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(X, o) ⊂ (Cn, o): a normal complex surface singularity.

Σ: the link of (X, o). Σ = X ∩ S2n−1
ε (0 < ε ≪ 1)

We may assume X is a cone over Σ.

π : X̃ → X: a resolution with exceptional set E := π−1(o).
a) π is proper and X̃ is smooth,
b) X̃ \ E � X \ {o},

.
Definition (The geometric genus)
..

......

pg(X, o) := h1(X̃,OX̃) := dimC H1(X̃,OX̃),

independent of the resolution.
By duality,

pg(X, o) = dimC
H0(X̃ \ E,OX̃(KX̃))

H0(X̃,OX̃(KX̃))
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.. Hypersurfaces (Counting “lower monomials”)

Suppose X = { f = 0}, f ∈ C[x1, x2, x3].
Z+ := N ∪ {0}.
.
Kimio Watanabe, 1980
..

......

f is weighted homogeneous of degree d with weights (q1, q2, q3)
⇒ pg(X, o) = #

{
(a1, a2, a3) ∈ (Z+)3

∣∣∣∣ ∑3
i=1

(ai + 1)qi ≤ d
}
.

.
Merle–Teissier, 1980
..

......

f is non-degenerate w.r.t. its Newton boundary
⇒ pg(X, o) = #

{
a ∈ (Z+)3 | a+ (1, 1, 1) < Int(Γ+)

}
.

Tomohiro Okuma The geometric genus of surface singularities
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.. Hypersurfaces (Invariants from resolution process)

Any double point is defined by a function of type x2
1
+ g(x2, x3).

.
Horikawa, 1975
..

......

f = x2
1
+ g(x2, x3)

⇒ pg(X, o) = 1
2

∑n
i=1

γi(γi + 1), where γi =

⌊mi

2

⌋
− 1, mi is the

multiplicity of curve singularity which is the center of i-th blowing
up in the embedded resolution process for {g = 0} ⊂ C2.

Ashikaga (1999) obtained a formula for xn
1
+ g(x2, x3).

Tomari (1985) obtained a formula for any hypersurface singularity.

Tomohiro Okuma The geometric genus of surface singularities
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{Eu}u∈V : the irreducible components of E.
Then H2(X̃,Z) =

∑
u∈V ZEu.

Let Z = min {D ∈ ∑
Z+Eu | D · Eu ≤ 0, ∀u ∈ V}: the Artin cycle.

.
Definition
..

......

For D ∈ ∑
u∈V Z+Eu

pa(D) = 1− h0(OD) + h1(OD) = 1+ 1
2 D · (D + KX̃)

.

......pa(Z) is independent of the choice of resolution.

(Artin, 1966) pa(Z) = 0⇒ pg = 0.

(Laufer, 1977) Z ≡ −KX̃ (then pa(Z) = 1)⇒ pg = 1.

(Némethi, 1999) (X, o) is Gorenstein, pa(Z) = 1, QHS link
⇒ pg = the length of the “elliptic sequence”
(S.S.-T Yau introduced the elliptic sequence and gave bounds
of these invariants)
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Assume that π : X̃ → X is a good resolution,
i.e., Eu are nonsingular, Eu · Ew = 1 or 0 for u , w.

I (E) = (Eu · Ew): the intersection matrix of E; it is
negative-definite.
Γ: the weighted dual graph of E

Eu 7→ vertex u;
Eu ∩ Ew 7→ edge connectin u and w;
vertex u has weight (Eu · Eu, g(Eu)).

(if all Eu are rational, Γ⇔ I (E))

.

......The graph Γ and the link Σ determine each other (Neumann).

An invariant of a singularity is topological if it is determined by
the resolution graph.

Tomohiro Okuma The geometric genus of surface singularities
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.

......In general, Gorenstein condition and pg are not topological.

The following graph (∀ vertex↔ P1)

?>=<89:;−2 ?>=<89:;−1

?>=<89:;−3

?>=<89:;−7 ?>=<89:;−2

is realized by:

X1: x2 + y3 + z13 = 0, pg = 2
X2 (non Gorenstein):

rank
(

x y z
y − 3w2 z+ w3 x2 + 6wy − 2w3

)
< 2, pg = 1

.
Main question
..
......When (How) can we compute pg from the graph?
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Let Eu be an arbitrary component of E.

Let F1, . . . , Fm be the connected components of E − Eu.

(Xi , xi): the normal singularity obtained by contracting F i .

.
Notation
..

......c(X̃, u) := pg(X, o) − ∑m
i=1

pg(Xi , xi)

.
Problem
..

