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Realization space I

///32(0({1,d+1)

d

Set of projective plane curves in P? := CP? of degree d with three
singular types of topological type as v¢ — ud*t! = 0.
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Realization space I

//[2(1 Jd+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5 a41)

» Sing(C) = {P,Q, R}, L line P,Q € L.



Realization space I

//[2(1 Jd+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € My

» Sing(C) = {P,Q, R}, L line P,Q € L.

» C irreducible: all its singular points locally irreducible.
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//fs(d d+1)
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Realization space I

//fs(d d+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5(ga11)
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Realization space I

//fs(d d+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5(ga11)

» Sing(C) = {P,Q, R}, L line P,Q € L.
» C irreducible: all its singular points locally irreducible.
(C-L)p=(C-L)g=



Realization space I

///3@1 d+1)
Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5(ga11)

» Sing(C) = {P,Q, R}, L line P,Q € L.

» C irreducible: all its singular points locally irreducible.

b C L=, (C L)p,(C-L)g>d—s 4 & HIP=C La=
CNL={PQ}.

Special form



Realization space I

//fs(d d+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5(ga11)

» Sing(C) = {P,Q, R}, L line P,Q € L.

» C irreducible: all its singular points locally irreducible.

b C L=, (C L)p,(C-L)g>d—s 4 & HIP=C La=
CNL={PQ}.

Special form

» 3P € PGL(3;C) 3 ®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]}



Realization space I

//fs(d d+1)

Set of projective plane curves in P? := CP? of degree d with three

singular types of topological type as v¢ — udt! = 0.

2
C € M5(ga11)

» Sing(C) = {P,Q, R}, L line P,Q € L.

» C irreducible: all its singular points locally irreducible.

b C L=, (C L)p,(C-L)g>d—s 4 & HIP=C La=
CNL={PQ}.

Special form

» 30 € PGL(3;C) > ®(Sing(C)) =
» Replace C by ®(C): Sing(C) ={[1:0:0],[0:1:0],[0:0:1]}.

{[1:0:0],[0:1:0],]0:0:1]}.



Realization Space 11

Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal



Realization Space I1
Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations

C={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)?is # 0 (= is 1)

=}



Realization Space II
Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations
C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d e Newton polygon of F(X,Y,1).




Realization Space II

Diagonal automorphisms

®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations

C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d |
.. e Newton polygon of F(X,Y,1).
.. e One tangent line # X,Y
d DR
2
0 = ¢




Realization Space II
Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations
C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d |
.. e Newton polygon of F(X,Y,1).
.. e One tangent line # X,Y
e Apply to F(X,1,2),F(1,Y, Z)
d DR
2
0 =




Realization Space II
Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations
C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d

.
[ ]

Newton polygon of F(X,Y,1).
RS One tangent line # X, Y

. Apply to F(X,1,2),F(1,Y,Z)
YUX +aZ)d B YUX + Z)d

.
[ ]

.
.
[ ]




Realization Space II

Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal

Finding equations
C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d

Newton polygon of F(X,Y,1).
One tangent line # X, Y
Apply to F(X,1,2),F(1,Y, Z)
YHX +aZ)? S YYX + 2)?

24
XUY 4+ aZ)t 23 XYY + 2)¢



Realization Space II
Diagonal automorphisms
®(Sing(C)) ={[1:0:0],[0:1:0],[0:0: 1]} <= P diagonal
Finding equations
C ={F(X,Y,Z) =0}, Z =0 not tangent line for (C,[0:1:0]) =
coefficient of (XY)? is # 0 (= is 1)

2d KX e Newton polygon of F(X,Y,1).
‘\‘ e One tangent line # X,Y
* e Apply to F(X,1,2),F(1,Y,Z)
o YUX +aZ)d B YUX + Z)d
d . Xd(Y+aZ)d 22 XY + Z)¢
o ZUY +wZ)4 w? =1,
2
0 = ¢



Realization Space III

Apply ®; and ®,



Realization Space III

Apply ®; and ®,

e C has the previous Newton polygon.



Realization Space III

Apply ®; and ®,

e C has the previous Newton polygon.

e F restricted to the boundary:

XY +2)LvUX +2)%, ZUY +wX)?

=}



Realization Space III

Apply ®; and P,

e C has the previous Newton polygon.

e F restricted to the boundary:
XYY +2)LYUX +2)%, Z9Y +wX)?,

e If (C) is as above:

wt=1.



