcal{C} \in \mathcal{M}^{2d}_{3(d,d+1)}$

Theorem

If $d \geq 3$, $\mathcal{M}_{3(d,d+1)}^{2d}$ has $\lfloor \frac{d}{2} \rfloor + 1$ connected components parametrized by the sets $\{\omega, \omega^{-1}\}$, when $\omega^d = 1$.

$$\mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$

- $\bullet \ \mathcal{D} \in \mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$
- ullet L line passing through two singular points
- $\mathcal{D} \cdot \mathcal{L} \ge 2(d+2) \Rightarrow \mathcal{L} \subset \mathcal{D}$
- $\mathcal{D} = \mathcal{C} \cup L_{QR} \cup L_{PR} \cup L_{PQ}, \ \mathcal{C} \in \mathcal{M}^{2d}_{3(d,d+1)}$

Theorem

If $d \geq 3$, $\mathcal{M}_{3\langle uv((u+v)^d+v^{d+1})\rangle}^{2d+3}$ has $\lfloor \frac{d-1}{2} \rfloor + 1$ connected components parametrized by $\{\{\omega, \omega^{-1}\} \mid \omega^d = 1\}$

Cremona transformation

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Cremona transformation

parametrized by $\{\{\omega,\omega^{-1}\} \mid \omega^d = 1\}$

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space $\mathcal{M}_{(d),(d),(d)}$ has $\left|\frac{d-1}{2}\right| + 1$ connected components

Cremona transformation

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space $\mathcal{M}_{(d),(d),(d)}$ has $\left\lfloor \frac{d-1}{2} \right\rfloor + 1$ connected components parametrized by $\{\{\omega,\omega^{-1}\} \mid \omega^d = 1\}$

Definition

A Shirane curve \mathcal{T} of type $((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t)),$ $\sum a_i = \sum b_i = \sum c_i = d$ is formed by a smooth curve \mathcal{S} of degree d and three lines $\mathcal{L}_a,\mathcal{L}_b,\mathcal{L}_c$ such that:

Cremona transformation

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space $\mathcal{M}_{(d),(d),(d)}$ has $\left\lfloor \frac{d-1}{2} \right\rfloor + 1$ connected components parametrized by $\{\{\omega,\omega^{-1}\} \mid \omega^d = 1\}$

Definition

A Shirane curve \mathcal{T} of type $((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t)),$ $\sum a_i = \sum b_i = \sum c_i = d$ is formed by a smooth curve \mathcal{S} of degree d and three lines $\mathcal{L}_a,\mathcal{L}_b,\mathcal{L}_c$ such that:

•
$$S \cap \mathcal{L}_a = \{P_1, \dots, P_r\}, (S \cdot \mathcal{L}_a)_{P_i} = a_i$$

Cremona transformation

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space $\mathcal{M}_{(d),(d),(d)}$ has $\left\lfloor \frac{d-1}{2} \right\rfloor + 1$ connected components parametrized by $\{\{\omega,\omega^{-1}\} \mid \omega^d = 1\}$

Definition

A Shirane curve \mathcal{T} of type $((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t)),$ $\sum a_i = \sum b_i = \sum c_i = d$ is formed by a smooth curve \mathcal{S} of degree d and three lines $\mathcal{L}_a,\mathcal{L}_b,\mathcal{L}_c$ such that:

- $S \cap \mathcal{L}_a = \{P_1, \dots, P_r\}, (S \cdot \mathcal{L}_a)_{P_i} = a_i$
- $S \cap \mathcal{L}_b = \{Q_1, \dots, Q_s\}, (S \cdot \mathcal{L}_b)_{Q_i} = b_i$

