A formula for the geometric genus of surface singularities

Tomohiro Okuma

Yamagata University

Branched Coverings, Degenerations, and Related Topics 2011 TMU, March 7–10, 2011

Some known results Vhen is p_g topological?

Contents

Introduction

- Some known results
- When is *p_g* topological?

2 Additivity formula

- A recursion formula
- An invariant of filtrations
- Splice quotient singularities

Some known results When is *p_g* topological?

- $(X, o) \subset (\mathbb{C}^n, o)$: a normal complex surface singularity.
- Σ : the link of (X, o). $\Sigma = X \cap S_{\varepsilon}^{2n-1}$ $(0 < \varepsilon \ll 1)$ We may assume X is a cone over Σ .
- π: X̃ → X: a resolution with exceptional set E := π⁻¹(o).
 a) π is proper and X̃ is smooth,
 b) X̃ > E ≃ X > (c)
 - b) $\widetilde{X} \setminus E \cong X \setminus \{o\},\$

Some known results When is p_g topological?

- $(X, o) \subset (\mathbb{C}^n, o)$: a normal complex surface singularity.
- Σ : the link of (X, o). $\Sigma = X \cap S_{\varepsilon}^{2n-1}$ ($0 < \varepsilon \ll 1$) We may assume X is a cone over Σ .
- π: X̃ → X: a resolution with exceptional set E := π⁻¹(o).
 a) π is proper and X̃ is smooth,
 b) X̃ \ E ≅ X \ {o}.

Definition (The geometric genus)

$$p_g(X, o) := h^1(\widetilde{X}, O_{\widetilde{X}}) := \dim_{\mathbb{C}} H^1(\widetilde{X}, O_{\widetilde{X}}),$$

independent of the resolution.

Some known results When is p_g topological?

- $(X, o) \subset (\mathbb{C}^n, o)$: a normal complex surface singularity.
- Σ : the link of (X, o). $\Sigma = X \cap S_{\varepsilon}^{2n-1}$ ($0 < \varepsilon \ll 1$) We may assume X is a cone over Σ .
- π: X̃ → X: a resolution with exceptional set E := π⁻¹(o).
 a) π is proper and X̃ is smooth,
 b) X̃ \ E ≅ X \ {o}.

Definition (The geometric genus)

$$p_g(X, o) := h^1(\widetilde{X}, O_{\widetilde{X}}) := \dim_{\mathbb{C}} H^1(\widetilde{X}, O_{\widetilde{X}}),$$

independent of the resolution.

By duality,

$$p_g(X,o) = \dim_{\mathbb{C}} \frac{H^0(\widetilde{X} \setminus E, O_{\widetilde{X}}(K_{\widetilde{X}}))}{H^0(\widetilde{X}, O_{\widetilde{X}}(K_{\widetilde{X}}))}$$

Some known results When is pg topological?

Hypersurfaces (Counting "lower monomials")

Suppose
$$X = \{f = 0\}, f \in \mathbb{C}[x_1, x_2, x_3].$$

 $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}.$

Kimio Watanabe, 1980

f is weighted homogeneous of degree d with weights (q_1, q_2, q_3) $\Rightarrow p_g(X, o) = \# \{ (a_1, a_2, a_3) \in (\mathbb{Z}_+)^3 \mid \sum_{i=1}^3 (a_i + 1)q_i \leq d \}.$

Some known results When is pg topological?

Hypersurfaces (Counting "lower monomials")

Suppose
$$X = \{f = 0\}, f \in \mathbb{C}[x_1, x_2, x_3].$$

 $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}.$

Kimio Watanabe, 1980

f is weighted homogeneous of degree d with weights (q_1, q_2, q_3) $\Rightarrow p_g(X, o) = \# \{ (a_1, a_2, a_3) \in (\mathbb{Z}_+)^3 \mid \sum_{i=1}^3 (a_i + 1)q_i \leq d \}.$

Merle-Teissier, 1980

 $f \text{ is non-degenerate w.r.t. its Newton boundary} \Rightarrow p_g(X, o) = \# \left\{ a \in (\mathbb{Z}_+)^3 \mid a + (1, 1, 1) \notin \text{Int}(\Gamma_+) \right\}.$

Some known results When is p_g topological?

