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The Line Arrangement Case
Log-resolution Logarithmic Forms
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Settings

C=CoUCyU...UC C P?
X:=P?\C
H*(X) = H*(X;C)

@ Give a constructive description of H*(X) by generators and
relations, as well as describe the product.
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Settings

C=CoUCyU...UC C P?
X:=P?\C
H*(X) = H*(X;C)

@ Give a constructive description of H*(X) by generators and
relations, as well as describe the product.
@ Weak Combinatorial Invariants of C.
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Settings

C=CoUCyU...UC C P?
X:=P?\C
H*(X) = H*(X;C)

@ Give a constructive description of H*(X) by generators and
relations, as well as describe the product.

@ Weak Combinatorial Invariants of C.

@ Existence of an Orlik-Solomon-like algebra.
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Introduction Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Settings

C=CoUCyU...UC C P?
X:=P?\C
H*(X) = H*(X;C)

@ Give a constructive description of H*(X) by generators and
relations, as well as describe the product.

@ Weak Combinatorial Invariants of C.

@ Existence of an Orlik-Solomon-like algebra.

@ Prove Formality of X.
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The Line Arrangement Case
Log-resolution Logarithmic Forms

Poincaré Residue Operators

The Line Arrangement Case

C=1{lyUlU..UL CP?

where /; is a line.
Consider X = C2\ ({1 U...Uf,).
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The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

The Line Arrangement Case

Theorem (Arnold, Brieskorn, Orlik-Solomon)
The ring H*(X) is generated by H'(X), that is, by:

dt;
gj = —.
i Ei
A complete set of relations is given by:
U;/\O'j+0j/\0k+0k/\0/:0,

whenever {; N {; Nl # (.
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The Line Arrangement Case

Note that whenever ¢; N {; Nl # ) = {x = al; + bl
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The Line Arrangement Case

Note that whenever ¢; N {; Nl # ) = {x = al; + bl
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The Line Arrangement Case

Note that whenever ¢; N {; Nl # ) = {x = al; + bl

f,’fj@k cOj N\ ok = aE,-(dﬁj A df,’)

Mjﬁk ok Noj = béj(déj VAN dﬁ,‘)
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The Line Arrangement Case
Log-resolution Logarithmic Forms

Poincaré Residue Operators

The Line Arrangement Case

Note that whenever ¢; N {; Nl # ) = {x = al; + bl

f,’fj@k cOj N\ ok = aE,-(dﬁj A df,’)

Mjﬁk ok Noj = béj(déj VAN dﬁ,‘)
Therefore,

f,‘fjfk . (O’j Aok + ok Noj) = fk(dfj A dl) = *f,‘fjfk “0j N\ 0f
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The General Case

However,
C= EO uagq,

where (y = {z =0} and q := {z% = xy}.
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However,
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However,
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Log-resolution Logarithmic Forms
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The General Case

However,
C=~4LUgq,
where (y = {z =0} and q := {z% = xy}.
H'(X)=C
H?2(X) = Hi(C) =C
Therefore
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The Line Arrangement Case
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The General Case

However,
C= EO uagq,
where (y = {z =0} and q := {z% = xy}.
H'(X)=C
H?2(X) = Hi(C) =C
Therefore
A2H'(X) # H3(X).
In fact,

H?(X) = ( ﬁ Yo, Wherew :=zdxAdy-+xdyAdz+ ydzAdx.

J.I. Cogolludo-Agustin The Cohomology Algebra of a Plane Curve



| n
ntroduction Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Definitions

. S — P?

J.I. Cogolludo-Ag ology Algebra of a Plane Curve



| n
ntroduction Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Definitions

J.I. Cogolludo-Ag ology Algebra of a Plane Curve



| 1 .
ntroduction Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Definitions

Definition

The sheaf m.£5(log C) is the sheaf of log-resolution logarithmic
forms of C w.r.t. 7.
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Settings and Results
The Line Arrangement Case
Log-resolution Logarithmic Forms

Poincaré Residue Operators

Definitions

(1)

The sheaf m.£5(log C) is the sheaf of log-resolution logarithmic
forms of C w.r.t. 7. )

@ The sheaf 7.£5(log C) is independent of the resolution.

