Time-interacting fields and actions in positive topological field theories

Dominik Wrazidlo

Institute of Mathematics for Industry (IMI) Kyushu University

March 7, 2019

# §Introduction

## Topological Field Theory & Gluing

- ▶ [1] M.F. Atiyah (1988): Topological quantum field theory
- axioms of TFTs for smooth oriented manifolds
- (n + 1)-dim. TFT Z (over comm. ground ring R with 1)
- $M^n$  closed manifold  $\mapsto$  state module Z(M) (f.g. over R)
- $W^{n+1}$  compact manifold  $\mapsto$  state sum  $Z_W \in Z(\partial W)$
- ▶ gluing axiom:  $(M^n, N^n, P^n) \rightsquigarrow$  contraction product

$$\langle \cdot, \cdot \rangle \colon \quad Z(M \sqcup N) \otimes_R Z(N \sqcup P) \quad \longrightarrow \quad Z(M \sqcup P)$$

s.t.  $Z_{W} = \langle Z_{W'}, Z_{W''} \rangle$  whenever  $W : M \xrightarrow{W'} N \xrightarrow{W''} P$ 

Further axioms: Z(−) is functorial w.r.t. diffeomorphisms, Z<sub>W</sub> is diffeomorphism invariant; Z(−M) = Z(M)\* dual module; disjoint union Z(M ⊔ N) ≅ Z(M) ⊗<sub>R</sub> Z(N), Z<sub>W ⊔ V</sub> ≅ Z<sub>W</sub> ⊗<sub>R</sub> Z<sub>V</sub>; normalizations Z(∅) = R, Z<sub>∅</sub> = 1 ∈ R, Z<sub>M×[0,1]</sub> = id<sub>Z(M)</sub>

# Examples (Gluing)

$$\blacktriangleright W^{n+1} \colon M^n \xrightarrow{W'} N^n \xrightarrow{W''} P^n$$

Euler characteristic (n odd):

$$\chi(W) = \chi(W') + \chi(W'')$$

Novikov additivity (compatibly oriented bordisms):

$$\sigma(W) = \sigma(W') + \sigma(W'')$$

Pontrjagin numbers (n = 7, compatibly oriented bordisms, M = P = ∅, H<sup>3</sup>(N<sup>7</sup>) = H<sup>4</sup>(N<sup>7</sup>) = 0):  $p_1^2[W] = p_1^2[W'] + p_1^2[W'']$ 

 $\rightsquigarrow$  [10] Milnor's invariant  $\lambda(N^7)$ 

# A Convenient Setting for Topological Invariants

### GOAL:

Exploit concept of TFT as a source of inspiration for constructing powerful (differential) topological invariants of manifolds!

### IDEA (M. Banagl [3], 2015):

Find formulation of Atiyah's axioms for TFTs over semirings!

- accept certain deviations from Atiyah's axioms
- obtain positive TFTs as framework for topological invariants
- avoid measure theoretic difficulties in Feynman's path integral

#### TODAY:

Present features of positive TFT, and a high dimensional example.

- Banagl's work [2, 3, 4]: theory of semirings and semimodules, axioms for positive TFTs, framework of quantization
- our work [12, 16, 17, 18]: time-interacting fields and actions, improving Banagl's example of a positive TFT based on fold maps, computations of aggregate invariant for exotic spheres

# §Semi-Algebra

# Semirings and Semimodules

Definition

- 1. A semiring is a tuple  $S = (S, +, \cdot, 0, 1)$ , where
  - ▶ (*S*,+,0) comm. monoid
  - ▶ (*S*, ·, 1) monoid

satisfying a(b + c) = ab + ac, (a + b)c = ac + bc, and  $0 \cdot a = a \cdot 0 = 0$ .

2. A (left) **semimodule** over the semiring S is a comm. monoid  $M = (M, +, 0_M)$  with scalar multiplication  $S \times M \rightarrow M$ ,  $(s, m) \mapsto sm$ , such that (rs)m = r(sm), r(m + n) = rm + rn, (r + s)m = rm + sm, 1m = m,  $r0_M = 0_M = 0m$ .