Hypersurfaces (Invariants from resolution process)

Any double point is defined by a function of type $x_1^2 + g(x_2, x_3)$.

Horikawa, 1975

 $f = x_1^2 + g(x_2, x_3)$ $\Rightarrow p_g(X, o) = \frac{1}{2} \sum_{i=1}^n \gamma_i(\gamma_i + 1), \text{ where } \gamma_i = \left\lfloor \frac{m_i}{2} \right\rfloor - 1, m_i \text{ is the}$ multiplicity of curve singularity which is the center of *i*-th blowing up in the embedded resolution process for $\{g = 0\} \subset \mathbb{C}^2$.

Some known results When is p_g topological?

Hypersurfaces (Invariants from resolution process)

Any double point is defined by a function of type $x_1^2 + g(x_2, x_3)$.

Horikawa, 1975

 $f = x_1^2 + g(x_2, x_3)$ $\Rightarrow p_g(X, o) = \frac{1}{2} \sum_{i=1}^n \gamma_i(\gamma_i + 1), \text{ where } \gamma_i = \left\lfloor \frac{m_i}{2} \right\rfloor - 1, m_i \text{ is the}$ multiplicity of curve singularity which is the center of *i*-th blowing
up in the embedded resolution process for $\{g = 0\} \subset \mathbb{C}^2$.

Ashikaga (1999) obtained a formula for $x_1^n + g(x_2, x_3)$. Tomari (1985) obtained a formula for any hypersurface singularity.

Some known results When is pg topological?

 $\{E_v\}_{v \in \mathcal{V}}$: the irreducible components of *E*. Then $H_2(\widetilde{X}, \mathbb{Z}) = \sum_{v \in \mathcal{V}} \mathbb{Z} E_v$. Let $Z = \min \{D \in \sum \mathbb{Z}_+ E_v \mid D \cdot E_v \leq 0, \forall v \in \mathcal{V}\}$: the Artin cycle.

Definition

For $D \in \sum_{v \in \mathcal{V}} \mathbb{Z}_+ E_v$

$$p_a(D) = 1 - h^0(O_D) + h^1(O_D) = 1 + \frac{1}{2}D \cdot (D + K_{\widetilde{X}})$$

 $p_a(Z)$ is independent of the choice of resolution.

Some known results When is pg topological?

 $\{E_v\}_{v \in \mathcal{V}}$: the irreducible components of *E*. Then $H_2(\widetilde{X}, \mathbb{Z}) = \sum_{v \in \mathcal{V}} \mathbb{Z} E_v$. Let $Z = \min \{D \in \sum \mathbb{Z}_+ E_v \mid D \cdot E_v \leq 0, \forall v \in \mathcal{V}\}$: the Artin cycle.

Definition

For $D \in \sum_{v \in \mathcal{V}} \mathbb{Z}_+ E_v$ • $p_a(D) = 1 - h^0(O_D) + h^1(O_D) = 1 + \frac{1}{2}D \cdot (D + K_{\widetilde{X}})$

 $p_a(Z)$ is independent of the choice of resolution.

- (Artin, 1966) $p_a(Z) = 0 \Rightarrow p_g = 0$.
- (Laufer, 1977) $Z \equiv -K_{\widetilde{X}}$ (then $p_a(Z) = 1$) $\Rightarrow p_g = 1$.

Some known results When is pg topological?

 $\{E_v\}_{v \in \mathcal{V}}$: the irreducible components of *E*. Then $H_2(\widetilde{X}, \mathbb{Z}) = \sum_{v \in \mathcal{V}} \mathbb{Z} E_v$. Let $Z = \min \{D \in \sum \mathbb{Z}_+ E_v \mid D \cdot E_v \leq 0, \forall v \in \mathcal{V}\}$: the Artin cycle.