R EEEEEEREEES———————————————————————————.
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Settings and Results
The Line Arrangement Case
Log-resolution Logarithmic Forms

Poincaré Residue Operators

Definitions

(1)

The sheaf m.£5(log C) is the sheaf of log-resolution logarithmic
forms of C w.r.t. 7.

@ The sheaf 7.£5(log C) is independent of the resolution.
@ Denote it by &;,(log C).

R EEEEEEREEES———————————————————————————.
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The Line Arrangement Case
Log-resolution Logarithmic Forms

Poincaré Residue Operators

Definitions

(1)

The sheaf m.£5(log C) is the sheaf of log-resolution logarithmic
forms of C w.r.t. 7.

@ The sheaf 7.£5(log C) is independent of the resolution.

@ Denote it by £;,(log C).
@ &»(log C) inherits a weight filtration W..
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H'(S; Wigg(log C))
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Hi(P2; W&, (log C))
|
H'(S; Wigg(log C))
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H'(X)
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The Line Arrangement Case

Log-resolution Logarithmic Forms
Poincaré Residue Operators

Hi(P2; W&, (log C))
|
H'(S; WiEs(logC)) —  H(S; Wi/Wi_4)
|
H'(X)
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H'(P2; W€z, (log C))
|
HI(S; WiEs(logC)) — HI(S;Wi/Wi_q) ~ HO(ClT)
|
H'(X)
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Log-resolution Logarithmic Forms
Poincaré Residue Operators

H'(P2; W€z, (log C))
|
HI(S; WiEs(logC)) — HI(S;Wi/Wi_q) ~ HO(ClT)
|
H'(X)

Such a residue map will be denoted by Res!.
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The Line Arrangement Case

Log-resolution Logarithmic Forms
Poincaré Residue Operators

H'(P2; W€z, (log C))
|
HI(S; WiEs(logC)) — HI(S;Wi/Wi_q) ~ HO(ClT)
|
H'(X)

Such a residue map will be denoted by Res!.
In more generality:

Resli-4]
_—

H'(IP2; Wi (log C)) H=k(CW).
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Log-resolution Logarithmic Forms
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Theorem (-,D.Matei)
Under the above conditions:
@ Res!""! js injective.
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The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Theorem (-,D.Matei)

Under the above conditions:

@ Res!""! js injective.

Q Ify e £2(P?)(logC) is such that Res!??l ) = 0 and
Resl®y = 0, then ¢ = 0.
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Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
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Settings and Results
The Line Arrangement Case

Log-resolution Logarithmic Forms
Poincaré Residue Operators

Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%

X:U1
dx A dy yj”_‘” duy A dvy
f w (V2 — uy)
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
J ug (v§ — )
U1:U2V2

=2 dus A dvo
L Gtaiovs
Up Vo (Vo — Up)
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
dx Ady 7T duy A dvy
_— e —
f ur (V¥ — th)
up=tava Up=U3v3

=2 du, A dv, 277 dus A dvs
—_ == . — — 5
UpVo(v2 — L) usvg(1 — us)
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
dx Ady 7T duy A dvy
_— e —
f ur (V¥ — th)
up=tava Up=U3v3

=2 du, A dv, 277 dus A dvs
—_ == . — — 5
UpVo(v2 — L) usvg(1 — us)

which is not logarithmic.
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
dx Ady 7T duy A dvy
_— e —
f ur (V¥ — th)
up=tava Up=U3v3

=2 du, A dv, 277 dus A dvs
—_ == . — — 5
UpVo(v2 — L) usvg(1 — us)

which is not logarithmic.
However, if ¢ = o@4%  then
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Formality of
Problems

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
dx Ady 7T duy A dvy
_— e —
f ur (V¥ — th)
up=tava Up=U3v3

1= dus A dvo ‘2='s dus A dvs
— ——— — ——
UpVa (Vo — Up) usvs(1 — us)
which is not logarithmic.
However, if ¢ = o@4%  then
@ pe(x,y)=1 e E(logC).
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Settings and Results

