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§Introduction



Topological Field Theory & Gluing

I [1] M.F. Atiyah (1988): Topological quantum field theory

I axioms of TFTs for smooth oriented manifolds

I (n + 1)-dim. TFT Z (over comm. ground ring R with 1)

I Mn closed manifold 7−→ state module Z (M) (f.g. over R)

I W n+1 compact manifold 7−→ state sum ZW ∈ Z (∂W )

I gluing axiom: (Mn,Nn,Pn)  contraction product

〈·, ·〉 : Z (M t N)⊗R Z (N t P) −→ Z (M t P)

s.t. ZW = 〈ZW ′ ,ZW ′′〉 whenever W : M
W ′
−→ N

W ′′
−→ P

I further axioms: Z (−) is functorial w.r.t. diffeomorphisms,
ZW is diffeomorphism invariant; Z (−M) = Z (M)∗ dual
module; disjoint union Z (M t N) ∼= Z (M)⊗R Z (N),
ZWtV ∼= ZW ⊗R ZV ; normalizations Z (∅) = R, Z∅ = 1 ∈ R,
ZM×[0,1] = idZ(M)



Examples (Gluing)

I W n+1 : Mn W ′
−→ Nn W ′′

−→ Pn

I Euler characteristic (n odd):

χ(W ) = χ(W ′) + χ(W ′′)

I Novikov additivity (compatibly oriented bordisms):

σ(W ) = σ(W ′) + σ(W ′′)

I Pontrjagin numbers (n = 7, compatibly oriented bordisms,
M = P = ∅, H3(N7) = H4(N7) = 0):

p2
1[W ] = p2

1[W ′] + p2
1[W ′′]

 [10] Milnor’s invariant λ(N7)



A Convenient Setting for Topological Invariants

GOAL:
Exploit concept of TFT as a source of inspiration for constructing
powerful (differential) topological invariants of manifolds!

IDEA (M. Banagl [3], 2015):
Find formulation of Atiyah’s axioms for TFTs over semirings!

I accept certain deviations from Atiyah’s axioms

I obtain positive TFTs as framework for topological invariants

I avoid measure theoretic difficulties in Feynman’s path integral

TODAY:
Present features of positive TFT, and a high dimensional example.

I Banagl’s work [2, 3, 4]: theory of semirings and semimodules,
axioms for positive TFTs, framework of quantization

I our work [12, 16, 17, 18]: time-interacting fields and actions,
improving Banagl’s example of a positive TFT based on fold
maps, computations of aggregate invariant for exotic spheres



§Semi-Algebra



Semirings and Semimodules

Definition

1. A semiring is a tuple S = (S ,+, ·, 0, 1), where
I (S ,+, 0) comm. monoid
I (S , ·, 1) monoid

satisfying a(b + c) = ab + ac , (a + b)c = ac + bc,
and 0 · a = a · 0 = 0.

2. A (left) semimodule over the semiring S is a comm. monoid
M = (M,+, 0M) with scalar multiplication S ×M → M,
(s,m) 7→ sm, such that (rs)m = r(sm), r(m + n) = rm + rn,
(r + s)m = rm + sm, 1m = m, r0M = 0M = 0m.

Example

I natural numbers N = {0, 1, . . . } form semiring (N,+, ·)
I Boolean semiring B = {0, 1}, require 1 + 1 = 1

I semiring of formal power series BJqK is an N[τ ]-semimodule



Eilenberg-Completeness
[6] S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid (M,+, 0) is complete if “+” is extended to∑
: {mi}i∈I 7−→

∑
i∈I

mi ∈ M

satisfying Fubini’s law:
I =

⋃̇
j∈J Ij ⇒

∑
i∈I mi =

∑
j∈J
∑

i∈Ij mi .

2. A semiring S is called complete if (S ,+, 0) is complete,
and

∑
satisfies infinite distributivity.

3. An S-semimodule M is called complete if the monoid M is
complete, and

∑
satisfies infinite distributivity.

Eilenberg swindle: If S is an Eilenberg-complete ring, then

s := 1 + 1 + · · · = 1 + (1 + . . . ) = 1 + s ⇒ 0 = 1⇒ S = 0.