Definition

For $D \in \sum_{v \in \mathcal{V}} \mathbb{Z}_+ E_v$ • $p_a(D) = 1 - h^0(O_D) + h^1(O_D) = 1 + \frac{1}{2}D \cdot (D + K_{\widetilde{X}})$

 $p_a(Z)$ is independent of the choice of resolution.

- (Artin, 1966) $p_a(Z) = 0 \Rightarrow p_g = 0$.
- (Laufer, 1977) $Z \equiv -K_{\widetilde{X}}$ (then $p_a(Z) = 1$) $\Rightarrow p_g = 1$.
- (Némethi, 1999) (*X*, *o*) is Gorenstein, *p_a*(*Z*) = 1, ℚHS link
 ⇒ *p_g* = the length of the "elliptic sequence"
 (S.S.-T Yau introduced the elliptic sequence and gave bounds of these invariants)

Assume that $\pi : \widetilde{X} \to X$ is a good resolution, i.e., E_v are nonsingular, $E_v \cdot E_w = 1$ or 0 for $v \neq w$.

- $I(E) = (E_v \cdot E_w)$: the intersection matrix of *E*; it is negative-definite.
- Γ : the weighted dual graph of E
 - $E_v \mapsto \text{vertex } v;$
 - $E_v \cap E_w \mapsto$ edge connectin v and w;
 - vertex v has weight $(E_v \cdot E_v, g(E_v))$.

(if all E_v are rational, $\Gamma \Leftrightarrow I(E)$)

Assume that $\pi : \widetilde{X} \to X$ is a good resolution, i.e., E_v are nonsingular, $E_v \cdot E_w = 1$ or 0 for $v \neq w$.

- $I(E) = (E_v \cdot E_w)$: the intersection matrix of *E*; it is negative-definite.
- Γ : the weighted dual graph of E
 - $E_v \mapsto \text{vertex } v;$
 - $E_v \cap E_w \mapsto$ edge connectin v and w;
 - vertex v has weight $(E_v \cdot E_v, g(E_v))$.

(if all E_v are rational, $\Gamma \Leftrightarrow I(E)$)

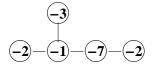
The graph Γ and the link Σ determine each other (Neumann).

• An invariant of a singularity is topological if it is determined by the resolution graph.

Some known results When is p_g topological?

In general, Gorenstein condition and p_g are not topological.

The following graph (\forall vertex $\leftrightarrow \mathbb{P}^1$)

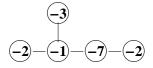


is realized by:

Some known results When is p_g topological?

In general, Gorenstein condition and p_g are not topological.

The following graph (\forall vertex $\leftrightarrow \mathbb{P}^1$)



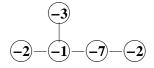
is realized by:

•
$$X_1$$
: $x^2 + y^3 + z^{13} = 0$, $p_g = 2$

Some known results When is pg topological?

In general, Gorenstein condition and p_q are not topological.

The following graph (\forall vertex $\leftrightarrow \mathbb{P}^1$)



is realized by:

- X_1 : $x^2 + y^3 + z^{13} = 0$, $p_g = 2$
- X_2 (non Gorenstein):

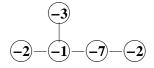
$$\operatorname{rank}\begin{pmatrix} x & y & z \\ y - 3w^2 & z + w^3 & x^2 + 6wy - 2w^3 \end{pmatrix} < 2, \ p_g = 1$$

١

Some known results When is *pg* topological?

In general, Gorenstein condition and p_q are not topological.

The following graph (\forall vertex $\leftrightarrow \mathbb{P}^1$)



is realized by:

- X_1 : $x^2 + y^3 + z^{13} = 0$, $p_g = 2$
- X_2 (non Gorenstein): rank $\begin{pmatrix} x & y & z \\ y - 3w^2 & z + w^3 & x^2 + 6wy - 2w^3 \end{pmatrix} < 2, \quad p_g = 1$

Main question

When (How) can we compute p_g from the graph?

