

イロト イヨト イヨト イヨト

æ

Recent progress on topology of plane curves: A quick trip Part V: Orbifolds and Quasi-projective Groups

Enrique ARTAL BARTOLO

Departamento de Matemáticas, IUMA Universidad de Zaragoza

Branched Coverings in Tokyo - March 7-10, 2011

Contents

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Contents

E. Artal Fundamental Group and Braid Monodromy

イロン イ団 とくほう くほとう

Contents

Characteristic varieties of orbifolds

<ロ> <問> <問> < 回> < 回> 、

Э

Statements Characteristic varieties of orbifolds

Contents

3 Characteristic varieties of orbifolds

Main result and applications

イロン イ理 とく ヨン イヨン

Orbifolds Characteristic varieties of orbifolds Main result and applications

Starting point

Definition

A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.

Э

Orbifolds Characteristic varieties of orbifolds Main result and applications

Starting point

Definition

A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.

Theorem (Arapura)

Let Σ be an irreducible component of $\Sigma_{G,1}$, $G = \pi_1(X)$, X quasi-projective surface. Then,

In particular, positive dimensional irreducible components are subtori translated by torsion elements.

Orbifolds Characteristic varieties of orbifolds Main result and applications

Starting point

Definition

A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.

Theorem (Arapura)

Let Σ be an irreducible component of $\Sigma_{G,1}$, $G = \pi_1(X)$, X quasi-projective surface. Then,

If dim Σ > 0 then there exists a primitive surjective morphism ρ : X → C,
 C algebraic curve, and a torsion element σ such that
 Σ = σρ*(H¹(C; C*)).

In particular, positive dimensional irreducible components are subtori translated by torsion elements.

Orbifolds Characteristic varieties of orbifolds Main result and applications

Starting point

Definition

A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.

Theorem (Arapura)

Let Σ be an irreducible component of $\Sigma_{G,1}$, $G = \pi_1(X)$, X quasi-projective surface. Then,

 If dim Σ > 0 then there exists a primitive surjective morphism ρ : X → C, C algebraic curve, and a torsion element σ such that Σ = σρ*(H¹(C; C*)).

2 If dim $\Sigma = 0$ then Σ is unitary.

In particular, positive dimensional irreducible components are subtori translated by torsion elements.

Orbifolds Characteristic varieties of orbifolds Main result and applications

Orbifolds

Example

イロト イポト イヨト イヨト 二日

Orbifolds Characteristic varieties of orbifolds Main result and applications

Orbifolds

Example

• C a sextic with six cusps on a conic: $C = \{f_2^3 - f_3^2 = 0\}$. Note that $\mathbb{T}_H = \mathbb{C}^*$ and $\Sigma_{C,1} = \{\zeta_6, \zeta_6^{-1}\}, \Sigma_{C,2} = \emptyset$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Orbifolds Characteristic varieties of orbifolds Main result and applications

Orbifolds

Example

- C a sextic with six cusps on a conic: $C = \{f_2^3 f_3^2 = 0\}$. Note that $\mathbb{T}_H = \mathbb{C}^*$ and $\Sigma_{C,1} = \{\zeta_6, \zeta_6^{-1}\}, \Sigma_{C,2} = \emptyset$.
- Consider the primitive map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}$ given by $[x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$. The map is trivial on π_1

Statements Orbifolds

Characteristic varieties of orbifolds Main result and applications

Orbifolds

Example

- C a sextic with six cusps on a conic: $C = \{f_2^3 f_3^2 = 0\}$. Note that $\mathbb{T}_H = \mathbb{C}^*$ and $\Sigma_{C,1} = \{\zeta_6, \zeta_6^{-1}\}, \Sigma_{C,2} = \emptyset$.
- Consider the primitive map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}$ given by $[x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$. The map is trivial on π_1

Definition

An orbifold X_{φ} is a quasiprojective Riemann surface X with a function $\varphi : X \to \mathbb{N}$ such that $\operatorname{Sing}(X_{\varphi}) := \{x \in X \mid \varphi(x) > 1\}$ is a finite set. Assume the following interpretation: the angle of a disk centered at x equals $\frac{2\pi}{|\varphi(x)|}$.

< ロ > < 同 > < 回 > < 回 > .