Continuous Monoids
I (M,+, 0) comm. monoid
I suppose M is idempotent, i.e., m + m = m for all m ∈ M
I then, M has natural partial order “≤” given by

m ≤ m′ ⇔ m + m′ = m

Definition
An idempotent complete monoid (M,+, 0,Σ) is called continuous
if for all families (mi )i∈I , mi ∈ M, and for all c ∈ M,∑

i∈F mi ≤ c for all finite F ⊂ I implies
∑

i∈I mi ≤ c .

Lemma
Let (M,+, 0,Σ) be a continuous, idempotent, complete monoid.
Then, for any families (mi )i∈I and (nj)j∈J of elements in M for
which {mi ; i ∈ I} = {nj ; j ∈ J} as subsets of M, we have∑

i∈I
mi =

∑
j∈J

nj .



A Completed Tensor Product
I M,N continuous idempotent complete comm. monoids
I suppose M,N are complete bisemimodules over a semiring S

Theorem (Banagl [4], 2016)

There exists a continuous idempotent complete monoid M⊗̂SN
which has the structure of a complete S-bisemimodule, and a
SSS-linear bicontinuous map α̂ : M × N → M⊗̂SN such that the
following universal property holds. For every continuous
idempotent complete monoid P which has the structure of a
complete S-bisemimodule, and for every SSS-linear bicontinuous
map ϕ : M × N → P, there exists a unique S-bisemimodule
homomorphism ϕ̂ : M⊗̂SN → P such that the following diagram
commutes:

M × N P

M⊗̂SN
α̂

ϕ

ϕ̂



§Positive TFTs



Banagl’s Axioms for Positive Topological Field Theory

I Q continuous idempotent complete comm. monoid

I Qc ,Qm complete semirings having additive monoid Q

I ⊗̂c , ⊗̂m tensor products for bisemimodules over Qc , Qm

I all manifolds are smooth and unoriented

I define (n + 1)-dim. positive TFT Z (over Qc ,Qm)

I Mn closed manifold 7−→ state module Z (M), a continuous
idempotent complete two-sided semialgebra over Qc ,Qm

I W n+1 compact manifold 7−→ state sum ZW ∈ Z (∂W )

I gluing axiom: (Mn,Nn,Pn)  contraction product

〈·, ·〉 : Z (M t N)⊗̂cZ (N t P) −→ Z (M t P),

s.t. ZW = 〈ZW ′ ,ZW ′′〉 whenever W : M
W ′
−→ N

W ′′
−→ P

I further axioms: Z (−) functorial w.r.t. diffeomorphisms;
pseudo-isotopy invariance; Z (M t N) ∼= Z (M)⊗̂m/cZ (N);

ZWtV ∼= ZW ⊗̂mZV ; diffeomorphism invariance of ZW



Constructing a Positive TFT from Fields and Actions
I system of fields F : have sets of fields F(W n+1), F(Mn),

axioms (restriction, disjoint union, diffeomorphisms, gluing)
I C small strict monoidal category
I C-valued action functional T on fields: have maps

TW : F(W )→ Mor(C) for all W , require certain axioms
I S complete semiring, Q = {Mor(C)→ S} complete monoid
I Qc composition (”◦“) semiring; Qm monoidal (”⊗“) semiring
I state modules: Z (Mn) = {F(M)→ Q| constraint equation}
I state sum (partition function) ZW ∈ Z (∂W ): f ∈ F(∂W ),

ZW (f ) =
∑

F∈F(W ), F |∂W =f

χTW (F ) ∈ Q

ZW (f ) =

∫
F(W ;f )

e iSW (F ) dµW

Theorem (Banagl [3], 2015)

The above process of quantization yields a positive TFT Z.