Introduction A recursion Additivity formula An invaria Examples and questions Splice que

A recursion formula An invariant of filtrations Splice quotient singularities

Let E_v be an arbitrary component of E.

- Let F_1, \ldots, F_m be the connected components of $E E_v$.
- (X_i, x_i) : the normal singularity obtained by contracting F_i .

A recursion formula An invariant of filtrations Splice quotient singularities

Let E_v be an arbitrary component of E.

- Let F_1, \ldots, F_m be the connected components of $E E_v$.
- (X_i, x_i) : the normal singularity obtained by contracting F_i .

Notation

$$c(\widetilde{X}, v) := p_g(X, o) - \sum_{i=1}^m p_g(X_i, x_i)$$

A recursion formula An invariant of filtrations Splice quotient singularities

Let E_v be an arbitrary component of E.

- Let F_1, \ldots, F_m be the connected components of $E E_v$.
- (X_i, x_i) : the normal singularity obtained by contracting F_i .

Notation

$$c(\widetilde{X}, v) := p_g(X, o) - \sum_{i=1}^m p_g(X_i, x_i)$$

Problem

Find a class \mathcal{R} of surface singularities, which satisfies the following: For any (X, o) in \mathcal{R} , there exists a good resolution $\widetilde{X} \to X$ such that

- $c(\widetilde{X}, v)$ can be computed from the graph for any $v \in \mathcal{V}$,
- every (X_i, x_i) is in \mathcal{R} .

A recursion formula An invariant of filtrations Splice quotient singularities

There exisits $E_v^* \in \sum_{i \in \mathcal{V}} \mathbb{Q}E_i$ satisfying $E_v^* \cdot E_i = -\delta_{vi}$ ($\forall i$).

- Let k be a positive integer such that $kE_v^* \in L$.
- $I_n = H^0(O_{\widetilde{X}}(-nkE_v^*)).$
- $G := \bigoplus_{n \ge 0} I_n / I_{n+1}$.
- $H_G(t) := \sum_{n \ge 0} (\dim G_n) t^n$: the Hilbert series of G.

A recursion formula An invariant of filtrations Splice quotient singularities

There exisits $E_v^* \in \sum_{i \in \mathcal{V}} \mathbb{Q}E_i$ satisfying $E_v^* \cdot E_i = -\delta_{vi}$ ($\forall i$).

• Let k be a positive integer such that $kE_v^* \in L$.

•
$$I_n = H^0(O_{\widetilde{X}}(-nkE_v^*)).$$

•
$$G := \bigoplus_{n \ge 0} I_n / I_{n+1}$$
.

• $H_G(t) := \sum_{n \ge 0} (\dim G_n) t^n$: the Hilbert series of G.

Definition

Let $F(t) = \sum_{i\geq 0} a_i t^i$ be a formal power series. If $\psi(n) := \sum_{i=0}^{nk-1} a_i$ is a polynomial function of *n* for some $k \in \mathbb{N}$, then the constant term of $\psi(n)$ is independent of $k \in \mathbb{N}$. This constant is called the periodic constant of F(t) and denote it by pc *F*.

A recursion formula An invariant of filtrations Splice quotient singularities

There exisits $E_v^* \in \sum_{i \in \mathcal{V}} \mathbb{Q}E_i$ satisfying $E_v^* \cdot E_i = -\delta_{vi}$ ($\forall i$).

• Let k be a positive integer such that $kE_v^* \in L$.

•
$$I_n = H^0(O_{\widetilde{X}}(-nkE_v^*)).$$

•
$$G := \bigoplus_{n \ge 0} I_n / I_{n+1}$$
.

• $H_G(t) := \sum_{n \ge 0} (\dim G_n) t^n$: the Hilbert series of G.

Definition

Let $F(t) = \sum_{i \ge 0} a_i t^i$ be a formal power series. If $\psi(n) := \sum_{i=0}^{nk-1} a_i$ is a polynomial function of *n* for some $k \in \mathbb{N}$, then the constant term of $\psi(n)$ is independent of $k \in \mathbb{N}$. This constant is called the periodic constant of F(t) and denote it by pc *F*.