Cremona transformation

 $\mathcal{M}_{(d),(d),(d)}$ is the space of of curves \mathcal{E} of degree d+3 with four irreducible components: a smooth curve \mathcal{S} of degree d and three non-concurrent lines $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ such that $\mathcal{S} \cap \mathcal{L}_i$ has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space $\mathcal{M}_{(d),(d),(d)}$ has $\left\lfloor \frac{d-1}{2} \right\rfloor + 1$ connected components parametrized by $\{\{\omega,\omega^{-1}\} \mid \omega^d = 1\}$

Definition

A Shirane curve \mathcal{T} of type $((a_1, \ldots, a_r), (b_1, \ldots, b_s), (c_1, \ldots, c_t))$, $\sum a_i = \sum b_i = \sum c_i = d$ is formed by a smooth curve \mathcal{S} of degree d and three lines $\mathcal{L}_a, \mathcal{L}_b, \mathcal{L}_c$ such that:

- $S \cap \mathcal{L}_a = \{P_1, \dots, P_r\}, (S \cdot \mathcal{L}_a)_{P_i} = a_i$
- $S \cap \mathcal{L}_b = \{Q_1, \dots, Q_s\}, (S \cdot \mathcal{L}_b)_{Q_i} = b_i$
- $S \cap \mathcal{L}_c = \{R_1, \dots, R_t\}, (S \cdot \mathcal{L}_c)_{R_i} = c_i$

Theorem (Shirane)

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof for type ((d), (d), (d)).

• $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $\bullet \ \ H_{\omega} = \{[X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z)\} \xrightarrow{\quad \rho_{\omega} \quad} \mathbb{P}^2.$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_a) = \bigcup_{\zeta^d=1} \mathcal{L}_a^{\zeta}$, $\mathcal{L}_a^{\zeta} = \{X=0, T=\zeta(Y+Z)\}$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_b) = \bigcup_{\zeta^d=1} \mathcal{L}_b^{\zeta}$, $\mathcal{L}_b^{\zeta} = \{Y = 0, T = \zeta(X+Z)\}$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_c) = \bigcup_{\zeta^d=1} \mathcal{L}_c^{\zeta}$, $\mathcal{L}_c^{\zeta} = \{Z = 0, T = \zeta(X + \omega Y)\}$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_c) = \bigcup_{\zeta^d=1} \mathcal{L}_c^{\zeta}$, $\mathcal{L}_c^{\zeta} = \{Z = 0, T = \zeta(X + \omega Y)\}$
- $\bullet \ [0:0:1:\zeta] \in L_a^\zeta \cap L_b^\zeta,$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_c) = \bigcup_{\zeta^d=1} \mathcal{L}_c^{\zeta}$, $\mathcal{L}_c^{\zeta} = \{Z = 0, T = \zeta(X + \omega Y)\}$
- $\bullet \ [0:0:1:\zeta] \in L_a^\zeta \cap L_b^\zeta, \, [1:0:0:\zeta] \in L_b^\zeta \cap L_c^\zeta,$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, L_a = \{X = 0\}, L_b = \{Y = 0\} \text{ and } L_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_c) = \bigcup_{\zeta^d=1} \mathcal{L}_c^{\zeta}$, $\mathcal{L}_c^{\zeta} = \{Z = 0, T = \zeta(X + \omega Y)\}$
- $\bullet \ [0:0:1:\zeta] \in L_a^\zeta \cap L_b^\zeta, [1:0:0:\zeta] \in L_b^\zeta \cap L_c^\zeta, [0:1:0:\omega\zeta] \in L_c^\zeta \cap L_a^{\omega\zeta}$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $S = \{G_{\omega} = 0\}, \mathcal{L}_a = \{X = 0\}, \mathcal{L}_b = \{Y = 0\} \text{ and } \mathcal{L}_c = \{Z = 0\}.$
- $G_{\omega}(0,Y,Z) = (Y+Z)^d$, $G_{\omega}(X,0,Z) = (X+Z)^d$, $G_{\omega}(X,Y,0) = (Y+\omega X)^d$
- $H_{\omega} = \{ [X:Y:Z:T] \in \mathbb{P}^3 \mid T^d = G_{\omega}(X,Y,Z) \} \xrightarrow{\rho_{\omega}} \mathbb{P}^2.$
- $\rho_{\omega}^{-1}(\mathcal{L}_c) = \bigcup_{\zeta^d=1} \mathcal{L}_c^{\zeta}$, $\mathcal{L}_c^{\zeta} = \{Z=0, T=\zeta(X+\omega Y)\}$
- $[0:0:1:\zeta] \in L_a^{\zeta} \cap L_b^{\zeta}$, $[1:0:0:\zeta] \in L_b^{\zeta} \cap L_c^{\zeta}$, $[0:1:0:\omega\zeta] \in L_c^{\zeta} \cap L_a^{\omega\zeta}$ $\omega^{\pm 1} \rightsquigarrow \text{an invariant of } \rho_{\omega} \text{ restricted to } \{XYZG_{\omega}(X,Y,Z) \neq 0\}$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$\begin{array}{ccc} (X_{\omega_1},\mathcal{U}_{\omega_1}) & (X_{\omega_2},\mathcal{U}_{\omega_2}) \\ & & & \downarrow^{\rho_{\omega_1}} & & \downarrow^{\rho_{\omega_2}} \\ (\mathbb{P}^2,\mathcal{T}_{\omega_1}) & \stackrel{\cong}{\longrightarrow} (\mathbb{P}^2,\mathcal{T}_{\omega_2}) \end{array}$$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \qquad (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