......

Find a class R of surface singularities, which satisfies the following:
For any (X, o) in R, there exists a good resolution X̃ → X such that

c(X̃, u) can be computed from the graph for any u ∈ V,

every (Xi , xi) is in R.

Tomohiro Okuma The geometric genus of surface singularities
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There exisits E∗u ∈
∑

i∈V QEi satisfying E∗u · Ei = −δui (∀i).

Let k be a positive integer such that kE∗u ∈ L.

I n = H0(OX̃(−nkE∗u )).

G :=
⊕

n≥0 I n/I n+1.

HG(t) :=
∑

n≥0(dim Gn)tn: the Hilbert series of G.

.
Definition
..

......

Let F(t) =
∑

i≥0 ai t i be a formal power series. If ψ(n) :=
∑nk−1

i=0
ai

is a polynomial function of n for some k ∈ N, then the constant
term of ψ(n) is independent of k ∈ N. This constant is called the
periodic constant of F(t) and denote it by pc F.

.
Lemma
..

......

Assume F(t) = p(t) + r(t)/q(t), where p, q, and r are polynomials
with degr < degq. Then pc F = p(1).

Tomohiro Okuma The geometric genus of surface singularities
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.

......Under a certain condition, c(X̃, u) = pc HG.

Let E ⊂ V be the set of ends.
.
Definition
..

......

Let i ∈ E.

We say that X̃ satisfies the weak end curve condition (weak
ECC) at Ei if there exist n ∈ N and f ∈ H0(OX̃) such that
H = div( f ) − nE∗

i
has no component of E.

We say that X̃ satisfies the ECC at Ei if it satisfies the weak
ECC at Ei and the divisor H can be chosen as a divisor with
irreducible support.

We say simply that X̃ satisfies the (weak) ECC if it satisfies
the (weak) ECC at Ei for every i ∈ E.

Tomohiro Okuma The geometric genus of surface singularities
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Proposition
..

......

Assume that X̃ satisfies the weak ECC. Then
...1 pg(X, o) = pc HG +

∑m
i=1

pg(Xi , xi). (i.e., c(X̃, u) = pc HG)

...2 X̃i satisfies the weak ECC.

The point of (1) is that Ln := OX̃(−nkE∗u ) (n≫ 0) has no base
points in E.
If π′ : X̃ → X′ is the contraction of E − Eu, then

0 = H1(π′∗Ln) → H1(Ln) → H0(R1π′Ln) → 0.

From the exact sequence

0→ Ln → OX̃ → OnkE∗u
→ 0

we have

pg(X, o) = dim I0/I n − χ(OnkE∗u
) + h1(Ln).

Tomohiro Okuma The geometric genus of surface singularities
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.
Corollary (Tomari–Watanabe, 1989)
..

......

Suppose X is a hypersurface with multiplicity d. Then
pg(X, o) = 1

6d(d − 1)(d − 2) if the blowing up of X at o has only
rational singularities. (E.g. superisolated singularities)

The Hilbert series of the tangent cone is F(t) =
1− td

(1− t)3
.

pc F =
(
d
3

)
=

1

6
d(d − 1)(d − 2)

Tomohiro Okuma The geometric genus of surface singularities



Introduction
Additivity formula

Examples and questions

A recursion formula
An invariant of filtrations
Splice quotient singularities

.
Corollary (Tomari–Watanabe, 1989)
..

......

Suppose X is a hypersurface with multiplicity d. Then
pg(X, o) = 1

6d(d − 1)(d − 2) if the blowing up of X at o has only
rational singularities. (E.g. superisolated singularities)

The Hilbert series of the tangent cone is F(t) =
1− td

(1− t)3
.

pc F =
(
d
3

)
=

1

6
d(d − 1)(d − 2)

Tomohiro Okuma The geometric genus of surface singularities



Introduction
Additivity formula

Examples and questions

A recursion formula
An invariant of filtrations
Splice quotient singularities

.

......Assume that H1(Σ,Q) = 0 (⇔ ∀ Eu � P1 and Γ is a tree).

.
Theorem (End Curve Theorem (Neumann-Wahl) )
..

......

(X, o) is a splice quotient
⇔ The minimal good resolution of (X, o) satisfies the ECC.

.
Definition
..

......

Let i ∈ E.

X̃ satisfies the weak ECC at Ei if there exist n ∈ N and
f ∈ H0(OX̃) such that H = div( f ) − nE∗

i
has no component

of E.

X̃ satisfies the ECC at Ei if it satisfies the weak end curve
condition at Ei and the divisor H can be chosen as a divisor
with irreducible support.

