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C = C0 ∪ C1 ∪ ... ∪ Cr ⊂ P2

X := P2 \ C

H∗(X ) = H∗(X ; C )

Give a constructive description of H∗(X ) by generators and
relations, as well as describe the product.
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Prove Formality of X .
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The Line Arrangement Case

C = `0 ∪ `1 ∪ ... ∪ `r ⊂ P2,

where `i is a line.

Consider X = C 2 \ (`1 ∪ ... ∪ `r ).
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The Line Arrangement Case

Theorem (Arnold, Brieskorn, Orlik-Solomon)

The ring H∗(X ) is generated by H1(X ), that is, by:

σi :=
d`i
`i
.

A complete set of relations is given by:

σi ∧ σj + σj ∧ σk + σk ∧ σi = 0,

whenever `i ∩ `j ∩ `k 6= ∅.
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The Line Arrangement Case

Note that whenever `i ∩ `j ∩ `k 6= ∅ ⇒ `k = a`i + b`j

`i`j`k · σj ∧ σk = a`i(d`j ∧ d`i)

`i`j`k · σk ∧ σi = b`j(d`j ∧ d`i)

Therefore,

`i`j`k · (σj ∧ σk + σk ∧ σi) = `k (d`j ∧ d`i) = −`i`j`k · σi ∧ σj
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The General Case

However,
C = `0 ∪ q,

where `0 = {z = 0} and q := {z2 = xy}.

H1(X ) = C

H2(X ) = H1(C) = C
Therefore

∧2H1(X ) 6= H2(X ).

In fact,

H2(X ) = 〈 ω

`0q
〉C , where ω := zdx∧dy +xdy ∧dz +ydz∧dx .
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Definitions

π : S → P2

∪ ∪
C̄ → C

(1)

Definition

The sheaf π∗E∗S(log C̄) is the sheaf of log-resolution logarithmic
forms of C w.r.t. π.

Remark

The sheaf π∗E∗S(log C̄) is independent of the resolution.
Denote it by E∗P2(log C).
E∗P2(log C) inherits a weight filtration W∗.
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H i(P2; WiE∗P2(log C))

‖

H i(S; WiE∗S(log C̄))

→ H i(S; Wi/Wi−1) ' H0(C̄[i])
‖

H i(X )

Such a residue map will be denoted by Res[i].
In more generality:

H i(P2; WkE∗P2(log C))
Res[i,k ]

−→ H i−k (C̄[k ]).
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Theorem (-,D.Matei)
Under the above conditions:

1 Res[1,1] is injective.
2 If ψ ∈ E2(P2)(log C) is such that Res[2,2] ψ = 0 and

Res[2,1] ψ = 0, then ψ = 0.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve



Introduction
Cohomology Algebra of X

Resonance Varieties
Formality of X

Problems

Settings and Results
The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Theorem (-,D.Matei)
Under the above conditions:

1 Res[1,1] is injective.

2 If ψ ∈ E2(P2)(log C) is such that Res[2,2] ψ = 0 and
Res[2,1] ψ = 0, then ψ = 0.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve



Introduction
Cohomology Algebra of X

Resonance Varieties
Formality of X

Problems

Settings and Results
The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Theorem (-,D.Matei)
Under the above conditions:

1 Res[1,1] is injective.
2 If ψ ∈ E2(P2)(log C) is such that Res[2,2] ψ = 0 and

Res[2,1] ψ = 0, then ψ = 0.

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve



Introduction
Cohomology Algebra of X

Resonance Varieties
Formality of X

Problems

Settings and Results
The Line Arrangement Case
Log-resolution Logarithmic Forms
Poincaré Residue Operators

Example

Consider f = y2 − x3, C = {f = 0}, and the 2-form dx∧dy
f .

dx ∧ dy
f

x=u1
y=u1v1

←− du1 ∧ dv1

u1(v2
1 − u1)

u1=u2v2
v1=v2

←− du2 ∧ dv2

u2v2(v2 − u2)

u2=u3v3
v2=v3

←− du3 ∧ dv3

u3v2
3 (1− u3)

which is not logarithmic.
However, if ψ = ϕdx∧dy

f , then
ϕ ∈ (x , y)⇒ ψ ∈ E2

0 (log C).