Realization Space III

Apply ®; and P,

e C has the previous Newton polygon.

e F restricted to the boundary:
XYY +2)LYUX +2)%, Z9Y +wX)?,

e If (C) is as above:
> D =1p2, w—w.

wt=1.



Realization Space III

Apply ®; and P,

e C has the previous Newton polygon.

e F restricted to the boundary:
XYY +2)LYUX +2)%, Z9Y +wX)?,
e If (C) is as above:

> O =1p2, w— w.
> (XY :Z)=[V:X:Z],wrwh

wt=1.



Realization Space III

Apply ®; and P,

e C has the previous Newton polygon.

e F restricted to the boundary:
XYY +2)LYUX +2)%, Z9Y +wX)?,

e If (C) is as above:
> O =1p2, w— w.
> (X :Y:Z)=V:X:Z,w—wl
» w =1 and ® permutation.

wt=1.



Realization Space III

Apply ®; and P,

e C has the previous Newton polygon.

e F restricted to the boundary:
XY +2)LvUX +2), Z29Y +wX)?, w'=1.

e If (C) is as above:
> O =1p2, w— w.
> (X :Y:Z)=V:X:Z,w—wl
» w =1 and ® permutation.

Decomposition via roots of unity
t//??(‘fl’(Hl) decomposes in LgJ + 1 subsets t%/;f(‘fiﬁd+1)(w) parametrized
by the sets {w,w ™!}, when w? = 1.
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Small degrees

YZ+XZ+XY)?% {cC
C tricuspidal quartic

Zariski: 7 (PP? \ C) non-abelian




Small degrees

YZ+XZ+XY)?% {cC
C tricuspidal quartic

Zariski: 7 (PP? \ C) non-abelian
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Small degrees

YZ+XZ+XY)?% {cC
C tricuspidal quartic

Zariski: 7 (PP? \ C) non-abelian

R 3 conic tangent to C;
3 - X Ceys # such a conic




Small degrees

YZ+XZ+XY)?% {cC
C tricuspidal quartic

Zariski: 7 (PP? \ C) non-abelian

R 3 conic tangent to C;
3 - X Ceys # such a conic

N A-Carmona: 71 (P?\ Cy) = Zo * Z3




Small degrees

YZ+XZ+XY)?% {cC
C tricuspidal quartic

Zariski: 7 (PP? \ C) non-abelian

R 3 conic tangent to C;
3 - X Ceys # such a conic

S A-Carmona: 71 (P?\ Cy) = Zo * Z3
. A-Carmona: m(P?\ C¢,) = Zo x Z3




Realization space

Theorem
Ifd > 3, ///??(Cﬁl,d-s-l) has L%J + 1 connected components parametrized by

the sets {w,w™'}, when w® = 1.



Realization space

Theorem

Ifd > 3, //la?(cfi’dﬂ) has L%J + 1 connected components parametrized by

the sets {w,w™ '}, when w? = 1.

Proof.

2d




Realization space

Theorem

Ifd > 3, ///32(% d+1) has L%J + 1 connected components parametrized by
the sets {w,w™'}, when w? = 1.

2d+3
M gt o)1)

2d+3
* D€ Mlun((utvy+virt))



Realization space

Theorem
Ifd > 3, ///32(% d+1) has L%J + 1 connected components parametrized by

the sets {w,w™'}, when w? = 1.

%2d+3

3{uv((utv)d+vdtl))

2d+3
* D€ Mlun((utvy+virt))

e [ line passing through two singular points



Realization space

Theorem
Ifd > 3, /// 3(d,d+1) has L%J + 1 connected components parametrized by

the sets {w,w™'}, when w? = 1.

%2d+3

(uwo((utv)d+vdt+l))

2d+3
* D€ Mlun((utvy+virt))

e [ line passing through two singular points
e D-L>2(d+2)=LCD



Realization space

Theorem
Ifd > 3, /// 3(d,d+1) has L%J + 1 connected components parametrized by
the sets {w,w™'}, when w? = 1.

%2d+3

(uwo((utv)d+vdt+l))

2d+3
* D€ Mlun((utvy+virt))

e [ line passing through two singular points
e D-L>2(d+2)=LCD
e D=CULgrULprULpg, Cec .///??((fi’dJrl)



Realization space

Theorem
Ifd > 3, ///:f(afi d+1) has L%J + 1 connected components parametrized by

the sets {w,w™'}, when w? = 1.