Lemma

Assume F(t) = p(t) + r(t)/q(t), where p, q, and r are polynomials with deg $r < \deg q$. Then pc F = p(1).

A recursion formula An invariant of filtrations Splice quotient singularities

Under a certain condition, $c(\tilde{X}, v) = pc H_G$.

A recursion formula An invariant of filtrations Splice quotient singularities

Under a certain condition, $c(\tilde{X}, v) = \text{pc } H_G$.

Let $\mathcal{E} \subset \mathcal{V}$ be the set of ends.

Definition

Let $i \in \mathcal{E}$.

• We say that \widetilde{X} satisfies the weak end curve condition (weak ECC) at E_i if there exist $n \in \mathbb{N}$ and $f \in H^0(O_{\widetilde{X}})$ such that $H = \operatorname{div}(f) - nE_i^*$ has no component of E.

A recursion formula An invariant of filtrations Splice quotient singularities

Under a certain condition, $c(\tilde{X}, v) = pc H_G$.

Let $\mathcal{E} \subset \mathcal{V}$ be the set of ends.

Definition

Let $i \in \mathcal{E}$.

- We say that \widetilde{X} satisfies the weak end curve condition (weak ECC) at E_i if there exist $n \in \mathbb{N}$ and $f \in H^0(O_{\widetilde{X}})$ such that $H = \operatorname{div}(f) nE_i^*$ has no component of E.
- We say that \widetilde{X} satisfies the ECC at E_i if it satisfies the weak ECC at E_i and the divisor H can be chosen as a divisor with irreducible support.
- We say simply that X̃ satisfies the (weak) ECC if it satisfies the (weak) ECC at E_i for every i ∈ E.

A recursion formula An invariant of filtrations Splice quotient singularities

Proposition

Assume that \widetilde{X} satisfies the weak ECC. Then

$$p_g(X,o) = \operatorname{pc} H_G + \sum_{i=1}^m p_g(X_i, x_i). \ (i.e., \ c(\widetilde{X}, v) = \operatorname{pc} H_G)$$

2 \widetilde{X}_i satisfies the weak ECC.

A recursion formula An invariant of filtrations Splice quotient singularities

Proposition

Assume that \widetilde{X} satisfies the weak ECC. Then

$$p_g(X,o) = \operatorname{pc} H_G + \sum_{i=1}^m p_g(X_i, x_i). \ (i.e., \ c(\widetilde{X}, v) = \operatorname{pc} H_G)$$

2 \widetilde{X}_i satisfies the weak ECC.

The point of (1) is that $\mathcal{L}_n := O_{\widetilde{X}}(-nkE_v^*)$ $(n \gg 0)$ has no base points in E.

If $\pi': \widetilde{X} \to X'$ is the contraction of $E - E_v$, then

$$0 = H^1(\pi'_*\mathcal{L}_n) \to H^1(\mathcal{L}_n) \to H^0(R^1\pi'\mathcal{L}_n) \to 0.$$

From the exact sequence

$$0 \to \mathcal{L}_n \to O_{\widetilde{X}} \to O_{nkE_v^*} \to 0$$

we have

$$p_g(X,o) = \dim I_0/I_n - \chi(O_{nkE_v^*}) + h^1(\mathcal{L}_n).$$

Corollary (Tomari–Watanabe, 1989)

Suppose *X* is a hypersurface with multiplicity *d*. Then $p_g(X, o) = \frac{1}{6}d(d - 1)(d - 2)$ if the blowing up of *X* at *o* has only rational singularities. (E.g. superisolated singularities)

Corollary (Tomari–Watanabe, 1989)

Suppose *X* is a hypersurface with multiplicity *d*. Then $p_g(X, o) = \frac{1}{6}d(d - 1)(d - 2)$ if the blowing up of *X* at *o* has only rational singularities. (E.g. superisolated singularities)

The Hilbert series of the tangent cone is $F(t) = \frac{1 - t^d}{(1 - t)^3}$.

pc
$$F = \begin{pmatrix} d \\ 3 \end{pmatrix} = \frac{1}{6}d(d-1)(d-2)$$

A recursion formula An invariant of filtrations <u>Splice</u> quotient singularities

Assume that $H_1(\Sigma, \mathbb{Q}) = 0$ ($\Leftrightarrow \forall E_v \cong \mathbb{P}^1$ and Γ is a tree).