### Example

- $\blacktriangleright$  natural numbers  $\mathbb{N} = \{0, 1, \dots\}$  form semiring  $\left(\mathbb{N}, +, \cdot\right)$
- Boolean semiring  $\mathbb{B} = \{0, 1\}$ , require 1 + 1 = 1
- semiring of formal power series  $\mathbb{B}[\![q]\!]$  is an  $\mathbb{N}[\tau]$ -semimodule

## Eilenberg-Completeness

[6] S. Eilenberg (1974): Automata, Languages, and Machines

#### Definition

1. A comm. monoid (M, +, 0) is **complete** if "+" is extended to

$$\sum: \{m_i\}_{i\in I} \longmapsto \sum_{i\in I} m_i \in M$$

satisfying Fubini's law:  $I = \bigcup_{j \in J} I_j \implies \sum_{i \in I} m_i = \sum_{j \in J} \sum_{i \in I_j} m_i.$ 

- 2. A semiring S is called **complete** if (S, +, 0) is complete, and  $\sum$  satisfies infinite distributivity.
- An S-semimodule M is called complete if the monoid M is complete, and ∑ satisfies infinite distributivity.

**Eilenberg swindle:** If S is an Eilenberg-complete ring, then

$$s := 1 + 1 + \cdots = 1 + (1 + \dots) = 1 + s \Rightarrow 0 = 1 \Rightarrow S = 0.$$

# Continuous Monoids

- ► (*M*, +, 0) comm. monoid
- ▶ suppose *M* is **idempotent**, i.e., m + m = m for all  $m \in M$
- ▶ then, *M* has natural partial order "≤" given by

$$m \le m' \qquad \Leftrightarrow \qquad m+m'=m$$

### Definition

An idempotent complete monoid  $(M, +, 0, \Sigma)$  is called **continuous** if for all families  $(m_i)_{i \in I}$ ,  $m_i \in M$ , and for all  $c \in M$ ,  $\sum_{i \in F} m_i \leq c$  for all finite  $F \subset I$  implies  $\sum_{i \in I} m_i \leq c$ .

#### Lemma

Let  $(M, +, 0, \Sigma)$  be a continuous, idempotent, complete monoid. Then, for any families  $(m_i)_{i \in I}$  and  $(n_j)_{j \in J}$  of elements in M for which  $\{m_i; i \in I\} = \{n_j; j \in J\}$  as subsets of M, we have

$$\sum_{i\in I}m_i=\sum_{j\in J}n_j.$$

## A Completed Tensor Product

- ▶ *M*, *N* continuous idempotent complete comm. monoids
- ► suppose *M*, *N* are complete **<u>bi</u>**semimodules over a semiring *S*

### Theorem (Banagl [4], 2016)

There exists a continuous idempotent complete monoid  $M \widehat{\otimes}_S N$ which has the structure of a complete S-bisemimodule, and a  $S_S S$ -linear bicontinuous map  $\widehat{\alpha} \colon M \times N \to M \widehat{\otimes}_S N$  such that the following **universal property** holds. For every continuous idempotent complete monoid P which has the structure of a complete S-bisemimodule, and for every  $S_S S$ -linear bicontinuous map  $\varphi \colon M \times N \to P$ , there exists a unique S-bisemimodule homomorphism  $\widehat{\varphi} \colon M \widehat{\otimes}_S N \to P$  such that the following diagram commutes:



# **§Positive TFTs**

# Banagl's Axioms for Positive Topological Field Theory

- Q continuous idempotent complete comm. monoid
- $Q^c, Q^m$  complete semirings having additive monoid Q
- $\widehat{\otimes}_c$ ,  $\widehat{\otimes}_m$  tensor products for bisemimodules over  $Q^c$ ,  $Q^m$
- all manifolds are smooth and unoriented
- define (n + 1)-dim. positive TFT Z (over  $Q^c, Q^m$ )
- ► M<sup>n</sup> closed manifold → state module Z(M), a continuous idempotent complete two-sided semialgebra over Q<sup>c</sup>, Q<sup>m</sup>
- $W^{n+1}$  compact manifold  $\mapsto$  state sum  $Z_W \in Z(\partial W)$
- ▶ gluing axiom:  $(M^n, N^n, P^n) \rightsquigarrow$  contraction product

$$\langle \cdot, \cdot \rangle \colon Z(M \sqcup N) \widehat{\otimes}_{c} Z(N \sqcup P) \longrightarrow Z(M \sqcup P),$$

s.t.  $Z_{W} = \langle Z_{W'}, Z_{W''} \rangle$  whenever  $W \colon M \xrightarrow{W'} N \xrightarrow{W''} P$ 

Further axioms: Z(−) functorial w.r.t. diffeomorphisms; pseudo-isotopy invariance; Z(M ⊔ N) ≅ Z(M) ⊗<sub>m/c</sub>Z(N); Z<sub>W ⊔ V</sub> ≅ Z<sub>W</sub> ⊗<sub>m</sub>Z<sub>V</sub>; diffeomorphism invariance of Z<sub>W</sub>

# Constructing a Positive TFT from Fields and Actions

- ► system of fields *F*: have sets of fields *F*(*W<sup>n+1</sup>*), *F*(*M<sup>n</sup>*), axioms (restriction, disjoint union, diffeomorphisms, gluing)
- C small strict monoidal category
- C-valued action functional  $\mathbb{T}$  on fields: have maps  $\mathbb{T}_W \colon \mathcal{F}(W) \to \mathsf{Mor}(\mathbf{C})$  for all W, require certain axioms
- ► *S* complete semiring,  $Q = {Mor(C) \rightarrow S}$  complete monoid
- ▶  $Q^c$  composition ("  $\circ$  ") semiring;  $Q^m$  monoidal ("  $\otimes$  ") semiring
- state modules: Z(M<sup>n</sup>) = {𝔅(M) → Q| constraint equation}
- ▶ state sum (partition function)  $Z_W \in Z(\partial W)$ :  $f \in \mathcal{F}(\partial W)$ ,

$$Z_W(f) = \sum_{F \in \mathcal{F}(W), | F|_{\partial W} = f} \chi_{\mathbb{T}_W(F)} \in Q$$

$$Z_W(f) = \int_{\mathcal{F}(W;f)} e^{iS_W(F)} \,\mathrm{d}\,\mu_W$$

Theorem (Banagl [3], 2015)

The above process of quantization yields a positive TFT Z.

# §Time-Interaction

# Bordisms and Submanifolds

- ▶ *M*, *N*, *P* closed *n*-mflds.; *W*, *W'*, *W''* compact (n + 1)-mflds.
- equip submanifolds  $M, N, P \subset W$  with germs of **framings**



- W is a collared bordism from M to N
- ► *M*, *N*, *P* are (codim. 1) framed submanifolds of *W*
- W' is **collared subbordism** of W; W' collared from P to N
- ▶ given collared bordisms W' from M to N and W' from N to P, have canonical gluing W' ∪<sub>N</sub> W" with N as framed codim. 1 submanifold, and W', W" as collared subbordisms
- a diffeomorphism of collared bordisms respects ingoing and outgoing boundaries, and is identity map in collar direction

# Time Functions on Collared Bordisms

• time function au on collared bordism W from M to N



- *M*, *N*, *Q* are  $\tau$ -consistent framed submanifolds of *W*
- W', W'' are  $\tau$ -consistent collared subbordism of W
- $\tau$  restricts to time functions  $\tau|_{W'}$ ,  $\tau|_{W''}$  on W', W''
- a diffeomorphism of collared bordisms is time-consistent if it covers an orientation preserving diffeomorphism of intervals