Characteristic varieties of orbifolds Main result and applications

Orbifolds

Example

- C a sextic with six cusps on a conic: $C = \{f_2^3 f_3^2 = 0\}$. Note that $\mathbb{T}_H = \mathbb{C}^*$ and $\Sigma_{C,1} = \{\zeta_6, \zeta_6^{-1}\}, \Sigma_{C,2} = \emptyset$.
- Consider the primitive map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1 : 1]\}$ given by $[x : y : z] \mapsto [f_2(x, y, z)^3 : f_3(x, y, z)^2]$. The map is trivial on π_1

Definition

An orbifold X_{φ} is a quasiprojective Riemann surface X with a function $\varphi : X \to \mathbb{N}$ such that $\operatorname{Sing}(X_{\varphi}) := \{x \in X \mid \varphi(x) > 1\}$ is a finite set. Assume the following interpretation: the angle of a disk centered at x equals $\frac{2\pi}{|\varphi(x)|}$.

Definition

For an orbifold $X_{\varphi} = X_{\varphi(x), x \in \text{Sing}(X_{\varphi})}$ we define:

 $\pi_1^{\text{orb}}(X_\varphi) := \pi_1(X \setminus \text{Sing}(X_\varphi)) / \langle \mu_x^{\varphi(x)} = 1, \forall x \in \text{Sing}(X_\varphi) \rangle, \mu_x \text{ a meridian of } x.$

Orbifold morphism

Example

 $G_{p,q} := \pi_1^{\text{orb}}(\mathbb{C}_{p,q}) = \mathbb{Z}/p * \mathbb{Z}/q$. If gcd(p,q) = 1 then $H = \mathbb{Z}/pq$ and it is not hard to check that $\sum_{G_{p,q},1}$ is composed by the primitive pq-roots of unity.

Orbifold morphism

Example

 $G_{p,q} := \pi_1^{\text{orb}}(\mathbb{C}_{p,q}) = \mathbb{Z}/p * \mathbb{Z}/q$. If gcd(p,q) = 1 then $H = \mathbb{Z}/pq$ and it is not hard to check that $\sum_{G_{p,q},1}$ is composed by the primitive pq-roots of unity.

Definition

Let X_{φ} be an orbifold and Y a smooth algebraic variety. A dominant algebraic morphism $\rho : Y \to X$ defines an *orbifold morphism* $Y \to X_{\varphi}$ if for all $x \in X$, $\frac{1}{\varphi(x)}\rho^*(x)$ is a divisor.

Orbifold morphism

Example

 $G_{p,q} := \pi_1^{\text{orb}}(\mathbb{C}_{p,q}) = \mathbb{Z}/p * \mathbb{Z}/q$. If gcd(p,q) = 1 then $H = \mathbb{Z}/pq$ and it is not hard to check that $\Sigma_{G_{p,q},1}$ is composed by the primitive pq-roots of unity.

Definition

Let X_{φ} be an orbifold and Y a smooth algebraic variety. A dominant algebraic morphism $\rho : Y \to X$ defines an *orbifold morphism* $Y \to X_{\varphi}$ if for all $x \in X$, $\frac{1}{\varphi(x)}\rho^*(x)$ is a divisor.

Remark

Such a morphism induces a mapping $\pi_1(Y) \rightarrow \pi_1^{\text{orb}}(X_{\varphi})$ if it is primitive. Note that if we choose a tranversal disk to a smooth point of the regular part of $\rho^*(x)$ then for suitable local coordinates, this map is of the form $t \mapsto t^n$ for n a multiple of $\varphi(x)$.

Orbifolds and characteristic varieties

Example

イロト イロト イヨト イヨト 二日

Orbifolds and characteristic varieties

Example

• The map $\rho : \mathbb{P}^2 \setminus C \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.

(a)

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ<sub>G_{2,3},1.
 </sub>

< ロ > < 同 > < 回 > < 回 > .

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ<sub>G_{2,3},1.
 </sub>

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ_{G2,3,1}.