§Time-Interaction



Bordisms and Submanifolds
I M, N, P closed n-mflds.; W ,W ′, W ′′ compact (n + 1)-mflds.
I equip submanifolds M,N,P ⊂W with germs of framings

M NP
W'

W

I W is a collared bordism from M to N
I M, N, P are (codim. 1) framed submanifolds of W
I W ′ is collared subbordism of W ; W ′ collared from P to N
I given collared bordisms W ′ from M to N and W ′ from N to

P, have canonical gluing W ′ ∪N W ′′ with N as framed
codim. 1 submanifold, and W ′, W ′′ as collared subbordisms

I a diffeomorphism of collared bordisms respects ingoing and
outgoing boundaries, and is identity map in collar direction



Time Functions on Collared Bordisms

I time function τ on collared bordism W from M to N

M N
 

Q
W''

W
W''

W'

 

a bc

�

I M, N, Q are τ -consistent framed submanifolds of W

I W ′, W ′′ are τ -consistent collared subbordism of W

I τ restricts to time functions τ |W ′ , τ |W ′′ on W ′, W ′′

I a diffeomorphism of collared bordisms is time-consistent if it
covers an orientation preserving diffeomorphism of intervals



System of Time-Interacting Fields
I have sets of fields F(Mn), and F(W n+1) for W collared
I for each time function τ on W have subset Fτ (W ) ⊂ F(W )
I restriction maps:
F(W )→ F(W0), when W0 is union of components of W
F(M)→ F(M0), when M0 is union of components of M
F(W )→ F(P), when P is union of components of ∂W
Fτ (W )→ Fτ |W0

(W0), when W0 ⊂W is collared, τ -consistent

Fτ (W )→ F(Q), when Q ⊂W is framed, τ -consistent

I disjoint union: F(W ′ tW ′′)
∼=−→ F(W ′)×F(W ′′); M tM ′

I τ -gluing: Fτ (W ′ ∪N W ′′)
∼=−→ Fτ |W ′ (W

′)×F(N) Fτ |W ′′ (W
′′)

I contravariant action of time-consistent diffeomorphisms
I time interaction: ∃ F(W )→ Fτ (W ) such that whenever

P ⊂ ∂W is a union of components of ∂W , we have

F(W ) Fτ (W )
�

F(P)

res
res

∃



System of Time-Interacting Action Functionals

I C small strict monoidal category

I F system of time-interacting fields on Mn, W n+1 (collared)

I have functions TW : F(W )→ Mor(C) for W n+1 collared

I disjoint union: TW ′tW ′′(F ) = TW ′(F |W ′)⊗ TW ′′(F |W ′′)

I τ -gluing: TW ′∪NW ′′(F ) = TW ′(F |W ′) ◦ TW ′′(F |W ′′)

I action of time-consistent diffeomorphisms: require that
TW (φ∗F ) = TW ′(F ) holds under the bijection
φ∗ : Fτ ′(W ′)→ Fτ (W ) induced by time-consistent
diffeomorphism φ : W →W ′

I time interaction:

F(W ) Fτ (W ) F(W )

�

Mor(C)
TW

incl

TW



Quantization of Time-Interacting Fields and Actions
I F system of time-interacting fields on Mn, W n+1 (collared)
I C = (C,⊗, I ) small strict monoidal category
I T system of C-valued time-interacting action functionals on F
I S continuous idempotent Eilenberg-complete semiring
I Q = {Mor(C)→ S} continuous idempotent complete monoid
I Qc ,Qm complete semirings, Q underlying additive monoid
I define state module Z (M) of closed manifold Mn by

Z (M) = {z : F(M)→ Q | z(φ∗f ) = z(f ) for all φ ∈ Diff0(M)}

I define state sum ZW ∈ Z (∂W ) of collared bordism W n+1 by

ZW (f ) =
∑

F∈F(W ),

F |∂W =f

χTW (F ) ∈ Q, f ∈ F(∂W )

Theorem (W. [19], 2018)

The above process of quantization yields a positive TFT Z.



§Application



Step 1: System of Time-Interacting Fields

F : W n+1 → R2 is called fold map if F looks at every singular
point c ∈ S(F ) in suitable coordinates centered at c and F (c) like

(t, x1, . . . , xn) 7→ (t,−x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n ).