Theorem (Shirane)

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \xrightarrow{-\tilde{\Phi}?} (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

Theorem (Shirane)

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \xrightarrow{-\tilde{\Phi}?} (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

$$\mu_{\mathcal{S}_{\omega_1}} \xrightarrow{\sigma_{\omega_1}} 1 \bmod d \qquad \qquad \mu_{\mathcal{L}_{\bullet}^{\omega_1}} \xrightarrow{\sigma_{\omega_1}} 0 \bmod d$$

Theorem (Shirane)

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \xrightarrow{-\tilde{\Phi}?} (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

Theorem (Shirane)

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \qquad (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

Theorem (Shirane)

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has $\lfloor \frac{m}{2} \rfloor + 1$ or m components having pairwise distinct topological embeddings in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof for type ((d), (d), (d)).

$$H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{1}}; \mathbb{Z}) \quad (X_{\omega_{1}}, \mathcal{U}_{\omega_{1}}) \xrightarrow{-\frac{\tilde{\Phi}?}{\Phi}} (X_{\omega_{2}}, \mathcal{U}_{\omega_{2}}) \quad H_{1}(\mathbb{P}^{2} \setminus \mathcal{T}_{\omega_{2}}; \mathbb{Z})$$

$$\downarrow^{\sigma_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{1}}} \qquad \downarrow^{\rho_{\omega_{2}}} \qquad \downarrow^{\sigma_{\omega_{2}}}$$

$$\mathbb{Z}/d\mathbb{Z} \qquad (\mathbb{P}^{2}, \mathcal{T}_{\omega_{1}}) \xrightarrow{\cong} (\mathbb{P}^{2}, \mathcal{T}_{\omega_{2}}) \qquad \mathbb{Z}/d\mathbb{Z}$$

Relative position of $\mathcal{L}_{\bullet}^{\zeta} \Longrightarrow \omega_2 = \omega_1^{\pm 1}$

Examples

• $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)

Examples

• $\mathcal{T}_1 \in \mathcal{M}_{((2),(2),(2))}$, smooth conic with three tangents: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ Artin group of the triangle (2,4,4) (non-abelian)

Examples

- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 * \mathbb{Z}/3$ (A-Carmona)

Examples

- $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $\mathcal{T}_1 \in \mathcal{M}_{((3),(3),(3))}$, smooth cubic with three tangents at aligned inflection points:

```
\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) non-abelian
```