Example

• $G_n^* := \pi_1^{\text{orb}}(\mathbb{C}_n^*) = \mathbb{Z} * \mathbb{Z}/n$. The torus \mathbb{T}_H has equation $t_2^n = 1$ in $(\mathbb{C}^*)^2$ and $\Sigma_{G_n^*,1} = (\mathbb{C}^* \times \{\zeta \mid \zeta \neq 1, \zeta^n = 1\}) \cup \{(1,1)\}.$

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ_{G2,3,1}.

- $G_n^* := \pi_1^{\text{orb}}(\mathbb{C}_n^*) = \mathbb{Z} * \mathbb{Z}/n$. The torus \mathbb{T}_H has equation $t_2^n = 1$ in $(\mathbb{C}^*)^2$ and $\Sigma_{G_n^*,1} = (\mathbb{C}^* \times \{\zeta \mid \zeta \neq 1, \zeta^n = 1\}) \cup \{(1,1)\}.$
- Let C be the curve of equation $(y^2 z x^3)xz = 0$. It is not hard to see that $G_C = \langle a, b \mid [a, b^2] = 1 \rangle$, $\mathbb{T}_H = (\mathbb{C}^*)^2$ and $\Sigma_{C,1} = (\mathbb{C}^* \times \{-1\}) \cup \{(1, 1)\}$.

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ<sub>G_{2,3},1.
 </sub>

- $G_n^* := \pi_1^{\text{orb}}(\mathbb{C}_n^*) = \mathbb{Z} * \mathbb{Z}/n$. The torus \mathbb{T}_H has equation $t_2^n = 1$ in $(\mathbb{C}^*)^2$ and $\Sigma_{G_n^*,1} = (\mathbb{C}^* \times \{\zeta \mid \zeta \neq 1, \zeta^n = 1\}) \cup \{(1,1)\}.$
- Let C be the curve of equation $(y^2 z x^3)xz = 0$. It is not hard to see that $G_C = \langle a, b \mid [a, b^2] = 1 \rangle$, $\mathbb{T}_H = (\mathbb{C}^*)^2$ and $\Sigma_{C,1} = (\mathbb{C}^* \times \{-1\}) \cup \{(1, 1)\}$.
- The mapping $[x : y : z] \mapsto [y^2 z : x^3]$ from $\mathbb{P}^2 \setminus C$ misses only $\{[1 : 0], [1 : 1]\}$ and the pull-back of [0 : 1] is a double divisor. Then, it defines an orbifold morphism onto \mathbb{C}_2^* .

Orbifolds and characteristic varieties

Example

- The map $\rho : \mathbb{P}^2 \setminus \mathcal{C} \to \mathbb{P}^1 \setminus \{[1:1]\}, [x:y:z] \mapsto [f_2(x,y,z)^3 : f_3(x,y,z)^2]$, is an orbifold map.
- We obtain an epimorphism $G_{\mathcal{C}} \twoheadrightarrow \pi_1^{\text{orb}}(\mathbb{C}_{2,3}) = G_{2,3}$.
- In fact, it is an isomorphism and the irreducible components of Σ_{C,1} are obtained by pull-back by ρ of Σ_{G2,3,1}.

- $G_n^* := \pi_1^{\text{orb}}(\mathbb{C}_n^*) = \mathbb{Z} * \mathbb{Z}/n$. The torus \mathbb{T}_H has equation $t_2^n = 1$ in $(\mathbb{C}^*)^2$ and $\Sigma_{G_n^*,1} = (\mathbb{C}^* \times \{\zeta \mid \zeta \neq 1, \zeta^n = 1\}) \cup \{(1,1)\}.$
- Let C be the curve of equation $(y^2 z x^3)xz = 0$. It is not hard to see that $G_C = \langle a, b \mid [a, b^2] = 1 \rangle$, $\mathbb{T}_H = (\mathbb{C}^*)^2$ and $\Sigma_{C,1} = (\mathbb{C}^* \times \{-1\}) \cup \{(1, 1)\}$.
- The mapping [x : y : z] → [y²z : x³] from P² \ C misses only {[1 : 0], [1 : 1]} and the pull-back of [0 : 1] is a double divisor. Then, it defines an orbifold morphism onto C₂^{*}.
- This map pulls back the 1-dimensional component of $\Sigma_{G_n^*,1}$ into $\Sigma_{C,1}$.