## System of Time-Interacting Fields

- have sets of fields  $\mathcal{F}(M^n)$ , and  $\mathcal{F}(W^{n+1})$  for W collared
- for each time function  $\tau$  on W have subset  $\mathcal{F}_{\tau}(W) \subset \mathcal{F}(W)$
- restriction maps:

 $\mathcal{F}(W) \to \mathcal{F}(W_0)$ , when  $W_0$  is union of components of W $\mathcal{F}(M) \to \mathcal{F}(M_0)$ , when  $M_0$  is union of components of M $\mathcal{F}(W) \to \mathcal{F}(P)$ , when P is union of components of  $\partial W$  $\mathcal{F}_{\tau}(W) \to \mathcal{F}_{\tau|_{W_0}}(W_0)$ , when  $W_0 \subset W$  is collared,  $\tau$ -consistent  $\mathcal{F}_{\tau}(W) \to \mathcal{F}(Q)$ , when  $Q \subset W$  is framed,  $\tau$ -consistent

- ▶ disjoint union:  $\mathcal{F}(W' \sqcup W'') \xrightarrow{\cong} \mathcal{F}(W') \times \mathcal{F}(W'')$ ;  $M \sqcup M'$
- ► au-gluing:  $\mathcal{F}_{\tau}(W' \cup_{N} W'') \xrightarrow{\cong} \mathcal{F}_{\tau|_{W'}}(W') \times_{\mathcal{F}(N)} \mathcal{F}_{\tau|_{W''}}(W'')$
- contravariant action of time-consistent diffeomorphisms
- ▶ time interaction:  $\exists \mathcal{F}(W) \rightarrow \mathcal{F}_{\tau}(W)$  such that whenever  $P \subset \partial W$  is a union of components of  $\partial W$ , we have



## System of Time-Interacting Action Functionals

- **C** small strict monoidal category
- $\mathcal{F}$  system of time-interacting fields on  $M^n$ ,  $W^{n+1}$  (collared)
- ▶ have functions  $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(\mathsf{C})$  for  $W^{n+1}$  collared
- disjoint union:  $\mathbb{T}_{W' \sqcup W''}(F) = \mathbb{T}_{W'}(F|_{W'}) \otimes \mathbb{T}_{W''}(F|_{W''})$
- $\tau$ -gluing:  $\mathbb{T}_{W'\cup_N W''}(F) = \mathbb{T}_{W'}(F|_{W'}) \circ \mathbb{T}_{W''}(F|_{W''})$
- ▶ action of time-consistent diffeomorphisms: require that  $\mathbb{T}_W(\phi^*F) = \mathbb{T}_{W'}(F)$  holds under the bijection  $\phi^* : \mathcal{F}_{\tau'}(W') \to \mathcal{F}_{\tau}(W)$  induced by time-consistent diffeomorphism  $\phi : W \to W'$
- time interaction:



## Quantization of Time-Interacting Fields and Actions

- $\mathcal{F}$  system of time-interacting fields on  $M^n$ ,  $W^{n+1}$  (collared)
- $C = (C, \otimes, I)$  small strict monoidal category
- $\blacktriangleright~\mathbb{T}$  system of C-valued time-interacting action functionals on  $\mathcal F$
- ► S continuous idempotent Eilenberg-complete semiring
- $Q = {Mor(\mathbf{C}) \rightarrow S}$  continuous idempotent complete monoid
- $Q^c, Q^m$  complete semirings, Q underlying additive monoid
- define state module Z(M) of closed manifold M<sup>n</sup> by

$$Z(M) = \{z \colon \mathcal{F}(M) o Q \mid z(\phi^* f) = z(f) \text{ for all } \phi \in \mathsf{Diff}_0(M)\}$$

▶ define state sum  $Z_W \in Z(\partial W)$  of collared bordism  $W^{n+1}$  by

$$Z_W(f) = \sum_{\substack{F \in \mathcal{F}(W), \ F \mid \partial W = f}} \chi_{\mathbb{T}_W(F)} \in Q, \qquad f \in \mathcal{F}(\partial W)$$

#### Theorem (W. [19], 2018)

The above process of quantization yields a positive TFT Z.