Examples

- $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 * \mathbb{Z}/3$ (A-Carmona)
- $C_{\zeta} \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points non-tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 \times \mathbb{Z}/3$ (A-Carmona)

Examples

- $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 * \mathbb{Z}/3$ (A-Carmona)
- $\mathcal{T}_{\zeta} \in \mathcal{M}_{((3),(3),(3))}$, smooth cubic with three tangents at non-aligned inflection points: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ abelian

Examples

- $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 * \mathbb{Z}/3$ (A-Carmona)
- $C_{\zeta} \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points non-tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 \times \mathbb{Z}/3$ (A-Carmona)

Question

How many such groups are abelian?

Examples

- $C_1 \in \mathcal{M}^4_{3\mathbb{A}_2}$, the triscuspidal quartic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C})$ non-abelian of order 12 (Zariski)
- $C_1 \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 * \mathbb{Z}/3$ (A-Carmona)
- $C_{\zeta} \in \mathcal{M}_{3\mathbb{A}_2}^4$, sextic with three \mathbb{E}_6 points non-tangent to a conic: $\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) \cong \mathbb{Z}/2 \times \mathbb{Z}/3$ (A-Carmona)

Question

How many such groups are abelian?

Strategy

Study a curve with plenty of extremal flexes: Fermat curves $X^d + Y^d + Z^d = 0$.

Tangent lines:
$$(X^{d} + Y^{d})(Y^{d} + Z^{d})(Z^{d} + X^{d}) = 0$$

$$1 = [\mu_{xz}, \mu_{xy}] = [\mu_{xz}, \mu_{xyz}, \mu_y] = [\mu_{xz}, \mu_{yz}]$$

$$1 = [\mu_{xz}, \mu_{xy}] = [\mu_{xz}, \mu_{xyz}, \mu_y] = [\mu_{xz}, \mu_{yz}]$$
$$1 = [\mu_x, \mu_y, \mu_{xy}] = [\mu_x, \mu_{yz}, \mu_{xyz}] = [\mu_y^{-1} \mu_{xy} \mu_y, \mu_{yz}]$$

$$1 = [\mu_{xz}, \mu_{xy}] = [\mu_{xz}, \mu_{xyz}, \mu_y] = [\mu_{xz}, \mu_{yz}]$$

$$1 = [\mu_x, \mu_y, \mu_{xy}] = [\mu_x, \mu_{yz}, \mu_{xyz}] = [\mu_y^{-1} \mu_{xy} \mu_y, \mu_{yz}]$$

$$1 = \mu_{yz} \mu_{xyz} \mu_y \mu_{xy} \mu_{xz} \mu_x \mu_z = \mu_x^d = \mu_y^d = \mu_z^d$$

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

• Consider the orbifold fundamental group

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

• Kummer cover $\pi_d: \mathbb{P}^2 \to \mathbb{P}^2$, $[X:Y:Z] \mapsto [X^d:Y^d:Z^d]$

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

- Kummer cover $\pi_d: \mathbb{P}^2 \to \mathbb{P}^2$, $[X:Y:Z] \mapsto [X^d:Y^d:Z^d]$
- $\pi_d^{-1}(\{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\}) = \{(X^d+Y^d+Z^d)(X^d+Y^d)(Y^d+Z^d)(Z^d+X^d)XYZ=0\}$

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

- Kummer cover $\pi_d: \mathbb{P}^2 \to \mathbb{P}^2$, $[X:Y:Z] \mapsto [X^d:Y^d:Z^d]$
- $\pi_d^{-1}(\{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\}) = \{(X^d+Y^d+Z^d)(X^d+Y^d)(Y^d+Z^d)(Z^d+X^d)XYZ=0\}$
- Monodromy of π_d : $\mu_x \mapsto (1,0)$, $\mu_y \mapsto (0,1)$, $\mu_z \mapsto (-1,-1)$