X̃ satisfies the ECC if it satisfies the ECC at Ei for every i ∈ E.
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Splice quotients includes

weighted homogeneous singularities with QHS links.

Rational singularities are splice quotients.

Minimally elliptic singularities with QHS links.
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.
Definition
..

......

L :=
∑
u∈V ZEu.

L∗ :=
∑
u∈V ZE∗u (Ew · E∗u = −δwu)

H := L∗/L.
Then H � H1(Σ,Z), |H | = | det I (E)|.

For h ∈ H,
θ(h, i) := exp(2π

√
−1 h · E∗

i
)

where · is (L∗/L) × L∗ → Q/Z.

(mi j ) = |H |(−I (E))−1

ZSW
Γ,w

(t) =
1

|H |
∑
h∈H

∏
i∈V

(1− θ(h, i) tmwi )δi−2.

δi = (E − Ei) · Ei .
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Assume (X, o) is splice quotient.
.
Theorem (O, 2008)
..

......

...1 pg(X, o) = pc ZSW
Γ,w
+

∑m
i=1

pg(Xi , xi).

...2 Each (Xi , xi) is a splice quotient

.
Corollary
..

......
If Γ is a star-shaped graph with center u, then pg(X, o) = pc ZSW

Γ,w
.

Tomohiro Okuma The geometric genus of surface singularities



Introduction
Additivity formula

Examples and questions

A recursion formula
An invariant of filtrations
Splice quotient singularities

.. Example

The following graph is realized by a Gorenstein splice quotient.

s s s s s s s s
−2 −2 −1

u

s−4

−31 −1

s−2

−3 −2 −2

pa(Z) = 6.

The polynomial part of ZSW
Γ,w

(t) is

6+ t5 + t10

pg = 6+ 1+ 1 = 8
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.. Casson Invariant Conjecture

Assume (X, o) is complete intersection.

F: the Milnor fiber of (X, o). (Then Σ ≈ ∂F)

σ(F): the signature.

λ(Σ): the Casson invariant.

.
Casson Invariant Conjecture (Neumann-Wahl)
..
......Assume that H1(Σ,Z) = 0. Then λ(Σ) = σ(F)/8.

By Laufer–Durfee, CIC⇔ pg(X, o) + λ(Σ) +
K2 + s

8
= 0.

K = KX̃, s = #V.
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.. A generalization of CIC

In the following, we do not assume that H = {0}, the existence of
smoothing.
.
Seiberg–Witten Invariant Conjecture (Némethi–Nicolaescu)
..

......

pg(X, o) + sw(Σ) +
K2 + s

8
≤ 0.

If (X, o) is Q-Gorenstein, then “=” holds.

.

......H1(Σ,Z) = 0⇒ sw(Σ) = λ(Σ) (Casson invariant).

.
Theorem (Némethi–Nicolaescu)
..

......

SWIC is true for quotient singularities, weighted homogeneous
singularities, and zn = g(x, y).
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.. A recursion formula

For (Xi , xi), define Σi , si , K2
i

as Σ, s, K2.

.
Theorem (Braun–Némethi, 2010)
..

......

sw(Σ) +
K2 + s

8
= −pc ZSW

Γ,w
+

m∑
i=1

sw(Σi) +
K2

i
+ si

8

 .

pg(X, o) = pc ZSW
Γ,w
+

∑m
i=1

pg(Xi , xi).

.
Corollary
..
......SWIC and CIC are true for splice quotients.

.

......There are counterexamples for SWIC; no for CIC.
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..

A counterexample for SWIC (Luengo-Velasco,
Melle-Hernández, and Némethi)

The following graph is realized by a superisolated singulaity

s s s s s s s s
−2 −2 −1

u

s−4

−31 −1

s−2

−3 −2 −2

Then −Z2 = 5,

pg =
5(5− 1)(5− 2)

6
= 10.

(pg = 8 if it is splice quotient)

.
Problem
..

......
Characterize singularities satisfying SWIC (or pc ZSW = pc HG).
CIC is true?
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.. Non splice quotient

The following graph is not realized by a splice quotient, but realized
by

a hypersurface singularity with pa(Z) = 1,
its minimal good resolution satisfies the weak ECC.

s s s sE1
−4

E4
−3E6

−1

s s
E2 −2 −2

E5

−6

E3

pg = pc ZSW
Γ,5
= pc ZSW

Γ,6
= 2

In particular, SWIC holds.
.

......

The class of singularities satisfying SWIC is bigger than the class
of splice quotients.
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