# §Application

### Step 1: System of Time-Interacting Fields

 $F: W^{n+1} \to \mathbb{R}^2$  is called **fold map** if F looks at every singular point  $c \in S(F)$  in suitable coordinates centered at c and F(c) like

$$(t, x_1, \ldots, x_n) \mapsto (t, -x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2).$$



Step 1: System of Time-Interacting Fields

- define set  $\mathcal{F}(M)$  of fields on (connected) closed manifold  $M^n$
- ▶ a field on M is a ({0} × M)-germ represented by a fold map



such that for all  $t \neq 0$  we have  $S(F) \pitchfork \{t\} \times M$ , and  $\text{Im} \circ F$  is **injective** on  $S(F) \cap \{t\} \times M$ 

▶ the projection  $(0, \varepsilon) \times M \rightarrow (0, \varepsilon)$  restricts to finite covering

 $S(F) \cap (0, \varepsilon) \times M \longrightarrow (0, \varepsilon)$ 

• components of  $S(F) \cap (0, \varepsilon) \times M$  have canonical ordering

### Step 1: System of Time-Interacting Fields

- $W^{n+1}$  collared bordism from M to N with time-function au
- define sets  $\mathcal{F}(W)$ ,  $\mathcal{F}_{\tau}(W)$  of ( $\tau$ -interacting) fields on W
- ▶ a field on W is a triple  $(F, f_M, f_N)$ , where  $f_M \in \mathcal{F}(M)$  and  $f_N \in \mathcal{F}(N)$ , and  $F: W \setminus \partial W \to \mathbb{R}^2$  is a fold map that extends for suitable  $\varepsilon > 0$  the fold maps  $f_M|_{(0,\varepsilon) \times M}$  and  $f_N|_{(-\varepsilon,0) \times N}$
- a field (F, f<sub>M</sub>, f<sub>N</sub>) on W is τ-interacting if F restricts for every τ-consistent framed submanifold P ⊂ W to a field on P
- in general, a field on  $W^{n+1}$  might not be au-interacting for all au
- check field axioms except for time interaction: restriction, disjoint union, τ-gluing, action of time-consistent diffeomorphisms

- categorify Brauer algebras [5] (representation theory of O(n))
- ► symmetric strict monoidal Brauer category (Br, ⊗, [0], b)
- Ob Br:  $[0] = \emptyset$ ,  $[1] = \{1\}$ ,  $[2] = \{1, 2\}$ , ...
- Hom<sub>Br</sub>([m], [n]): morphisms look like



- no over- underpass information (compare Turaev [15])
- $[m] \otimes [n] = [m + n]; \otimes$  of morphisms by vertical stacking
- braiding  $b = \square \in Hom_{Br}([2], [2])$
- ▶ enrichment [12]: chromatic Brauer category (cBr, ⊗, [0], b)
- use countable number of colors to label components

- ▶ want  $\mathbb{T}_W$ :  $\mathcal{F}(W) \to \mathsf{Mor}(\mathbf{Br})$  for  $W^{n+1}$  collared from M to N
- ▶ associate to field  $(F, f_M, f_N)$  on W morphism  $[m] \rightarrow [m']$  in **Br**
- identify canonically ordered set  $S(F) \cap M$  with [m]
- similarly,  $S(F) \cap N \cong [m']$
- morphism  $[m] \rightarrow [m']$  is naturally induced by **fold pattern**



- ▶ want  $\mathbb{T}_W$ :  $\mathcal{F}(W) \to \mathsf{Mor}(\mathsf{Br})$  for  $W^{n+1}$  collared from M to N
- ▶ associate to field  $(F, f_M, f_N)$  on W morphism  $[m] \rightarrow [m']$  in **Br**
- identify canonically ordered set  $S(F) \cap M$  with [m]
- similarly,  $S(F) \cap N \cong [m']$
- ▶ morphism  $[m] \rightarrow [m']$  is naturally induced by **fold pattern**