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

- Kummer cover $\pi_d: \mathbb{P}^2 \to \mathbb{P}^2$, $[X:Y:Z] \mapsto [X^d:Y^d:Z^d]$
- $\pi_d^{-1}(\{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\}) = \{(X^d+Y^d+Z^d)(X^d+Y^d)(Y^d+Z^d)(Z^d+X^d)XYZ=0\}$
- Monodromy of π_d : $\mu_x \mapsto (1,0), \, \mu_y \mapsto (0,1), \, \mu_z \mapsto (-1,-1)$
- $\pi_1(\mathbb{P}^2 \setminus \{(X^d + Y^d + Z^d)(X^d + Y^d)(Y^d + Z^d)(Z^d + X^d) = 0\}$ via Reidemeister-Schreier

Theorem

Let $\mathcal{T}_{\omega} \in \mathcal{M}_{((d),(d),(d))}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{T}_{\omega})$ is abelian.

Proof.

• Consider the orbifold fundamental group

$$\frac{\pi_1(\mathbb{P}^2 \setminus \{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\})}{\langle \mu_x^d, \mu_y^d, \mu_z^d \rangle}$$

- Kummer cover $\pi_d: \mathbb{P}^2 \to \mathbb{P}^2$, $[X:Y:Z] \mapsto [X^d:Y^d:Z^d]$
- $\bullet \ \pi_d^{-1}(\{(X+Y+Z)(X+Y)(Y+Z)(Z+X)XYZ=0\}) = \{(X^d+Y^d+Z^d)(X^d+Y^d)(Y^d+Z^d)(Z^d+X^d)XYZ=0\}$
- Monodromy of π_d : $\mu_x \mapsto (1,0)$, $\mu_y \mapsto (0,1)$, $\mu_z \mapsto (-1,-1)$
- $\pi_1(\mathbb{P}^2 \setminus \{(X^d + Y^d + Z^d)(X^d + Y^d)(Y^d + Z^d)(Z^d + X^d) = 0\}$ via Reidemeister-Schreier

Kill meridians to obtain the result

Theorem (Classic)

X projective surface, $A, B \subset X$ with no common irreducible components, $B = \bigcup_j B_j$. Then, $\pi_1(X \setminus A) \cong \pi_1(X \setminus (A \cup B))/\langle \mu_{B_j} \rangle$, μ_{B_j} meridians.

Theorem (Classic)

X projective surface, $A, B \subset X$ with no common irreducible components, $B = \bigcup_j B_j$. Then, $\pi_1(X \setminus A) \cong \pi_1(X \setminus (A \cup B))/\langle \mu_{B_j} \rangle$, μ_{B_j} meridians.

Corollary

```
Let \mathcal{D}_{\omega} \in \mathscr{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}. If either d > 3 or (d, \omega) = (3, \zeta), then \pi_1(\mathbb{P}^2 \setminus \mathcal{D}_{\omega}) is abelian.
```

Theorem (Classic)

X projective surface, $A, B \subset X$ with no common irreducible components, $B = \bigcup_j B_j$. Then, $\pi_1(X \setminus A) \cong \pi_1(X \setminus (A \cup B))/\langle \mu_{B_j} \rangle$, μ_{B_j} meridians.

Corollary

Let $\mathcal{D}_{\omega} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$. If either d > 3 or $(d, \omega) = (3, \zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{D}_{\omega})$ is abelian.

Corollary

Let $C_{\omega} \in \mathcal{M}^{2d}_{3(d,d+1)}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus C_{\omega})$ is abelian.

Theorem (Classic)

X projective surface, $A, B \subset X$ with no common irreducible components, $B = \bigcup_j B_j$. Then, $\pi_1(X \setminus A) \cong \pi_1(X \setminus (A \cup B))/\langle \mu_{B_j} \rangle$, μ_{B_j} meridians.

Corollary

Let $\mathcal{D}_{\omega} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{D}_{\omega})$ is abelian.