A recursion formula An invariant of filtrations Splice quotient singularities

Assume that $H_1(\Sigma, \mathbb{Q}) = 0$ ($\Leftrightarrow \forall E_v \cong \mathbb{P}^1$ and Γ is a tree).

Theorem (End Curve Theorem (Neumann-Wahl))

(X, o) is a splice quotient

 \Leftrightarrow The minimal good resolution of (X, o) satisfies the ECC.

Definition

Let $i \in \mathcal{E}$.

- *X* satisfies the weak ECC at *E_i* if there exist *n* ∈ N and *f* ∈ *H*⁰(*O_{X̃}*) such that *H* = div(*f*) − *nE_i^{*}* has no component of *E*.
- \widetilde{X} satisfies the ECC at E_i if it satisfies the weak end curve condition at E_i and the divisor H can be chosen as a divisor with irreducible support.
- \widetilde{X} satisfies the ECC if it satisfies the ECC at E_i for every $i \in \mathcal{E}$.

Splice quotients includes

- $\bullet\,$ weighted homogeneous singularities with $\mathbb{Q}HS$ links.
- Rational singularities are splice quotients.
- Minimally elliptic singularities with QHS links.

Introduction A recursion formula Additivity formula An invariant of filtrations examples and questions Splice quotient singularities

Definition

- $L := \sum_{v \in \mathcal{V}} \mathbb{Z} E_v$.
- $L^* := \sum_{v \in \mathcal{V}} \mathbb{Z} E_v^*$ $(E_w \cdot E_v^* = -\delta_{wv})$
- $H := L^*/L$.
 - Then $H \cong H_1(\Sigma, \mathbb{Z})$, $|H| = |\det I(E)|$.

Introduction A recursion formula Additivity formula An invariant of filtrations xamples and questions Splice quotient singularities

Definition

- $L := \sum_{v \in \mathcal{V}} \mathbb{Z} E_v$.
- $L^* := \sum_{v \in V} \mathbb{Z} E_v^*$ $(E_w \cdot E_v^* = -\delta_{wv})$
- $H := L^*/L$. Then $H \cong H_1(\Sigma, \mathbb{Z})$, $|H| = |\det I(E)|$.
- For $h \in H$,

$$\theta(h,i) := \exp(2\pi \sqrt{-1} h \cdot E_i^*)$$

where \cdot is $(L^*/L) \times L^* \to \mathbb{Q}/\mathbb{Z}$.

• $(m_{ij}) = |H|(-I(E))^{-1}$

•
$$Z_{\Gamma,w}^{SW}(t) = \frac{1}{|H|} \sum_{h \in H} \prod_{i \in V} (1 - \theta(h, i) t^{m_{wi}})^{\delta_i - 2}.$$

 $\delta_i = (E - E_i) \cdot E_i.$

A recursion formula An invariant of filtrations Splice quotient singularities

Assume (*X*, *o*) is splice quotient.

Theorem (O, 2008)

$$p_g(X,o) = \operatorname{pc} Z_{\Gamma,w}^{SW} + \sum_{i=1}^m p_g(X_i, x_i).$$

2 Each
$$(X_i, x_i)$$
 is a splice quotient

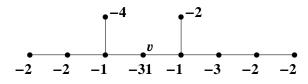
Corollary

If Γ is a star-shaped graph with center v, then $p_g(X, o) = \operatorname{pc} Z_{\Gamma, w}^{SW}$.

Introduction A recursion formula Additivity formula An invariant of filtrations xamples and questions Splice quotient singularities

Example

The following graph is realized by a Gorenstein splice quotient.