2d+3
‘//M ((

3{uv((u+tv)d+vdt1))

2d+3
* D€ Mlun((utvy+virt))

e [ line passing through two singular points
e D-L>2(d+2)=LCD
e D=CULgrULprULpg, Cec .///??((fi’dJrl)

Theorem

Ifd >3, %?iit?(u—&-v)d—i-vd*l)) has L%J + 1 connected components

parametrized by {{w,w 1} | w? =1}



Shirane curves

Cremona transformation

A (4),(d),(a) 18 the space of of curves £ of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £; has one point.



Shirane curves

Cremona transformation

AM(a),(a),(a) is the space of of curves & of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £; has one point.

Theorem (Shirane curves of type ((d), (d), (d)))
The space M q),(q),(a) has LdglJ + 1 connected components

parametrized by {{w,w '} | w? =1}




Shirane curves

Cremona transformation

AM(a),(a),(a) is the space of of curves & of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £; has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space M q),(q),(da) has L%J + 1 connected components
parametrized by {{w,w !} | w? =1}

Definition

A Shirane curve T of type ((a1,...,a.),(b1,...,bs),(c1,...,¢t)),

> a; =Y b; =5 ¢; =dis formed by a smooth curve S of degree d
and three lines L., Ly, L. such that:



Shirane curves

Cremona transformation

AM(a),(a),(a) is the space of of curves & of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £L; has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space M q),(q),(da) has L%J + 1 connected components
parametrized by {{w,w !} | w? =1}

Definition

A Shirane curve T of type ((a1,...,a.), (b1,...,bs),(c1,...,ct)),
Sta; =Y b; =5 ¢; =d is formed by a smooth curve S of degree d
and three lines L., Ly, L. such that:

¢ SO Ly={Pioor P} (S Lalr, = a



Shirane curves

Cremona transformation

AM(a),(a),(a) is the space of of curves & of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £L; has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space M q),(q),(da) has L%J + 1 connected components
parametrized by {{w,w !} | w? =1}

Definition
A Shirane curve T of type ((a1,...,a.), (b1,...,bs),(c1,...,ct)),
Sta; =Y b; =5 ¢; =d is formed by a smooth curve S of degree d
and three lines L., Ly, L. such that:

L] Sﬂﬁa = {Pl,...,PT}, (S',Ca)Pi = a;

o Smﬁb - {Ql?"",Qs}a (S[/b)Q, - b/



Shirane curves

Cremona transformation

AM(a),(a),(a) is the space of of curves & of degree d + 3 with four
irreducible components: a smooth curve § of degree d and three
non-concurrent lines £1, Lo, L3 such that S N £L; has one point.

Theorem (Shirane curves of type ((d), (d), (d)))

The space M q),(q),(da) has L%J + 1 connected components
parametrized by {{w,w !} | w? =1}

Definition

A Shirane curve T of type ((a1,...,a.), (b1,...,bs),(c1,...,ct)),
Sta; =Y b; =5 ¢; =d is formed by a smooth curve S of degree d
and three lines L., Ly, L. such that:

° Sﬂﬁa:{Pl,...,PT}, (S'Ea)pi:ai
e SNLy,={Q1,---,Qs}, (S-Lb)q, =bi
e SNL.={Ry,...., R}, (S-Lc)r, = ¢



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,emser)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ai, by, cx).



Shirane curves and coverings

Theorem (Shirane)
SH((ay,.ar),(brobe) ernner)) 1S L%J +1 orm components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,..ca),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).
e S={G, =0}, L, ={X =0}, L, ={Y =0} and L. ={Z = 0}.



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,..ca),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

¢ S={G, =0}, L,={X =0}, L, ={Y =0} and L. = {Z = 0}.
e G,(0,Y,2)=(Y+2),G(X,0,2)=(X+2)%, G, (X,Y,0)= (Y +wX)?