Corollary

Let $C_{\omega} \in \mathcal{M}^{2d}_{3(d,d+1)}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus C_{\omega})$ is abelian.

Theorem (Zariski, Dimca)

 $\{C_t\}_{t\in[0,1]}$ family of projective plane curves, equisingular for $t\in(0,1]$) with C_1 reduced. Then $\exists \pi_1(\mathbb{P}^2\setminus C_0) \to \pi_1(\mathbb{P}^2\setminus C_1)$.

Theorem (Classic)

X projective surface, $A, B \subset X$ with no common irreducible components, $B = \bigcup_j B_j$. Then, $\pi_1(X \setminus A) \cong \pi_1(X \setminus (A \cup B))/\langle \mu_{B_j} \rangle$, μ_{B_j} meridians.

Corollary

Let
$$\mathcal{D}_{\omega} \in \mathcal{M}^{2d+3}_{3\langle uv((u+v)^d+v^{d+1})\rangle}$$
. If either $d > 3$ or $(d, \omega) = (3, \zeta)$, then $\pi_1(\mathbb{P}^2 \setminus \mathcal{D}_{\omega})$ is abelian.

Corollary

Let $C_{\omega} \in \mathcal{M}^{2d}_{3(d,d+1)}$. If either d > 3 or $(d,\omega) = (3,\zeta)$, then $\pi_1(\mathbb{P}^2 \setminus C_{\omega})$ is abelian.

Theorem (Zariski, Dimca)

 $\{C_t\}_{t\in[0,1]}$ family of projective plane curves, equisingular for $t\in(0,1]$) with C_1 reduced. Then $\exists \pi_1(\mathbb{P}^2\setminus C_0) \twoheadrightarrow \pi_1(\mathbb{P}^2\setminus C_1)$.

Corollary (Degeneration of ((d), (d), (d)) curves)

All Shirane curves have abelian fundamental group except from ((2),(2),(2)) and ((3),(3),(3)) (with aligned intersection points).

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\left\lfloor \frac{m}{2} \right\rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$$

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$
- $ightharpoonup U_{\omega}$ closed regular neighbourhood of \mathcal{T}_{ω} , $E_{\omega} := \mathbb{P}^2 \setminus \mathring{U}_{\omega}$, $\mathring{E}_{\omega} \cong W_{\omega}$
- $\triangleright \ M_{\omega} := \partial U_{\omega} = \partial E_{\omega}.$

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

- $\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$
- $\triangleright U_{\omega}$ closed regular neighbourhood of \mathcal{T}_{ω} , $E_{\omega} := \mathbb{P}^2 \setminus \mathring{U}_{\omega}$, $\mathring{E}_{\omega} \cong W_{\omega}$
- $\triangleright M_{\omega} := \partial U_{\omega} = \partial E_{\omega}.$
- ▷ Covering monodromy:

Theorem

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof of Case ((d), (d), (d)).

- $\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$
- $\triangleright U_{\omega}$ closed regular neighbourhood of \mathcal{T}_{ω} , $E_{\omega} := \mathbb{P}^2 \setminus \mathring{U}_{\omega}$, $\mathring{E}_{\omega} \cong W_{\omega}$
- $\triangleright M_{\omega} := \partial U_{\omega} = \partial E_{\omega}.$
- $\,\vartriangleright\,$ Covering monodromy:

 $\triangleright \mu_{\mathcal{S}}$ and μ_{cycle} determined by homemorphism type of M_{ω} (combinatorics!) and σ_{ω} . Waldhausen's classification of graph manifolds

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof of Case ((d), (d), (d)).