- ▶ want  $\mathbb{T}_W$ :  $\mathcal{F}(W) \to \mathsf{Mor}(\mathsf{Br})$  for  $W^{n+1}$  collared from M to N
- ▶ associate to field  $(F, f_M, f_N)$  on W morphism  $[m] \rightarrow [m']$  in **Br**
- identify canonically ordered set  $S(F) \cap M$  with [m]
- similarly,  $S(F) \cap N \cong [m']$
- ▶ morphism  $[m] \rightarrow [m']$  is naturally induced by **fold pattern**



- ▶ want  $\mathbb{T}_W$ :  $\mathcal{F}(W) \to \mathsf{Mor}(\mathbf{Br})$  for  $W^{n+1}$  collared from M to N
- ▶ associate to field  $(F, f_M, f_N)$  on W morphism  $[m] \rightarrow [m']$  in **Br**
- identify canonically ordered set  $S(F) \cap M$  with [m]
- similarly,  $S(F) \cap N \cong [m']$
- morphism  $[m] \rightarrow [m']$  is naturally induced by **fold pattern**
- check action axioms except for time interaction: disjoint union, τ-gluing, action of time-consistent diffeomorphisms



- $W^{n+1}$  collared bordism from M to N with time-function  $\tau$
- Question (M. Banagl): Are all fold patterns of fields on W also realized by *τ*-interacting fields?
- in other words: do fields and action satisfy the time-interaction axioms?

```
Theorem (W. [16, 19], 2018)
```

For every field  $(F, f_M, f_N)$  on W, there is a  $\tau$ -interacting field  $(G, f_M, f_N)$  on W such that  $\mathbb{T}_W(F, f_M, f_N) = \mathbb{T}_W(G, f_M, f_N)$ .

## Sketch of Proof



modify S(F) by precomposing F with automorphism of W
 achieve that τ<sup>-1</sup>(t) ↑ S(F) for all t ∈ Reg(τ) \ finite set

# Sketch of Proof (continued)



- modify F(S(F)) slightly by perturbing F, not changing S(F)
- achieve that  $Im \circ F$  is injective on  $S(F) \setminus open$  intervals

# Sketch of Proof (continued)



• modify S(F) by precomposing F with automorphism of W

▶ for all  $t \in \operatorname{Reg}(\tau) \setminus \text{finite set}$ , still have  $\tau^{-1}(t) \pitchfork S(F)$ , and in addition,  $\operatorname{Im} \circ F$  is injective on  $\tau^{-1}(t) \cap S(F)$ 

## Step 3: Quantization

- complete additive monoid  $Q = {Mor(Br) \rightarrow \mathbb{B}}$
- write  $Q = \bigoplus_{m,n \ge 0} Q_{m,n}$ , where  $Q_{m,n} = \{ \operatorname{Hom}([m], [n]) \to \mathbb{B} \}$
- product "·" of **composition semiring**  $Q^c$  induced by

$$: Q_{m,p} \times Q_{p,n} \to Q_{m,n}, \quad (f' \cdot f'')(\gamma) = \sum_{\gamma = \alpha \circ \beta} f'(\alpha) f''(\beta)$$

• product " $\times$ " of **monoidal semiring**  $Q^m$  induced by

$$\times : Q_{m,n} \times Q_{r,s} \to Q_{m+r,n+s}, \quad (f' \times f'')(\gamma) = \sum_{\gamma = \alpha \otimes \beta} f'(\alpha) f''(\beta)$$