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,..ca),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).
e S={G, =0}, Lo ={X =0}, L, ={Y =0} and L. = {Z = 0}.
e G,(0,Y,2)=(Y+2),G(X,0,2)=(X+2)%, G, (X,Y,0)= (Y +wX)?
e H,={[X:Y:Z:T|cP?|T¢=G,(X,Y,2)} —2— P2



Shirane curves and coverings

Theorem (Shirane)

SH((al7,,,,%,)7(1)1,,“71,5),(01)MM)) has L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).
Proof for type ((d), (d), (d)).

S§={G, =0}, L, ={X =0}, L,={Y =0} and L. = {Z = 0}.
Gu.(0,Y,2)=(Y+2)%,G,(X,0,2)=(X+2)? G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:TeP?|T=G,(X,Y,Z2)} —— P2

Pt (La) =Ueay L5 LG ={X =0T =((Y +2)}



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G,=0}, L, ={X =0}, L, ={Y =0} and L. = {Z = 0}.
Gu(0,Y,Z)=(Y+2)!,G,(X,0,Z)=(X+2)!, G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

ML) =Ugam £ 5 L3 ={Y =0T =((X +2)}



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G, =0}, L,={X =0}, L, ={Y =0} and L. = {Z = 0}.
Gu(0,Y,2)=(Y+2)", Gu(X,0,2)=(X+2)", Gu(X,Y,0) = (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

Pt (Le) =Ueums Lo Lo ={Z=0,T =((X +wY)}



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G, =0}, L,={X =0}, L, ={Y =0} and L. = {Z = 0}.
Gu(0,Y,Z)=(Y+2)!,G,(X,0,Z)=(X+2)!, G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

Pt (Le) =Ueums Lo Lo ={Z=0,T =((X +wY)}
[0:0:1:¢] e L{NLS,



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G, =0}, L,={X =0}, L, ={Y =0} and L. = {Z = 0}.
Gu(0,Y,Z)=(Y+2)!,G,(X,0,Z)=(X+2)!, G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

Pt (Le) =Ueums Lo Lo ={Z=0,T =((X +wY)}
[0:0:1:¢] e L{NLS, [1:0:0:¢] € L{NLE,



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G, =0}, L,={X =0}, L, ={Y =0} and L. = {Z = 0}.
Gu(0,Y,Z)=(Y+2)!,G,(X,0,Z)=(X+2)!, G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

Pt (Le) =Ueums Lo Lo ={Z=0,T =((X +wY)}
0:0:1:¢] € L{NLS, [1:0:0:¢] € L{NLS, [0:1:0:w¢] € LENLYS



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,e0see)) DOS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

S={G, =0}, Lo={X =0}, £, ={Y =0} and L, = {Z = 0}.
Gu(0,Y,Z)=(Y+2)!,G,(X,0,Z)=(X+2)!, G, (X,Y,0)= (Y +wX)?
H,={[X:Y:Z:T|eP?|T=G,(X,Y,Z2)} —*— P2

Pt (Le) =Ueums Lo Lo ={Z=0,T =((X +wY)}
0:0:1:¢] € L{NLS, [1:0:0:¢] € L{NLS, [0:1:0:w¢] € LENLYS
wF! ~ an invariant of p,, restricted to {XY ZG,(X,Y, Z) # 0}



Shirane curves and coverings

Theorem (Shirane)

SH ((a1,...a),(b1,0sbs)s(C1,eser)) POS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(as, by, cx).

Proof for type ((d), (d), (d)).

(Xoo s Usoy) (X s Ussy)

= =

(P277:J1) -— (]P)277:J2)

IR

=



Shirane curves and coverings

Theorem (Shirane)
SH ((a1,...a),(b1,0sbs)s(C1,eser)) POS L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(as, by, cx).

Proof for type ((d), (d), (d)).

Hl(]P2 \71)1’2) (levuun) (szvuwz) Hl(]P)z \7:0272)
o
Z/dZ (P27 7:11) % (]P)27 7:02) Z/dZ



Shirane curves and coverings

Theorem (Shirane)

SH ((ay,...;a0),(b1,0sbs),(c1r0nsce)) OS {%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(a;, bj, k).

Proof for type ((d), (d), (d)).

Hl (P2 \ 7;1 ) Z) (meuwl) 7:%2% (Xw27uw2) Hl (PZ \ 7;2; Z)
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Theorem (Shirane)
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Shirane curves and coverings

Theorem (Shirane)

SH((al7.__,%)7(;,1,_“7;,5),(01,m’ct)) has L%J + 1 or m components having
pairwise distinct topological embeddings in P?, m = ged(ay, bj,cr).