Big examples

Example

E. Artal Fundamental Group and Braid Monodromy

ヘロト ヘロト ヘヨト ヘヨト

Big examples

Example

• $G_n^{**} := \pi_1^{\text{orb}}(\mathbb{C}_n^{**}) = \mathbb{F}_2 * \mathbb{Z}/n$ where $\mathbb{C}^{**} := \mathbb{C}^* \setminus \{1\}$. The torus \mathbb{T}_H has equation $t_3^n = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_n^{**},1} = \mathbb{T}_H$ and $\Sigma_{G_n^{**},2} = ((\mathbb{C}^*)^2 \times \{\zeta \mid 1 \neq \zeta, \zeta^n = 1\}) \cup \{(1,1)\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Big examples

Example

- $G_n^{**} := \pi_1^{\text{orb}}(\mathbb{C}_n^{**}) = \mathbb{F}_2 * \mathbb{Z}/n$ where $\mathbb{C}^{**} := \mathbb{C}^* \setminus \{1\}$. The torus \mathbb{T}_H has equation $t_3^n = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_n^{**},1} = \mathbb{T}_H$ and $\Sigma_{G_n^{**},2} = ((\mathbb{C}^*)^2 \times \{\zeta \mid 1 \neq \zeta, \zeta^n = 1\}) \cup \{(1,1)\}.$
- We obtain a similar result as for last example taking out another generic fiber.

Big examples

Example

- $G_n^{**} := \pi_1^{\text{orb}}(\mathbb{C}_n^{**}) = \mathbb{F}_2 * \mathbb{Z}/n$ where $\mathbb{C}^{**} := \mathbb{C}^* \setminus \{1\}$. The torus \mathbb{T}_H has equation $t_3^n = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_n^{**},1} = \mathbb{T}_H$ and $\Sigma_{G_n^{**},2} = ((\mathbb{C}^*)^2 \times \{\zeta \mid 1 \neq \zeta, \zeta^n = 1\}) \cup \{(1,1)\}.$
- We obtain a similar result as for last example taking out another generic fiber.

Big examples

Example

- $G_n^{**} := \pi_1^{\text{orb}}(\mathbb{C}_n^{**}) = \mathbb{F}_2 * \mathbb{Z}/n$ where $\mathbb{C}^{**} := \mathbb{C}^* \setminus \{1\}$. The torus \mathbb{T}_H has equation $t_3^n = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_n^{**},1} = \mathbb{T}_H$ and $\Sigma_{G_n^{**},2} = ((\mathbb{C}^*)^2 \times \{\zeta \mid 1 \neq \zeta, \zeta^n = 1\}) \cup \{(1,1)\}.$
- We obtain a similar result as for last example taking out another generic fiber.

Example

• Let Y be an elliptic curve and let $G_{2,2}^0 := \pi_1^{orb}(Y_{2,2})$ with presentation

$$\langle a, b, u, v \mid u^2 = v^2 = [a, b]uv = 1 \rangle.$$

The torus \mathbb{T}_{H} has equation $t_{3}^{2} = 1$ in $(\mathbb{C}^{*})^{3}$, $\Sigma_{G_{2,2}^{0},1} = ((\mathbb{C}^{*})^{2} \times \{-1\}) \cup \{(1,1)\}.$

Big examples

Example

- $G_n^{**} := \pi_1^{\text{orb}}(\mathbb{C}_n^{**}) = \mathbb{F}_2 * \mathbb{Z}/n$ where $\mathbb{C}^{**} := \mathbb{C}^* \setminus \{1\}$. The torus \mathbb{T}_H has equation $t_3^n = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_n^{**},1} = \mathbb{T}_H$ and $\Sigma_{G_n^{**},2} = ((\mathbb{C}^*)^2 \times \{\zeta \mid 1 \neq \zeta, \zeta^n = 1\}) \cup \{(1,1)\}.$
- We obtain a similar result as for last example taking out another generic fiber.

Example

• Let Y be an elliptic curve and let $G_{2,2}^0 := \pi_1^{orb}(Y_{2,2})$ with presentation

$$\langle a, b, u, v \mid u^2 = v^2 = [a, b]uv = 1 \rangle.$$

The torus \mathbb{T}_H has equation $t_3^2 = 1$ in $(\mathbb{C}^*)^3$, $\Sigma_{G_{2,2}^0,1} = ((\mathbb{C}^*)^2 \times \{-1\}) \cup \{(1,1)\}.$

• We can never have an orbifold map from the complement of a projective curve onto *C*.