- $\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$
- $\triangleright U_{\omega}$ closed regular neighbourhood of \mathcal{T}_{ω} , $E_{\omega} := \mathbb{P}^2 \setminus \mathring{U}_{\omega}$, $\mathring{E}_{\omega} \cong W_{\omega}$
- $\triangleright \ M_{\omega} := \partial U_{\omega} = \partial E_{\omega}.$
- $\,\triangleright\,$ Covering monodromy:

 $\triangleright \mu_{\mathcal{S}}$ and μ_{cycle} determined by homemorphism type of M_{ω} (combinatorics!) and σ_{ω} . Waldhausen's classification of graph manifolds

$$ho \ \tilde{\sigma}_d(\mu_{\mathcal{S}}) = \exp\left(\frac{2\pi i}{d}\right), \ \tilde{\sigma}_d(\mu_{\text{cycle}}) = \omega$$

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof of Case ((d), (d), (d)).

- $\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$
- $\triangleright U_{\omega}$ closed regular neighbourhood of \mathcal{T}_{ω} , $E_{\omega} := \mathbb{P}^{2}_{\tilde{\sigma}} \setminus \mathring{U}_{\omega}$, $\mathring{E}_{\omega} \cong W_{\omega}$
- $\triangleright M_{\omega} := \partial U_{\omega} = \partial E_{\omega}.$
- $\,\triangleright\,$ Covering monodromy:

▶ Wrong! Bad behavior of regular neighborhoods under homeomorphisms

Theorem

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$$

$$\triangleright \pi_1^{\infty}(X) := \varprojlim_{\substack{K \subset X \\ \text{compact}}} \pi_1(X \setminus K):$$

Theorem

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

$$\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$$

$$\triangleright \pi_1^{\infty}(X) := \lim_{\substack{K \subset X \\ \text{compact}}} \pi_1(X \setminus K):$$

$$\triangleright \pi_1^{\infty}(W_{\omega}) \cong \pi_1(M_{\omega})$$

Theorem

 $SH_{((a_1,...,a_r),(b_1,...,b_s),(c_1,...,c_t))}$ has m or $\lfloor \frac{m}{2} \rfloor + 1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i,b_j,c_k)$.

Proof of Case ((d), (d), (d)).

$$\triangleright W_{\omega} := \mathbb{P}^{2} \setminus \mathcal{T}_{\omega}
\triangleright \pi_{1}^{\infty}(X) := \varprojlim_{\substack{K \subset X \\ \text{compact}}} \pi_{1}(X \setminus K) : \qquad \qquad \pi_{1}^{\infty}(W_{\omega})
\triangleright \pi_{1}^{\infty}(W_{\omega}) \cong \pi_{1}(M_{\omega}) \qquad \qquad \pi_{1}(W_{\omega})$$

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\left|\frac{m}{2}\right|+1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i, b_i, c_k)$.

$$\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$$

$$\triangleright \ \pi_1^{\infty}(X) := \varprojlim_{\substack{K \subset X \\ \text{compact}}} \pi_1(X \setminus K) : \qquad \qquad \pi_1^{\infty}(W_{\omega}) \xrightarrow{\tilde{\sigma}_{\omega}} \mu_d$$

$$\triangleright \ \pi_1^{\infty}(W_{\omega}) \cong \pi_1(M_{\omega}) \qquad \qquad \pi_1(W_{\omega})$$

$$> \pi_1^{\infty}(W_{\omega}) \cong \pi_1(M_{\omega})$$

- ${} \triangleright \text{ Waldhausen: } M \text{ sufficiently large, } \Phi: \pi_1(M) \xrightarrow{\cong} \pi_1(M) \Rightarrow \exists \psi:$ $M \xrightarrow{\text{homeo}} M$ such that $\Phi = \psi_*$
- $\triangleright \mu_{\mathcal{S}}$ and μ_{cycle} determined by homemorphism type at infinity of W_{ω} (combinatorics!) and σ_{ω} .