Proof for type ((d), (d), (d)).

Hi(P2\ T Z)  (XusUoy) —22 (Xuy,Usy)  Hi(P2\ Toyi Z)
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Z/dZ (P27 7;1) % (]P)27 7;12) Z/dZ
1., 15 1 mod d figen L5 0 mod d
1., 225 1 mod d fige 23 0 mod d
P, 3,
HSuy W) i
Relative position of £§ = wy = wit O
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Fundamental group

Examples
e (€ ///§‘A2, the triscuspidal quartic:
71(P? \ C) non-abelian of order 12 (Zariski)
o (€ ///51%, sextic with three Eg points tangent to a conic: 7y (P?\
C)=2Z/2x7Z/3 (A-Carmona)
o Cc € ///??Az, sextic with three Eg points non-tangent to a conic:
m (P?\C) &2 Z/2 x 7Z/3 (A-Carmona)

Question
How many such groups are abelian?

Strategy

Study a curve with plenty of extremal flexes: Fermat curves
Xi4yd+zi=0.

Tangent lines: (X¢+ Y (Y?+ 24 (24 + X4 =0
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An arrangement of lines

X+Y+Z2=0

Y =0

Y+Z=0

X+7Z=0

X+Y =0

1= [szvﬂwy] = [Mmzaﬂwyzv/ﬁy} = [Uzzvﬂyz]
1= [ty s ) = (s Pz ay=] = [y ayhys fiye]
L= pyzfayz oy Bay oz o fbe = Ng = NZ = /ig
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Fundamental group of triangular curves

Theorem
Let T, € AM((ay,(a),(a))- If either d > 3 or (d,w) = (3,(), then
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e Consider the orbifold fundamental group

mPP\{(X+Y +2)( X+ Y)Y + Z)(Z+X)XYZ =0})

(g, g, )

e Kummer cover 7q: P2 = P2 [X : YV : Z] — [X?: Y7 Z9]
e TN {(X+Y + )X +YV)Y +2)Z+X)XYZ =0}) =
{(Xd—‘y—Yd—l—Zd)(Xd—‘y—Yd)(Yd—f—Zd)(Zd-i-Xd)XYZ: }



Fundamental group of triangular curves

Theorem
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Fundamental group of triangular curves

Theorem
Let T, € AM((ay,(a),(a))- If either d > 3 or (d,w) = (3,(), then
(P2 \ T,) is abelian.

Proof.

e Consider the orbifold fundamental group

mPP\{(X+Y +2)( X+ Y)Y + Z)(Z+X)XYZ =0})
(s pg, 1)

e Kummer cover 7q: P2 = P2 [X : YV : Z] — [X?: Y7 Z9]

e TN {(X+Y+2)X+Y)Y +2)(Z+X)XYZ=0}) =
{(XT+Yei4+ 29 (X + Y (Y4 Z24)(Z2¢+ XHXY Z =0}

e Monodromy of mq: pz — (1,0), py — (0,1), pr — (—1,-1)

o m PP\ {(XT+ Y+ ZN)(XT+ Y (Yi4 Z¥) (24 + X9) = 0} via
Reidemeister-Schreier

O



Fundamental group of triangular curves

Theorem
Let To, € M((ay,(ay,ay)- If either d >3 or (d,w) = (3,(), then
(P2 \ T,) is abelian.

Proof.

e Consider the orbifold fundamental group

mPP\{(X+Y +2)( X+ Y)Y + Z)(Z+X)XYZ =0})
(g, pg, pd)

e Kummer cover 7q: P2 = P2 [X : YV : Z] — [X?: Y7 Z9]

e T {(X+Y + )X +YV)Y +2)Z+X)XYZ =0}) =
{(XE+ Y4+ 29X+ Y)Y+ 2 (29 + XDHXY Z = 0}

e Monodromy of mq: pz — (1,0), py — (0,1), pr — (—1,-1)

o m P\ {(XT+ Y9+ ZN)(XT+ Y (Yi4 Z¥) (244 X9) = 0} via
Reidemeister-Schreier

Kill meridians to obtain the result O
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Theorem (Classic)

X projective surface, A, B C X with no common irreducible
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Fundamental group of Shirane curves

Theorem (Classic)

X projective surface, A, B C X with no common irreducible
components, B =J; Bj. Then, m (X \ A) = m(X \ (AU B))/{ug;),
up,; meridians.