Moreover, if ϕ ∈ (y)⇒
(

Res[2,2] ψ
)

P
= 0 at all P ∈ C̄[1]

infinitely near 0.
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Weak Combinatorics

Theorem
The following is a presentation of H∗(X ):

Generators in degree 1: σi , i = 1, ..., r ,

Generators in degree 2:

ψδ1,δ2
P , P ∈ Ci ∩ Cj , δ1 ∈ ∆P(Ci), δ2 ∈ ∆P(Cj)

ψi,ki∞ , i = 1, ..., r , ki = 1, ...,di − 1
ηi,si , η̄i,si , i = 1, ..., r , si = 1, ...,gi .

Relations:
ψδ1,δ2

P = −ψδ2,δ1
P

ψδ1,δ2
P + ψδ2,δ3

P + ψδ3,δ1
P = 0

for any P ∈ Ci ∩ Cj ∩ Ck and δ1 ∈ ∆P(Ci), δ2 ∈ ∆P(Cj),
δ3 ∈ ∆P(Ck ).
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Problems

Weak Combinatorics

Theorem
The following is a presentation of H∗(X ):

σi , ψ
δ1,δ2
P , ψi,ki∞ , ψsi

i , ψ̄
si
i ,

ψδ1,δ2
P = −ψδ2,δ1

P

ψδ1,δ2
P + ψδ2,δ3

P + ψδ3,δ1
P = 0

Product:

σi ∧ σj =
∑

P∈Ci∩Cj

µP(δ1, δ2)ψδ1,δ2
P + di

dj−1∑
kj =1

ψ
j,kj
∞ − dj

di−1∑
ki =1

ψi,ki
∞ .
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Weak Combinatorics

Remark
Note that from the given presentation one can deduce that
H∗(X ) only depends on the following invariants of C:

({1, ..., r},S = Sing C, {∆P}P∈S , {φP}P∈S , {µP}P∈S)

such an ordered set of invariants of C will be referred to as the
Weak Combinatorics of C.

Hence

Theorem
The cohomology algebra of X only depends on its weak
combinatorics.
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Formality of X

Problems

Consider ω ∈ H1(X ).

0→ H0(X ) = C •∧ω−→H1(X )
•∧ω−→H2(X )→ 0 (H∗(X ),∧ω)

Definition
The i -th Resonance Variety of X is defined as

Ri(X ) := {ω ∈ H1(X ) | h1(H∗(X ),∧ω) ≥ i}

Remark
Note that for any graded algebra A∗ one can analogously define
the i-th Resonance Variety Ri(A) of A∗.
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Theorem
There is an Orlik-Solomon-like graded algebra A∗ whose
resonance varieties are isomorphic to Ri(X ).

A1 :=
∑r

i=1 σiC A2 :=
∑

P∈S

V2 AP
IP

,

where
AP :=

∑
δ∈∆P

ψδPC

IP := 〈ψδ1
P ∧ ψ

δ2
P + ψδ2

P ∧ ψ
δ3
P + ψδ3

P ∧ ψ
δ1
P 〉C

and
σi ∧ σj :=

∑
P∈Ci∩Cj

µP(δ1, δ2)ψδ1,δ2
P
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Example

Consider

ψ24
Q = ψ14

Q − ψ
12
Q

ψ23
P = ψ13

P − ψ
12
P

Q

PC3

C4

C2 C1
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σ12 = 2ψ12
P + ψ12

Q
σ13 = 3ψ13

P
σ14 = 3ψ14

Q
σ23 = ψ13

P − ψ
12
P

σ24 = ψ24
Q

σ34 = ψ34
R

M :=


2β −2α− γ β 0
3γ γ −3α− β 0
β −α− δ 0 β
3δ δ 0 −3α− β
0 0 δ −γ



rank M = 2⇔ (λ,−3(λ+ µ),2µ, µ).
Notice that C1,3C2,2C2 + C4 belong to a pencil of cubics.
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Cohomology Algebra of X

Resonance Varieties
Formality of X

Problems

Max-Noether Fundamental Theorem Revisited

A differential graded algebra (A,dA) is called formal if it
has the same minimal model as its cohomology (H(A),0).