Projective examples

Example

イロン イ団 とくほう くほとう

Э

Projective examples

Example

• $G_{p,q,r} := \pi_1^{\text{orb}}(\mathbb{P}^1_{p,q,r})$ with presentation

$$\langle a, b, c \mid a^{p} = b^{q} = c^{r} = abc = 1 \rangle$$

イロン イロン イヨン イヨン

æ

Projective examples

Example

• $G_{p,q,r} := \pi_1^{\text{orb}}(\mathbb{P}^1_{p,q,r})$ with presentation

$$\langle a, b, c \mid a^p = b^q = c^r = abc = 1 \rangle.$$

• Note that *H* is the kernel of the natural mapping $\mathbb{Z}/p \oplus \mathbb{Z}/q \oplus \mathbb{Z}/r \to \mathbb{Z}/m$, where $m := \operatorname{lcm}(p, q, r)$. For example $H = \mathbb{Z}/6$ for (2, 3, 6), $H = \mathbb{Z}/2 \times \mathbb{Z}/4$ for (2, 4, 4) and $H = \mathbb{Z}/3 \times \mathbb{Z}/3$ for (3, 3, 3).

< ロ > < 同 > < 回 > < 回 > .

Projective examples

Example

• $G_{p,q,r} := \pi_1^{\text{orb}}(\mathbb{P}^1_{p,q,r})$ with presentation

$$\langle a, b, c \mid a^p = b^q = c^r = abc = 1 \rangle.$$

- Note that *H* is the kernel of the natural mapping $\mathbb{Z}/p \oplus \mathbb{Z}/q \oplus \mathbb{Z}/r \to \mathbb{Z}/m$, where m := lcm(p, q, r). For example $H = \mathbb{Z}/6$ for (2, 3, 6), $H = \mathbb{Z}/2 \times \mathbb{Z}/4$ for (2, 4, 4) and $H = \mathbb{Z}/3 \times \mathbb{Z}/3$ for (3, 3, 3).
- The torus \mathbb{T}_H can be considered in $(\mathbb{C}^*)^3$.

Projective examples

Example

• $G_{p,q,r} := \pi_1^{\text{orb}}(\mathbb{P}^1_{p,q,r})$ with presentation

$$\langle a, b, c \mid a^p = b^q = c^r = abc = 1 \rangle.$$

- Note that *H* is the kernel of the natural mapping $\mathbb{Z}/p \oplus \mathbb{Z}/q \oplus \mathbb{Z}/r \to \mathbb{Z}/m$, where m := lcm(p, q, r). For example $H = \mathbb{Z}/6$ for (2, 3, 6), $H = \mathbb{Z}/2 \times \mathbb{Z}/4$ for (2, 4, 4) and $H = \mathbb{Z}/3 \times \mathbb{Z}/3$ for (3, 3, 3).
- The torus \mathbb{T}_H can be considered in $(\mathbb{C}^*)^3$.
- For ξ ∈ T_H we define ℓ(ξ) the number of non-trivial coordinates. If ξ ≠ 1 then ℓ(ξ) > 1.

Projective examples

Example

• $G_{p,q,r} := \pi_1^{\text{orb}}(\mathbb{P}^1_{p,q,r})$ with presentation

$$\langle a, b, c \mid a^p = b^q = c^r = abc = 1 \rangle.$$

- Note that *H* is the kernel of the natural mapping $\mathbb{Z}/p \oplus \mathbb{Z}/q \oplus \mathbb{Z}/r \to \mathbb{Z}/m$, where m := lcm(p, q, r). For example $H = \mathbb{Z}/6$ for (2, 3, 6), $H = \mathbb{Z}/2 \times \mathbb{Z}/4$ for (2, 4, 4) and $H = \mathbb{Z}/3 \times \mathbb{Z}/3$ for (3, 3, 3).
- The torus \mathbb{T}_H can be considered in $(\mathbb{C}^*)^3$.
- For ξ ∈ T_H we define ℓ(ξ) the number of non-trivial coordinates. If ξ ≠ 1 then ℓ(ξ) > 1.
- $\Sigma_{G_{p,q,r},1} = \{\xi \mid \ell(\xi) = 3\}$. These data will be used in the last lecture.