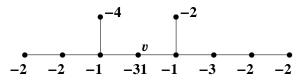


 $p_a(Z)=6.$

Introduction A recursion formula Additivity formula An invariant of filtrations xamples and questions Splice quotient singularities

Example

The following graph is realized by a Gorenstein splice quotient.



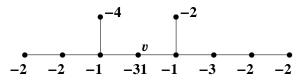
 $p_a(Z) = 6.$ The polynomial part of $Z_{\Gamma,w}^{SW}(t)$ is

$$6 + t^5 + t^{10}$$

Introduction A recursion formula Additivity formula An invariant of filtrations xamples and questions Splice quotient singularities

Example

The following graph is realized by a Gorenstein splice quotient.



 $p_a(Z) = 6.$ The polynomial part of $Z_{\Gamma,w}^{SW}(t)$ is

$$6 + t^5 + t^{10}$$

$$p_g = 6 + 1 + 1 = 8$$

A recursion formula An invariant of filtrations Splice quotient singularities

Casson Invariant Conjecture

- Assume (*X*, *o*) is complete intersection.
- *F*: the Milnor fiber of (X, o). (Then $\Sigma \approx \partial F$)
- $\sigma(F)$: the signature.
- $\lambda(\Sigma)$: the Casson invariant.

Casson Invariant Conjecture (Neumann-Wahl)

Assume that $H_1(\Sigma, \mathbb{Z}) = 0$. Then $\lambda(\Sigma) = \sigma(F)/8$.

A recursion formula An invariant of filtrations Splice quotient singularities

Casson Invariant Conjecture

- Assume (*X*, *o*) is complete intersection.
- *F*: the Milnor fiber of (X, o). (Then $\Sigma \approx \partial F$)
- $\sigma(F)$: the signature.
- $\lambda(\Sigma)$: the Casson invariant.

Casson Invariant Conjecture (Neumann-Wahl)

Assume that $H_1(\Sigma, \mathbb{Z}) = 0$. Then $\lambda(\Sigma) = \sigma(F)/8$.

By Laufer–Durfee, CIC
$$\Leftrightarrow p_g(X, o) + \lambda(\Sigma) + \frac{K^2 + s}{8} = 0.$$

 $K = K_{\widetilde{X}}, s = \#V.$

A recursion formula An invariant of filtrations Splice quotient singularities

A generalization of CIC

In the following, we do not assume that $H = \{0\}$, the existence of smoothing.

Seiberg–Witten Invariant Conjecture (Némethi–Nicolaescu)

$$p_g(X,o) + \mathrm{sw}(\Sigma) + \frac{K^2 + s}{8} \leq 0.$$

If (X, o) is \mathbb{Q} -Gorenstein, then "=" holds.

 $H_1(\Sigma, \mathbb{Z}) = 0 \Rightarrow \operatorname{sw}(\Sigma) = \lambda(\Sigma)$ (Casson invariant).

A recursion formula An invariant of filtrations Splice quotient singularities

A generalization of CIC

In the following, we do not assume that $H = \{0\}$, the existence of smoothing.

Seiberg–Witten Invariant Conjecture (Némethi–Nicolaescu)

$$p_g(X,o) + \mathrm{sw}(\Sigma) + \frac{K^2 + s}{8} \leq 0.$$

If (X, o) is \mathbb{Q} -Gorenstein, then "=" holds.

 $H_1(\Sigma, \mathbb{Z}) = 0 \Rightarrow \operatorname{sw}(\Sigma) = \lambda(\Sigma)$ (Casson invariant).

Theorem (Némethi–Nicolaescu)

SWIC is true for quotient singularities, weighted homogeneous singularities, and $z^n = g(x, y)$.

A recursion formula An invariant of filtrations Splice quotient singularities

A recursion formula

For
$$(X_i, x_i)$$
, define Σ_i, s_i, K_i^2 as Σ, s, K^2 .