Theorem

 $SH_{((a_1,\ldots,a_r),(b_1,\ldots,b_s),(c_1,\ldots,c_t))}$ has m or $\left|\frac{m}{2}\right|+1$ components having pairwise distinct topological complements in \mathbb{P}^2 , $m = \gcd(a_i, b_i, c_k)$.

$$\triangleright W_{\omega} := \mathbb{P}^2 \setminus \mathcal{T}_{\omega}$$

$$\triangleright \ \pi_1^{\infty}(X) := \varprojlim_{\substack{K \subset X \\ \text{compact}}} \pi_1(X \setminus K) \colon \qquad \pi$$

$$\triangleright \pi_1^{\infty}(X) := \varprojlim_{\substack{K \subset X \\ \text{compact}}} \pi_1(X \setminus K) : \qquad \qquad \pi_1^{\infty}(W_{\omega})$$

$$\triangleright \pi_1^{\infty}(W_{\omega}) \cong \pi_1(M_{\omega}) \qquad \qquad \pi_1(W_{\omega})$$

- ${} \triangleright \text{ Waldhausen: } M \text{ sufficiently large, } \Phi: \pi_1(M) \xrightarrow{\cong} \pi_1(M) \Rightarrow \exists \psi:$ $M \xrightarrow{\text{homeo}} M$ such that $\Phi = \psi_*$
- $\triangleright \mu_{\mathcal{S}}$ and μ_{cycle} determined by homemorphism type at infinity of W_{ω} (combinatorics!) and σ_{ω} .

$$\triangleright \ \tilde{\sigma}_d(\mu_{\mathcal{S}}) = \exp\left(\frac{2\pi i}{d}\right), \ \tilde{\sigma}_d(\mu_{\text{cycle}}) = \omega$$

 \blacktriangleright Homeomorphism of complements instead of pairs:

- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}

- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}
 - Replace Waldhausen graph manifold theory by Waldhausen sufficiently large manifold theory.

- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}
 - Replace Waldhausen graph manifold theory by Waldhausen sufficiently large manifold theory.
- ► Easier in the non-conjugate case.

- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}
 - Replace Waldhausen graph manifold theory by Waldhausen sufficiently large manifold theory.
- ► Easier in the non-conjugate case.

```
Curves in \mathcal{M}^{2d}_{3(d,d+1)}
If \omega_2 \neq \omega_1^{\pm 1}, are (\mathbb{P}^2, \mathcal{C}_{\omega_1}) and (\mathbb{P}^2, \mathcal{C}_{\omega_2}) homeomorphic? (d > 3)
```


- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}
 - Replace Waldhausen graph manifold theory by Waldhausen sufficiently large manifold theory.
- ► Easier in the non-conjugate case.

Curves in
$$\mathcal{M}_{3(d,d+1)}^{2d}$$

If $\omega_2 \neq \omega_1^{\pm 1}$, are $(\mathbb{P}^2, \mathcal{C}_{\omega_1})$ and $(\mathbb{P}^2, \mathcal{C}_{\omega_2})$ homeomorphic? (d > 3)

 \blacktriangleright $\mathcal{M}^{2d}_{3(d,d+1)}$ disconnected \Longrightarrow Zariski tuple candidates

- ▶ Homeomorphism of complements instead of pairs:
 - Replace boundary by π_1^{∞}
 - Replace Waldhausen graph manifold theory by Waldhausen sufficiently large manifold theory.
- ► Easier in the non-conjugate case.

Curves in $\mathcal{M}_{3(d,d+1)}^{2d}$

If $\omega_2 \neq \omega_1^{\pm 1}$, are $(\mathbb{P}^2, \mathcal{C}_{\omega_1})$ and $(\mathbb{P}^2, \mathcal{C}_{\omega_2})$ homeomorphic? (d > 3)

- \blacktriangleright $\mathcal{M}^{2d}_{3(d,d+1)}$ disconnected \Longrightarrow Zariski tuple candidates
- ▶ Lines essential to distinguish components in $\mathcal{M}_{3\langle uv((u+v)^d+v^{d+1})\rangle}^{2d+3}$

Thank you