Main result

Theorem (Arapura)

Let Σ be an irreducible component of $\Sigma_{G,1}$, $G = \pi_1(X)$, X quasi-projective surface. Then,

- If dim Σ > 0 then there exists a primitive surjective morphism ρ : X → C, C algebraic curve, and a torsion element σ such that Σ = σρ*(H¹(C; C*)).
- 2 If dim $\Sigma = 0$ then Σ is unitary.

In particular, positive dimensional irreducible components are subtori translated by torsion elements.

Main result

Claim

• X a quasi-projective smooth variety

Σ := Σ_k(X) the kth characteristic variety of X, V an irreducible component of Σ.

Then, there exists:

- a primitive surjective orbifold morphism $\rho: X \to C_{\varphi}$ and
- an irreducible component V_1 of $\Sigma_k(\pi_1^{orb}(C_{\varphi}))$

such that $V = \rho^*(V_1)$.

In particular, irreducible components are subtori translated by torsion elements.

Main result

Claim

- X a quasi-projective smooth variety
- Σ := Σ_k(X) the kth characteristic variety of X, V an irreducible component of Σ.

Then, there exists:

- a primitive surjective orbifold morphism $\rho: X \to C_{\varphi}$ and
- an irreducible component V_1 of $\Sigma_k(\pi_1^{orb}(C_{\varphi}))$

such that $V = \rho^*(V_1)$.

In particular, irreducible components are subtori translated by torsion elements.

Remark

The claim is not correct. The Degtyarev curve has as characteristic variety four points of torsion 10 which cannot be obtained as pull-back from an orbifold (–,Cogolludo).

Main result

Theorem (–,Cogolludo,Matei)

Let X be a quasi-projective smooth variety and let Σ be the k^{th} characteristic variety of X. Let V be an irreducible component of Σ . Then one of the two following statements holds:

There exists a primitive surjective orbifold morphism ρ : X → C_φ and an irreducible component V₁ of Σ_k(π₁^{orb}(C_φ)) such that V = ρ^{*}(V₁).

V is an isolated torsion point.

Main result

Theorem (–,Cogolludo,Matei)

Let X be a quasi-projective smooth variety and let Σ be the k^{th} characteristic variety of X. Let V be an irreducible component of Σ . Then one of the two following statements holds:

- There exists a primitive surjective orbifold morphism ρ : X → C_φ and an irreducible component V₁ of Σ_k(π₁^{orb}(C_φ)) such that V = ρ^{*}(V₁).
- V is an isolated torsion point.

Remark

The proof uses Deligne-Timmerscheidt theory and follows ideas of Beauville, Arapura and Delzant. One essential ingredient is that for non-unitary characters, some non-trivial elements of the twisted cohomology are represented by twisted logarithmic 1-forms, defining foliations.

Properties of characteristic varieties of orbifolds

• Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .

(a)

Properties of characteristic varieties of orbifolds

- Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .
- Given a translated subtorus *V*, its shadow Sh *V* is the *parallel* subtorus passing through **1**.

- Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .
- Given a translated subtorus *V*, its shadow Sh *V* is the *parallel* subtorus passing through 1.
- An irreducible component Σ of Σ₁ of dimension k > 0 is also an irreducible component of Σ_{k-2}, if 1 ∈ Σ, or Σ_k if not.

- Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .
- Given a translated subtorus *V*, its shadow Sh *V* is the *parallel* subtorus passing through 1.
- An irreducible component Σ of Σ₁ of dimension k > 0 is also an irreducible component of Σ_{k-2}, if 1 ∈ Σ, or Σ_k if not.
- If Σ is an irreducible component of Σ₁ of dimension k > 2 then it is also the case for Sh Σ.

- Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .
- Given a translated subtorus *V*, its shadow Sh *V* is the *parallel* subtorus passing through 1.
- An irreducible component Σ of Σ₁ of dimension k > 0 is also an irreducible component of Σ_{k-2}, if 1 ∈ Σ, or Σ_k if not.
- If Σ is an irreducible component of Σ₁ of dimension k > 2 then it is also the case for Sh Σ.
- For rational orbifolds the same can be assumed for $k \ge 2$.