Since the minimal model of a d.g.a. is invariant under
quasi-isomorphism, then it is more convenient to state that
(A,dA) is formal if and only if there is a finite sequence of
quasi-isomorphisms between (A,dA) and (H(A),0).

Definition
A differential space X is called formal if its algebra of
differential forms (E(X ),d) is formal.
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Problems

Max-Noether Fundamental Theorem Revisited

Theorem (-,D.Matei,D.Macinic)
The complement of a plane curve X is a formal space.

(E(X ),d)
q.i
' (E(P2)(log C),d),

(H(E(X )),0)
q.i
' (H(X ),0),

H∗(X )
e→ E∗(P2)(log C)

[σi ] 7→ σi[
ψδ1,δ2

P

]
7→ ψδ1,δ2

P[
ψi,ki∞

]
7→ ψi,ki∞[

ηi,si
]
7→ ηi,si

(2)

Can we choose forms so that e is well-defined?
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[σi ] 7→ σi[
ψδ1,δ2

P

]
7→ ψδ1,δ2

P[
ψi,ki∞

]
7→ ψi,ki∞[

ηi,si
]
7→ ηi,si

(2)

Can we choose forms so that e is well-defined?
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Max-Noether Fundamental Theorem Revisited

ψδ1,δ2
P + ψδ2,δ3

P + ψδ3,δ1
P = 0

Choose δP at each P ∈ S, then

ψδ1,δ2
P = ψδP ,δ2

P − ψδP ,δ1
P
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σi ∧ σj =

=
∑

P∈Ci∩Cj

µP(δi , δj)ψ
δi ,δj
P +

+di

dj−1∑
kj =1

ψ
j,kj
∞ − dj

di−1∑
ki =1

ψi,ki
∞ .
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σi ∧ σj =

=
∑

P∈Ci∩Cj

µP(δj , Ci)ψ
δP ,δj
P −

∑
P∈Ci∩Cj

µP(δi , Cj)ψ
δP ,δi
P +

+di

dj−1∑
kj =1

ψ
j,kj
∞ − dj

di−1∑
ki =1

ψi,ki
∞ .

J.I. Cogolludo-Agustín The Cohomology Algebra of a Plane Curve



Introduction
Cohomology Algebra of X

Resonance Varieties
Formality of X

Problems

Max-Noether Fundamental Theorem Revisited

Let Ci , Cj , Ck be such that:
di = dj = dk

µP(δi , Cj) = µP(δi , Ck ),
µP(δj , Ci) = µP(δj , Ck ),
µP(δk , Ci) = µP(δk , Cj),

then
σi ∧ σj + σj ∧ σk + σk ∧ σi = 0 (3)

Note that if Ck = αCi + βCj , then (3) is trivial.
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Theorem (Max-Noether Fundamental Theorem
(M.Noether,...,Fulton))
Let F , G, and H be three plane curves with no common
components. If HP ∈ (FP ,GP) at any P ∈ V (F ) ∩ V (G), then
there exist two forms A,B ∈ C [x , y , z] such that

H = AF + BG

Remark
The conditions HP ∈ (FP ,GP) at any P ∈ V (F ) ∩ V (G) are
commonly known as the Noether Conditions.
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Definition
Three curves F , G, and H satisfying ( )
are said to belong to a combinatorial pencil .

Theorem (-,M.A.Marco)
If F , G, and H belong to a primitive combinatorial pencil, then
they belong to an algebraic pencil (H = αF + βG).
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Remark
The Noether Conditions can be replaced by the
Combinatorial Conditions.

Primitive translates into a minimality condition.

Proposition
Any combinatorial pencil admits a primitive refinement.

This proves the formality of X .
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Open Problems

Are there also nice combinatorial descriptions of H∗(X ) in
higher dimensions?

Are the complements of hypersurfaces in the projective
space formal?
What about toric varieties, or weighted projective spaces?
Study the resonance varieties of Abstract Curve
Combinatorics. This could lead to criteria for
non-quasiprojective groups.
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