Step 1: System of Time-Interacting Fields

I define set F(M) of fields on (connected) closed manifold Mn

I a field on M is a ({0} ×M)-germ represented by a fold map

F

(−ε, ε)×M R2Im

−ε ε0 t
such that for all t 6= 0 we have S(F ) t {t} ×M , and Im ◦F
is injective on S(F )∩ {t} ×M

I the projection (0, ε)×M → (0, ε) restricts to finite covering

S(F ) ∩ (0, ε)×M −→ (0, ε)

I components of S(F ) ∩ (0, ε)×M have canonical ordering



Step 1: System of Time-Interacting Fields

I W n+1 collared bordism from M to N with time-function τ

I define sets F(W ), Fτ (W ) of (τ -interacting) fields on W

I a field on W is a triple (F , fM , fN), where fM ∈ F(M) and
fN ∈ F(N), and F : W \ ∂W → R2 is a fold map that extends
for suitable ε > 0 the fold maps fM |(0,ε)×M and fN |(−ε,0)×N

I a field (F , fM , fN) on W is τ -interacting if F restricts for
every τ -consistent framed submanifold P ⊂W to a field on P

I in general, a field on W n+1 might not be τ -interacting for all τ

I check field axioms except for time interaction: restriction,
disjoint union, τ -gluing, action of time-consistent
diffeomorphisms



Step 2: Action Functional
I categorify Brauer algebras [5] (representation theory of O(n))
I symmetric strict monoidal Brauer category (Br,⊗, [0], b)
I Ob Br : [0] = ∅, [1] = {1}, [2] = {1, 2}, . . .
I HomBr([m], [n]): morphisms look like

I no over- underpass information (compare Turaev [15])
I [m]⊗ [n] = [m + n]; ⊗ of morphisms by vertical stacking

I braiding b = ∈ HomBr ([2], [2])
I enrichment [12]: chromatic Brauer category (cBr,⊗, [0], b)
I use countable number of colors to label components



Step 2: Action Functional

I want TW : F(W )→ Mor(Br) for W n+1 collared from M to N

I associate to field (F , fM , fN) on W morphism [m]→ [m′] in Br

I identify canonically ordered set S(F ) ∩M with [m]

I similarly, S(F ) ∩ N ∼= [m′]

I morphism [m]→ [m′] is naturally induced by fold pattern



Step 2: Action Functional

I want TW : F(W )→ Mor(Br) for W n+1 collared from M to N

I associate to field (F , fM , fN) on W morphism [m]→ [m′] in Br

I identify canonically ordered set S(F ) ∩M with [m]

I similarly, S(F ) ∩ N ∼= [m′]

I morphism [m]→ [m′] is naturally induced by fold pattern



Step 2: Action Functional

I want TW : F(W )→ Mor(Br) for W n+1 collared from M to N

I associate to field (F , fM , fN) on W morphism [m]→ [m′] in Br

I identify canonically ordered set S(F ) ∩M with [m]

I similarly, S(F ) ∩ N ∼= [m′]

I morphism [m]→ [m′] is naturally induced by fold pattern



Step 2: Action Functional
I want TW : F(W )→ Mor(Br) for W n+1 collared from M to N
I associate to field (F , fM , fN) on W morphism [m]→ [m′] in Br
I identify canonically ordered set S(F ) ∩M with [m]
I similarly, S(F ) ∩ N ∼= [m′]
I morphism [m]→ [m′] is naturally induced by fold pattern
I check action axioms except for time interaction: disjoint

union, τ -gluing, action of time-consistent diffeomorphisms



Step 2: Action Functional

I W n+1 collared bordism from M to N with time-function τ

I Question (M. Banagl): Are all fold patterns of fields on
W also realized by τ -interacting fields?

I in other words: do fields and action satisfy the
time-interaction axioms?

Theorem (W. [16, 19], 2018)

For every field (F , fM , fN) on W , there is a τ -interacting field
(G , fM , fN) on W such that TW (F , fM , fN) = TW (G , fM , fN).



Sketch of Proof

I modify S(F ) by precomposing F with automorphism of W

I achieve that τ−1(t) t S(F ) for all t ∈ Reg(τ) \ finite set



Sketch of Proof (continued)

I modify F (S(F )) slightly by perturbing F , not changing S(F )

I achieve that Im ◦F is injective on S(F ) \ open intervals



Sketch of Proof (continued)

I modify S(F ) by precomposing F with automorphism of W

I for all t ∈ Reg(τ) \ finite set, still have τ−1(t) t S(F ), and
in addition, Im ◦F is injective on τ−1(t)∩ S(F )