- ▶ comm. monoid  $\{t^k; k \in \mathbb{N}\} \cong (\mathbb{N}, +, 0)$  acts on  $Q_{m,n}$  via  $(t^k, f) \mapsto (\varphi \mapsto f(\lambda^{\otimes k} \otimes \varphi))$
- monoid semiring  $\mathbb{N}[\{t^k; k \in \mathbb{N}\}] = \mathbb{N}[t]$
- ▶ isomorphism of ℕ[t]-semimodules

$$Q_{m,n} \xrightarrow{\cong} \bigoplus_{\substack{\boldsymbol{\varphi} : [m] \to [n] \\ \text{loop-free}}} \mathbb{B}[\![\boldsymbol{q}]\!], \qquad f \mapsto \left(\sum_{k=0}^{\infty} f(\lambda^{\otimes k} \otimes \boldsymbol{\varphi}) \boldsymbol{q}^k\right)_{\boldsymbol{\varphi}}$$

## Step 3: Quantization

▶ partition function  $Z_W \in Z(\partial W)$  of bordism  $W^{n+1}$ :

$$Z_W(f) = \sum_{F \in \mathcal{F}(W;f)} \chi_{\mathbb{T}_W(F)} \quad \in Q_{m(f),m'(f)}, \qquad f \in \mathcal{F}(\partial W)$$

Theorem (Banagl [3], 2015) If  $n + 1 \ge 3$ , then  $Z_W(f)$  is for all  $f \in \mathcal{F}(\partial W)$  a rational function

$$Z_W(f) = rac{P_f(q)}{1-q^2}, \qquad P_f(q) \in \mathbb{B}\llbracket q 
rbracket \oplus \mathbb{B}\llbracket q 
rbracket.$$

Theorem (W. [16], 2017) If  $n + 1 \ge 2$ , then  $Z_W(f)$  is for all  $f \in \mathcal{F}(\partial W)$  a rational function

$$Z_W(f) = rac{Q_f(q)}{1-q}, \qquad Q_f(q) \in \mathbb{B}\llbracket q 
rbracket \oplus \mathbb{B}\llbracket q 
rbracket.$$

For n+1=2,  $Q_f(q)$  is known [17]. For n+1>2, deg  $Q_f(q)\leq n$ .

# Step 4: Linearization

- Vect category of real vector spaces and linear maps
- ▶ "⊗" Schauenburg tensor product [14]
- (Vect,  $\otimes$ ,  $\mathbb{R}$ , b) symmetric strict monoidal category
- $C = (C, \otimes, I)$  small strict monoidal category
- ▶ linear representation: strict monoidal functor  $Y : \mathbf{C} \to \mathbf{Vect}$
- $\blacktriangleright$  define  $\textbf{Y}\text{-linearization}\ \mathbb{L}$  of C-valued action functional  $\mathbb{T}$  by

$$\mathbb{L}_W \colon \mathcal{F}(W) \xrightarrow{\mathbb{T}_W} \mathsf{Mor}(\mathbf{C}) \xrightarrow{Y} \mathsf{Mor}(\mathbf{Vect})$$

•  $\mathbb{L}$  is **Vect**-valued system of action functionals

Theorem (Müller [11], W. [16], 2015) All (non-trivial) symmetric linear representations of **Br** are faithful.

### Theorem (Müller-W. [12], 2019)

There exist symmetric linear representations  $Y : \mathbf{cBr} \to \mathbf{Vect}$ .

## Aggregate Invariant

- ▶ *M<sup>n</sup>* oriented closed *n*-manifold
- $\operatorname{Cob}(M^n)$  set of all oriented nullbordisms  $W^{n+1}$  of  $M^n$



define aggregate invariant:

$$\mathfrak{A}(M^n) := \sum_{W^{n+1} \in \operatorname{Cob}(M^n)} Z_W \quad \in Z(M)$$

# Application: Detecting Exotic Smooth Spheres

▶ *n* ≥ 5

- [9, 10] exotic sphere Σ<sup>n</sup>: closed smooth manifold which is homeomorphic, but not diffeomorphic to S<sup>n</sup>
- ► **FACT.**  $M^n = S^n$  and  $M^n = \Sigma^n$  have Morse number 2:



Theorem (Banagl [3, 4], 2015)  $M^{n} \cong S^{n} \iff \mathfrak{A}(M^{n})(\overline{f}_{M}) \notin q \cdot Q_{2,2}$ 