The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Formality of
Problems

Example
Consider f = y2 — x3, C = {f = 0}, and the 2-form &A%
X=Uq
dx Ady 7T duy A dvy
_— e —
f ur (V¥ — th)
up=tava Up=U3v3

=2 du, A dv, 277 dus A dvs
S
UpVa(vo — Up) uzvs(1 — us)
which is not logarithmic.
However, if ¢ = o@4%  then
@ pe(x,y)=1 e E(logC).
@ Moreovet, if p € (y) = (Res[z’zl ¢>P =0atall P el
infinitely near 0.
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Introduction

Weak Combinatorics

The following is a presentation of H*(X):
@ Generators in degree 1:cj,i=1,...,r,
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ology Algebra of X

Weak Combinatorics
Formality of
Problems

The following is a presentation of H*(X):
@ Generators indegree 1:cj,i=1,....r,
@ Generators in degree 2:

¢6P1 ,527 P e ﬂCj,51 € Ap(Cj),d2 € AP(Cj)

ik ]
. oo'_, I:1,...,I’,ki:1,...,d,’—
i,sj =I,S;i P L ,
R T i=1,...,rsi=1,.... 9.
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Introduction

Weak Combinatorics

The following is a presentation of H*(X):
@ Generators indegree 1:cj,i=1,....r,
@ Generators in degree 2:

Y%, PeCing, 8 € Ap(Ci), 02 € Ap(C))
. (I>,<l>(i_7 i:1,...,l’,ki:1,---7di_
n’ysi7ﬁ17si7 I:1,,f,3,: 177gl
@ Relations:
51 ,52 . _¢52151
510 L 0ads L dad
YR YR + YRt =0
for any P € C;N CjN Cx and &1 € Ap(Ci), 02 € Ap(C)),
53 € AP(Ck)'
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Introduction
Cohomology Algebra of X

Weak Combinatorics

The fo/lowing is a presentation of H*(X):
Oj, w51,527 g(i(ia w;'sj7QZ}Si7
¢5P1 b2 _ _wépg,&

w(s‘] )62 + 7’/}62763 + ¢6P3761 = 0

@ Product:

di—1

oiAoj = Z MF>(51752)’(/151 %2 4+ d, Z —d Z Y’

PEC,’QC/
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Cohomology Algebra of X
Weak Combinatorics

Note that from the given presentation one can deduce that
H*(X) only depends on the following invariants of C:

({1,...,r},8 =SingC, {Ap}pes, {orP}Pes, {1p}Pes)

such an ordered set of invariants of C will be referred to as the
Weak Combinatorics of C.
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Cohomology Algebra of X

Weak Combinatorics

Note that from the given presentation one can deduce that
H*(X) only depends on the following invariants of C:

({1,...,r},8 =SingC, {Ap}pes, {orP}Pes, {1p}Pes)

such an ordered set of invariants of C will be referred to as the
Weak Combinatorics of C.

Hence

The cohomology algebra of X only depends on its weak
combinatorics.
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Resonance Varieties

Consider w € H'(X).
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Resonance Varieties

Consider w € H'(X).

0 — H(X) = C 28H(X) 224 H2(X) — 0 (H*(X), A\w)
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Resonance Varieties

Consider w € H'(X).

0 — H(X) = C 28H(X) 224 H2(X) — 0 (H*(X), A\w)

Definition
The i-th Resonance Variety of X is defined as

RI(X) == {w e H'(X) | h'(H*(X), Aw) > i}
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Resonance Varieties

Consider w € H'(X).

0 — H(X) = C 28H(X) 224 H2(X) — 0 (H*(X), A\w)

Definition
The i-th Resonance Variety of X is defined as

RI(X) == {w e H'(X) | h'(H*(X), Aw) > i}

Note that for any graded algebra A* one can analogously define
the i-th Resonance Variety R'(A) of A*.

v
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Resonance Varieties

There is an Orlik-Solomon-like graded algebra A* whose
resonance varieties are isomorphic to R'(X).
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Resonance Varieties

There is an Orlik-Solomon-like graded algebra A* whose
resonance varieties are isomorphic to R'(X).