Step 3: Quantization
I complete additive monoid Q = {Mor(Br)→ B}
I write Q =

⊕
m,n≥0 Qm,n, where Qm,n = {Hom([m], [n])→ B}

I product “·” of composition semiring Qc induced by

· : Qm,p × Qp,n → Qm,n, (f ′ · f ′′)(γ) =
∑

γ=α◦β
f ′(α)f ′′(β)

I product “×” of monoidal semiring Qm induced by

× : Qm,n×Qr ,s → Qm+r ,n+s , (f ′×f ′′)(γ) =
∑

γ=α⊗β
f ′(α)f ′′(β)

I comm. monoid {tk ; k ∈ N} ∼= (N,+, 0) acts on Qm,n via

(tk , f ) 7→ (ϕ 7→ f (λ⊗k ⊗ ϕ))

I monoid semiring N[{tk ; k ∈ N}] = N[t]
I isomorphism of N[t]-semimodules

Qm,n
∼=−→

⊕
ϕ : [m]→[n]

loop-free

BJqK, f 7→

( ∞∑
k=0

f (λ⊗k ⊗ϕ)qk

)
ϕ



Step 3: Quantization
I partition function ZW ∈ Z (∂W ) of bordism W n+1:

ZW (f ) =
∑

F∈F(W ;f )

χTW (F ) ∈ Qm(f ),m′(f ), f ∈ F(∂W )

Theorem (Banagl [3], 2015)

If n + 1 ≥ 3, then ZW (f ) is for all f ∈ F(∂W ) a rational function

ZW (f ) =
Pf (q)

1− q2
, Pf (q) ∈ BJqK⊕ · · · ⊕ BJqK.

Theorem (W. [16], 2017)

If n + 1 ≥ 2, then ZW (f ) is for all f ∈ F(∂W ) a rational function

ZW (f ) =
Qf (q)

1− q
, Qf (q) ∈ BJqK⊕ · · · ⊕ BJqK.

For n + 1 = 2, Qf (q) is known [17]. For n + 1 > 2, degQf (q) ≤ n.



Step 4: Linearization

I Vect category of real vector spaces and linear maps

I “⊗” Schauenburg tensor product [14]

I (Vect,⊗,R, b) symmetric strict monoidal category

I C = (C,⊗, I ) small strict monoidal category

I linear representation: strict monoidal functor Y : C→ Vect

I define Y -linearization L of C-valued action functional T by

LW : F(W )
TW−→ Mor(C)

Y−→ Mor(Vect)

I L is Vect-valued system of action functionals

Theorem (Müller [11], W. [16], 2015)

All (non-trivial) symmetric linear representations of Br are faithful.

Theorem (Müller-W. [12], 2019)

There exist symmetric linear representations Y : cBr→ Vect.



Aggregate Invariant

I Mn oriented closed n-manifold

I Cob(Mn) set of all oriented nullbordisms W n+1 of Mn

∃W n+1 oriented

Mn = ∂W n+1

I define aggregate invariant:

A(Mn) :=
∑

W n+1∈Cob(Mn)

ZW ∈ Z (M)



Application: Detecting Exotic Smooth Spheres

I n ≥ 5

I [9, 10] exotic sphere Σn: closed smooth manifold which is
homeomorphic, but not diffeomorphic to Sn

I FACT. Mn = Sn and Mn = Σn have Morse number 2:

Mn fM

n

0

Theorem (Banagl [3, 4], 2015)

Mn ∼= Sn ⇐⇒ A(Mn)(f M) /∈ q · Q2,2

Proof.
use methods of Saeki [13] based on Stein factorization



Application: Detecting Exotic Kervaire Spheres

I n = 4k + 1, k ≥ 1

I Σn
K : unique Kervaire sphere of dimension n (see [8])

I Σn
K is exotic whenever n /∈ {5, 13, 29, 61, 125} (see [7])

I on exotic sphere Σn, choose a Morse function

Σn gΣ

n

0

2k + 1

2k

Theorem (W. [16, 18], 2017)

Let n ≥ 237 and n ≡ 13 (mod 16). Then, for an exotic sphere Σn,

Σn ∼= Σn
K ⇐⇒ A(Σn)(gΣ) /∈ q · Q2,2



Proof – Main Ingredients



Thank you for your attention!
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