Corollary

Let D, € //lz‘fjv?’ (o) dpod+1)) If either d > 3 or (d,w) = (3,¢), then
71 (P?\ Dy,) is abelian.

Corollary

Let C, € M} sid,at)- U either d >3 or (d,w) = (3,¢), then 71 (P?\ Cy)
is abelian.

Theorem (Zariski,Dimca)

{Ci}tejo,1) family of projective plane curves, equisingular for t € (0,1])
with C1 reduced. Then 3y (P?\ Cy) — w1 (P2 \ Cy).

Corollary (Degeneration of ((d), (d), (d)) curves)

All Shirane curves have abelian fundamental group except from @
((2),(2),(2)) and ((3),(3),(3)) (with aligned intersection points). -
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Theorem
SH ((ay,..a0),(b1,be)s(c1,ner)) has moor | ] 41 components having
pairwise distinct topological complements in P2, m = ged(a;, by, k).
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Homeomorphisms of complements

Theorem
SH ((ar,...an),(br,be)(c1ree)) has m or | 2] +1 components having
pairwise distinct topological complements in P2, m = ged(a;, by, k).

Proof of Case ((d), (d), (d)).

> W, =P\ T,

> U, closed regular neighbourhood of 7;,, E,, := P?\ U, E, =W,
> M, := U, = 9E,. =

> Covering monodromy: m(My) — Hi(M.;Z)

[ 2
m(E,) — Hy(E,;7Z)

> s and fieycle determined by homemorphism type of M, (combi-
natorics!) and o,. Waldhausen’s classification of graph manifolds
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Homeomorphisms of complements

Theorem
SH ((ay,..a0),(b1,be)s(c1,ner)) has moor | ] 41 components having
pairwise distinct topological complements in P2, m = ged(a;, by, k).

Proof of Case ((d), (d), (d)).

> W, =P\ T,
> U, closed regular neighbourhood of 7;,, E,, := P?\ U, E, =W,
> M, = 0U, = OE,,. .

> Covering monodromy: m1 (M) — Hi(My;Z)

[ 2
m(E,) — Hy(E,;7Z)

Ow

> Wrong! Bad behavior of regular neighborhoods under homeomor-
phisms
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Homeomorphisms of complements

Theorem
SH ((ay,...a0),(br,be)s(c1,er)) has moor | ] 41 components having
pairwise distinct topological complements in P2, m = ged(a;, by, k).

Proof of Case ((d), (d), (d)).
> W, =P\ T,

> mo(X) = Jim (X \ K): W)
o t l T Hd
o0 ~ ’ ) %
> w7 (W) = mi (M) (W)



Homeomorphisms of complements
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Homeomorphisms of complements

Theorem
SH (a1, .an),(br,sbo)(c1ree)) has m or | 2] + 1 components having
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Proof of Case ((d), (d), (d)).

> W, =P\ T,
> mo(X) = l&n (X \ K): T (W) 50
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—
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Homeomorphisms of complements

Theorem
SH (a1, .an),(br,sbo)(c1ree)) has m or | 2] + 1 components having
pairwise distinct topological complements in P2, m = ged(a;, by, k).

Proof of Case ((d), (d), (d)).

>
>

m

W, :=P2\ T,
(X)) = l&n (X \ K): T (W) 50
ooy t l e Hd
compac s
e
T°(We) = mi (M) 71 (W)
Waldhausen: M sufficiently large, ® : mq (M) =N m(M) = F :

homeo

M ——— M such that & = 1,

tts and ficycle determined by homemorphism type at infinity of W,
(combinatorics!) and o,.

&d(,U'S) = €xXp (%)7 &d(ﬂcycle) =w O
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Conclusions

» Homeomorphism of complements instead of pairs:

e Replace boundary by m¢°
e Replace Waldhausen graph manifold theory by Waldhausen
sufficiently large manifold theory.

» Easier in the non-conjugate case.

Curves in 50 4,1

If wy # wil, are (P2,C,,) and (P?,C,,) homeomorphic? (d > 3)
> //132& dt+1) disconnected = Zariski tuple candidates

med e ; 2d+3
» Lines essential to distinguish components in ./ (wo((utv)d-+vd+1))



Thank you