Theorem (Braun–Némethi, 2010) $sw(\Sigma) + \frac{K^2 + s}{8} = -\mathbf{pc} \, \mathbf{Z}_{\Gamma,w}^{SW} + \sum_{i=1}^{m} \left(sw(\Sigma_i) + \frac{K_i^2 + s_i}{8} \right).$

A recursion formula An invariant of filtrations Splice quotient singularities

A recursion formula

For
$$(X_i, x_i)$$
, define Σ_i , s_i , K_i^2 as Σ , s , K^2 .

Theorem (Braun–Némethi, 2010)

$$\operatorname{sw}(\Sigma) + \frac{K^2 + s}{8} = -\operatorname{pc} \mathbb{Z}_{\Gamma, w}^{SW} + \sum_{i=1}^{m} \left(\operatorname{sw}(\Sigma_i) + \frac{K_i^2 + s_i}{8} \right).$$

$$p_g(X,o) = \operatorname{pc} \mathbb{Z}_{\Gamma,w}^{SW} + \sum_{i=1}^m p_g(X_i, x_i).$$

Corollary

SWIC and CIC are true for splice quotients.

A recursion formula An invariant of filtrations Splice quotient singularities

A recursion formula

For
$$(X_i, x_i)$$
, define Σ_i , s_i , K_i^2 as Σ , s , K^2 .

Theorem (Braun–Némethi, 2010)

$$\operatorname{sw}(\Sigma) + \frac{K^2 + s}{8} = -\operatorname{pc} \mathbb{Z}_{\Gamma,w}^{SW} + \sum_{i=1}^{m} \left(\operatorname{sw}(\Sigma_i) + \frac{K_i^2 + s_i}{8} \right).$$

$$p_g(X,o) = \operatorname{pc} \mathbb{Z}_{\Gamma,w}^{SW} + \sum_{i=1}^m p_g(X_i, x_i).$$

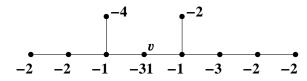
Corollary

SWIC and CIC are true for splice quotients.

There are counterexamples for SWIC; no for CIC.

A counterexample for SWIC (Luengo-Velasco, Melle-Hernández, and Némethi)

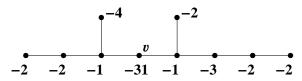
The following graph is realized by a superisolated singulaity



Then
$$-Z^2 = 5$$
,
 $p_g = \frac{5(5-1)(5-2)}{6} = 10$.
 $(p_g = 8$ if it is splice quotient)

A counterexample for SWIC (Luengo-Velasco, Melle-Hernández, and Némethi)

The following graph is realized by a superisolated singulaity



Then
$$-Z^2 = 5$$
,
 $p_g = \frac{5(5-1)(5-2)}{6} = 10$.
 $(p_g = 8$ if it is splice quotient)

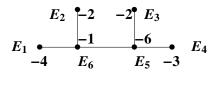
Problem

Characterize singularities satisfying SWIC (or $pc Z^{SW} = pc H_G$). CIC is true?

Non splice quotient

The following graph is not realized by a splice quotient, but realized by

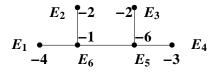
- a hypersurface singularity with $p_a(Z) = 1$,
- its minimal good resolution satisfies the weak ECC.



Non splice quotient

The following graph is not realized by a splice quotient, but realized by

- a hypersurface singularity with $p_a(Z) = 1$,
- its minimal good resolution satisfies the weak ECC.



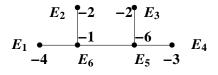
$$p_g = \operatorname{pc} Z_{\Gamma,5}^{SW} = \operatorname{pc} Z_{\Gamma,6}^{SW} = 2$$

In particular, SWIC holds.

Non splice quotient

The following graph is not realized by a splice quotient, but realized by

- a hypersurface singularity with $p_a(Z) = 1$,
- its minimal good resolution satisfies the weak ECC.



$$p_g = \operatorname{pc} Z_{\Gamma,5}^{SW} = \operatorname{pc} Z_{\Gamma,6}^{SW} = 2$$

In particular, SWIC holds.

The class of singularities satisfying SWIC is bigger than the class of splice quotients.