2A
Al .= Z/(:1 oiC A?:= >_Pes Alfpp’

where
Ap:= > YpC
dEAp
Ip = (U3 A UE +0E AUE + 0% AU )e
and

50,6
giNoji= Y pup(dy, 2P "2
PEC,‘QC/
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Resonance Varieties

Consider

w24 —_ w‘lo4 o wa

23 _ 13 12
Y2 = g8 — i
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Resonance Varieties

o12 = 27/);1:2 + g

o13 = 3P}

o14 =30}

ooz = P2 — Y2
O24 = V%

o34 = Y3
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Resonance Varieties

26 —2a— 15}
71 25’1’4 3 4  8a-§ O
14 —
54 P 36 1) 0 —3a—p
024 = ¢304 0 0 5 —
034 =Yg

@ rank M =2 < (A, —=3(A+ p),2u, p).
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Resonance Varieties

26 —2a— 15}
71 25’1’4 3 4  8a-§ O
54 P 36 1) 0 —3a—p
024 = ¢304 0 0 5 —
034 =Yg

@ rank M =2 < (A, —3(\ + u), 2u, p).
@ Notice that C1,3Cs,2C,> + C4 belong to a pencil of cubics.
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Max-Noether Fundamental Theorem Revisited

Formality of X

@ A differential graded algebra (A, da) is called formal if it
has the same minimal model as its cohomology (H(A), 0).
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Max-Noether Fundamental Theorem Revisited

Formality of X

@ A differential graded algebra (A, da) is called formal if it
has the same minimal model as its cohomology (H(A), 0).

@ Since the minimal model of a d.g.a. is invariant under
quasi-isomorphism, then it is more convenient to state that
(A, da) is formal if and only if there is a finite sequence of
quasi-isomorphisms between (A, ds) and (H(A), 0).
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Max-Noether Fundamental Theorem Revisited

Formality of X

@ A differential graded algebra (A, da) is called formal if it
has the same minimal model as its cohomology (H(A), 0).

@ Since the minimal model of a d.g.a. is invariant under
quasi-isomorphism, then it is more convenient to state that
(A, da) is formal if and only if there is a finite sequence of
quasi-isomorphisms between (A, ds) and (H(A), 0).

Definition

A differential space X is called formal if its algebra of
differential forms (£(X), d) is formal.
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Max-Noether Fundamental Theorem Revisited
Formality of X

Theorem (-,D.Matei,D.Macinic)
The complement of a plane curve X is a formal space.
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Max-Noether Fundamental Theorem Revisited
Formality of X

Theorem (-,D.Matei,D.Macinic)
The complement of a plane curve X is a formal space.

° (£(X),d) X (£(P?)(logC), d),
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Max-Noether Fundamental Theorem Revisited
Formality of X

Theorem (-,D.Matei,D.Macinic)
The complement of a plane curve X is a formal space.

® (£(X),d) = (£(P?)(logC), d),
° (H(£(X)),0) & (H(X),0),
° H*(X) = &*(P?)(logC)
[oi] — oj
[wél;,dg = ¢5P1,52
. : 2
] - ?
[ni,s,-] s ni,s,-
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Max-Noether Fundamental Theorem Revisited
Formality of X

Theorem (-,D.Matei,D.Macinic)
The complement of a plane curve X is a formal space.

® (£(X),d) = (£(P?)(logC), d),
° (H(£(X)),0) & (H(X),0),
° H*(X) = &*(P?)(logC)
[oi] — oj
[wél;,dg = ¢5P1,52
. : 2
] - ?
[ni,s,-] s ni,s,-

Can we choose forms so that e is well-defined?
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Max-Noether Fundamental Theorem Revisited