- Except 1, irreducible components of Σ_k are connected components of \mathbb{T}_H .
- Given a translated subtorus *V*, its shadow Sh *V* is the *parallel* subtorus passing through 1.
- An irreducible component Σ of Σ₁ of dimension k > 0 is also an irreducible component of Σ_{k-2}, if 1 ∈ Σ, or Σ_k if not.
- If Σ is an irreducible component of Σ₁ of dimension k > 2 then it is also the case for Sh Σ.
- For rational orbifolds the same can be assumed for $k \ge 2$.
- An irreducible component of dimension 1 never passes through 1.

Properties of characteristic varieties of quasiprojective groups G

• These properties appear in the work of Dimca-Papadima-Suciu and --Cogolludo-Matei.

- These properties appear in the work of Dimca-Papadima-Suciu and --Cogolludo-Matei.
- The properties for orbifolds also hold for quasiprojective groups *G* (and components of positive dimension).

- These properties appear in the work of Dimca-Papadima-Suciu and --Cogolludo-Matei.
- The properties for orbifolds also hold for quasiprojective groups *G* (and components of positive dimension).
- Σ_1, Σ_2 irreducible components of $\Sigma_{G,1}$, dim $(Sh \Sigma_1 \cap Sh \Sigma_2) > 0 \Rightarrow \Sigma_1 = \Sigma_2$.

- These properties appear in the work of Dimca-Papadima-Suciu and --Cogolludo-Matei.
- The properties for orbifolds also hold for quasiprojective groups *G* (and components of positive dimension).
- Σ_1, Σ_2 irreducible components of $\Sigma_{G,1}$, dim $(Sh \Sigma_1 \cap Sh \Sigma_2) > 0 \Rightarrow \Sigma_1 = \Sigma_2$.
- If Σ is a component of Σ_k not in Σ_{k+1} and ξ ∈ Σ belongs to Σ_{k+1} then ξ is torsion.

- These properties appear in the work of Dimca-Papadima-Suciu and --Cogolludo-Matei.
- The properties for orbifolds also hold for quasiprojective groups *G* (and components of positive dimension).
- Σ_1, Σ_2 irreducible components of $\Sigma_{G,1}$, dim $(Sh \Sigma_1 \cap Sh \Sigma_2) > 0 \Rightarrow \Sigma_1 = \Sigma_2$.
- If Σ is a component of Σ_k not in Σ_{k+1} and ξ ∈ Σ belongs to Σ_{k+1} then ξ is torsion.
- Let Σ₁ be an irreducible component of Σ_k(G) and let Σ₂ be an irreducible component of Σ_ℓ(G), both of positive dimension. If ξ ∈ Σ₁ ∩ Σ₂ then it is a torsion point and ξ ∈ Σ_{k+ℓ}(G).

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\Sigma_2(G) = \emptyset$ and $\Sigma_1(G)$ has 5 irreducible components Σ_i of dimension 1 such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\Sigma_2(G) = \emptyset$ and $\Sigma_1(G)$ has 5 irreducible components Σ_i of dimension 1 such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

Theorem

Let $G_{p,q,r}$ the Artin group associated to a triangle with sides p, q, r

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\Sigma_2(G) = \emptyset$ and $\Sigma_1(G)$ has 5 irreducible components Σ_i of dimension 1 such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

Theorem

Let $G_{p,q,r}$ the Artin group associated to a triangle with sides p, q, r• If $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge 1$ then there exists an affine curve $C_{p,q,r}$ such that $G_{p,q,r} = \pi_1(\mathbb{C}^2 \setminus C_{p,q,r})$

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\Sigma_2(G) = \emptyset$ and $\Sigma_1(G)$ has 5 irreducible components Σ_i of dimension 1 such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

Theorem

Let $G_{p,q,r}$ the Artin group associated to a triangle with sides p, q, r

- If $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge 1$ then there exists an affine curve $C_{p,q,r}$ such that $G_{p,q,r} = \pi_1(\mathbb{C}^2 \setminus C_{p,q,r})$
- If p, q, r are even, not all of them equal and $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$ then the groups $G_{p,q,r}$ are not quasiprojective.