#### Proof.

use methods of Saeki [13] based on Stein factorization

Application: Detecting Exotic Kervaire Spheres

- ▶  $n = 4k + 1, k \ge 1$
- $\Sigma_{K}^{n}$ : unique **Kervaire sphere** of dimension *n* (see [8])
- ▶  $\Sigma_{K}^{n}$  is exotic whenever  $n \notin \{5, 13, 29, 61, 125\}$  (see [7])
- on exotic sphere  $\Sigma^n$ , choose a Morse function



Theorem (W. [16, 18], 2017)

Let  $n \ge 237$  and  $n \equiv 13 \pmod{16}$ . Then, for an exotic sphere  $\Sigma^n$ ,

 $\Sigma^n \cong \Sigma^n_{\mathcal{K}} \iff \mathfrak{A}(\Sigma^n)(\overline{g}_{\Sigma}) \notin q \cdot Q_{2,2}$ 

# Proof – Main Ingredients





Cusp Elimination (Levine) & Cretaion



Two-Index Thm. (Cerf-Hatcher-Wagoner)

Thank you for your attention!

### References I

- M.F. Atiyah, Topological quantum field theory, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186.
- M. Banagl, *The Tensor Product of Function Semimodules*, Algebra Universalis **70** (2013), no. 3, 213–226.
- M. Banagl, *Positive topological quantum field theories*, Quantum Topology **6** (2015), no. 4, 609–706.
- M. Banagl, *High-dimensional topological field theory, positivity, and exotic smooth spheres*, technical report, Heidelberg University (2016).
- R. Brauer, On algebras which are connected with the semisimple continuous groups, Annals of Math. 38 (1937), no. 4, 857–872.
- S. Eilenberg, *Automata, languages, and machines*, Pure and Applied Mathematics, vol. A, Academic Press, 1974.

### References II

- M.A. Hill, M.J. Hopkins, D.C. Ravenel, On the non-existence of elements of Kervaire invariant one, Annals of Mathematics 184 (2016), no. 1, 1–262.
- H.B. Lawson, M.-L. Michelsohn, *Spin Geometry*, Princeton Math. Series 38, Princeton University Press, (1989).
- W. Lück, A basic introduction to surgery theory, version: October 27, 2004, http://131.220.77.52/lueck/data/ictp.pdf.
- J. Milnor, *On manifolds homeomorphic to the* 7*-sphere*, Annals of Mathematics, vol. 64, No. 2 (1956).
- L.F. Müller, *Linear representations of the Brauer category*, Master thesis, Heidelberg University (2015).

### References III

- L.F. Müller, D.J. Wrazidlo, *The chromatic Brauer category and its linear representations*, preprint (2019), arXiv: https://arxiv.org/abs/1902.05517.
- O. Saeki, Cobordism groups of special generic functions and groups of homotopy spheres, Jpn. J. Math. 28 (2002), 287-297.
- P. Schauenburg, Turning monoidal categories into strict ones, New York J. Math. 7 (2001), 257–265.
- V. Turaev, *Operator invariants of tangles, and R-matrices,* Math. USSR-Izvestiya 35 (1990), no.2, 411–444.
- D.J. Wrazidlo, Fold maps and positive topological quantum field theories, Dissertation, Heidelberg University (2017), http://nbn-resolving.de/urn:nbn:de:bsz: 16-heidok-232530.

### References IV

- D.J. Wrazidlo, Singular patterns of generic maps of surfaces with boundary into the plane, to appear: Proceedings of FJV2018 Kagoshima, arXiv: https://arxiv.org/abs/1902.03911.
- D.J. Wrazidlo, Bordism of constrained Morse functions, preprint (2018), arXiv: https://arxiv.org/abs/1803.11177.
- D.J. Wrazidlo, Time-interacting fields and actions in positive topological field theories, in preparation (2018), http: //imi.kyushu-u.ac.jp/~d-wrazidlo/smooth\_ptft.pdf.