Formality of X

61,0 62,0, 93,0
UB %S 4yt =0

Choose dp at each P € S, then

81,6 5p,0 5p,0
¢F’1 2:¢PP 2_¢PP1
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Formality of X

ojN\Noj=
51,6
= Z wp(di, 6;)p "+
PEC,'ﬂCj

g1 di—1

0 DD 0T — o 3wl
ki=1
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Max-Noether Fundamental Theorem Revisited

Formality of X

ojN\Noj=
J ) 1) N
= > we( O = Y e8GR+
PGC/QCJ PGC,‘OCJ
g1 » di—1
EONCEED TS
Ki=1 k=1
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Max-Noether Fundamental Theorem Revisited

Formality of X

Let C;, Cj, Cx be such that:
o d,' = d/ = dk
@ 1p(6i,Cj) = up(di,Ck),
® up(9),Ci) = up(9), Ck),
® up(dk,Ci) = pup(dk, Cj),

then
O','/\Uj—|—0'j/\0'k—|—0k/\0'j:0

Note that if Cx = aC; + 3C;, then (3) is trivial.
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Max-Noether Fundamental Theorem Revisited
Formality of X

Theorem (Max-Noether Fundamental Theorem
(M.Noether,...,Fulton))

Let F, G, and H be three plane curves with no common
components. If Hp € (Fp, Gp) atany P € V(F)n V(G), then
there exist two forms A, B € C[x, y, z] such that

H = AF + BG
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Max-Noether Fundamental Theorem Revisited

Formality of X

Theorem (Max-Noether Fundamental Theorem
(M.Noether,...,Fulton))

Let F, G, and H be three plane curves with no common
components. If Hp € (Fp, Gp) atany P € V(F)n V(G), then
there exist two forms A, B € C[x, y, z] such that

H = AF + BG

Remark

The conditions Hp € (Fp, Gp) atany P € V(F)N V(G) are
commonly known as the Noether Conditions.

| \
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Max-Noether Fundamental Theorem Revisited
Formality of X

Definition

Three curves F, G, and H satisfying (€9)
are said to belong to a combinatorial pencil.
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Max-Noether Fundamental Theorem Revisited

Formality of X

Definition
Three curves F, G, and H satisfying (€9)
are said to belong to a combinatorial pencil.

\

Theorem (-,M.A.Marco)

If F, G, and H belong to a primitive combinatorial pencil, then
they belong to an algebraic pencil (H = oF + 5G).

\
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Formality of X

@ The Noether Conditions can be replaced by the
Combinatorial Conditions.
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@ The Noether Conditions can be replaced by the
Combinatorial Conditions.

@ Primitive translates into a minimality condition.
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Formality of X

@ The Noether Conditions can be replaced by the
Combinatorial Conditions.

@ Primitive translates into a minimality condition.

Proposition

Any combinatorial pencil admits a primitive refinement.
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Max-Noether Fundamental Theorem Revisited

Formality of X

@ The Noether Conditions can be replaced by the
Combinatorial Conditions.

@ Primitive translates into a minimality condition.

Proposition

Any combinatorial pencil admits a primitive refinement.

This proves the formality of X.
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Problems

Open Problems

@ Are there also nice combinatorial descriptions of H*(X) in
higher dimensions?
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@ Are there also nice combinatorial descriptions of H*(X) in
higher dimensions?

@ Are the complements of hypersurfaces in the projective
space formal?
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Open Problems

@ Are there also nice combinatorial descriptions of H*(X) in
higher dimensions?

@ Are the complements of hypersurfaces in the projective
space formal?

@ What about toric varieties, or weighted projective spaces?
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Problems

Open Problems

@ Are there also nice combinatorial descriptions of H*(X) in
higher dimensions?

@ Are the complements of hypersurfaces in the projective
space formal?

@ What about toric varieties, or weighted projective spaces?

@ Study the resonance varieties of Abstract Curve
Combinatorics. This could lead to criteria for
non-quasiprojective groups.

J.I. Cogolludo-Agustin The Cohomology Algebra of a Plane Curve



	Introduction
	Settings and Results
	The Line Arrangement Case
	Log-resolution Logarithmic Forms
	Poincaré Residue Operators

	Cohomology Algebra of X
	Weak Combinatorics

	Resonance Varieties
	Formality of X
	Max-Noether Fundamental Theorem Revisited

	Problems

