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Let M be a closed, oriented, hyperbolic 3-manifold. Then, the
Chern-Stmons tnvariant of M is defined by
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872
where A denotes the connection in the orthonormal frame bundle
determined by the metric and s(M) is an orthonormal frame field.
In this talk, we define the complex volume of M by

cv(M) = —21%cs(M) + v/ —1vol(M) mod 272,

which is extended to cusped hyperbolic 3-manifolds modulo 72.
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Remark. The 3-dimensional hyperbolic space H? is the upper
half of R? endowed with the metric

ds® = (dx® + dy* + dt*)/t>.
A tetarahedron in H® whose 4 vertices are in OH® = C U {oc} is

called ideal. The shape of such a tetrahedron is determined by a
complex number called modulus.




Conjecture. Let K be a hyperbolic knot in S3. If N is large,
JK(N 627r\/—_1/N) ~ @27r5—_1{_2772CS(53\K)+\/—_1V01(S3\K)}

where Ji (N q) is the N-colored Jones polynomial of K.

This conjecture is still open. However, we can show that

Tie (N 27V=T/Ny _ /6%5_1{‘/(9:1,...,xn)+0(1/N)}dx1 o de,

and the hyperbolicity equations for M = S3\ K are given by

v =2/ —=1-r,, r, €.
&L’V

In this talk, we prove that, it x, = z, is the geometric solution,

cv(M) =V (z1,...,2,) — 2wV —1 Zfry log z, mod 7.
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Example. Choose a diagram D of a hyperbolic knot K in S, and
remove an overpass and an underpass of D which are adjacent.

Then, we obtain a subgraph G of D with the edge variables x,’s.

T3

T4

T2




Put dilogarithm functions on the interior corners of G.

N /

T Y T Y
Liy(y/x) — 72 /6 m?/6 — Liz(x/y)

The potential function V' (x1, x2, x3, x4, x5) is nothing but the sum
of these dilogarithm functions, that is,

L12(331/£E4) — Lig(ﬂ?l/l’g) + L12(£E1) — L12(1/£E4)
—|—L12<332/.I'4> — LIQ(ZBQ) — ng(l/éﬁg) + Lig(ﬂ?g,/ﬂfg)
— Lig(x5) — Lig(1/25) + Lig(x3/x5) — Lis(z3) + 72 /3.
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Then, there is an ideal triangulation S of M = S3\ K, such that
the hyperbolicity equations for § are given by

0=, 2V oy 1@/
o T A—a /) (1 —x1)
Ozxga—v =In (1= 22)(1 — 25/23)

Oxo (1 —xzo/xg)(1 —1/23)’
oV (1—x1/x3)(1 — z3)

=3 =1
0 3738.’173 H 1—563/5175 ’
. 8‘/ . (1—:101/:104)(1—1'2/:134)
V=aig,, = 1 — 1/, ’
oV (1 —.%5)(1 —I3/£U5)
=rs— =1
0= e = ™1 2 /) (1 — 1)

modulo 27/ —17Z.



The solutions to the equations above are given by

(:131 \ +1.066 + 2.4842'\ +1.281 £+ 0.3922'\ (0.304
T9 —1.099 4 1.1292 —0.317 £0.6182 0.833
x3 | = | —0812F0.173¢ |, | +1.9493F0.441¢ |, | 0.725
Ty —0.099 £1.1292 +0.682 £ 0.6182 1.833
x5) \—1.177:|: 0.2502') \—1—0.487IF 0.1102') \1.379
with r, = 0. Note that these equations satisty
1 1 1
ﬂ? ﬂaxla I g,{ﬁz, B grffn ) vaii Q {07 17 OO}
Lg4 I3 g T4 o I9 Iy Iy

The critical values of V(x1, 22, r3, T4, x5) are given by
11.9099 4= 4.12492, 1.85138 £1.108912, —1.20365,
and so cv(M) = 11.9099 + 4.1249;.




® Theknot 6 _1
li[x_] := PolyLog[2, x]
1 1 1 z y 2
vx z t=1li[x] +1i[z] +1i|— | +1i|— | +1i -li|—|-1i|— | -1i|—| - —
[x_, v_, 2_] [x] [2] [x] [z] [v] [Y] [x] [z] 3
x={x1, x2, x3}; dv = Table[Exp[x[[i]] Ox[(i;; VI[x1, x2, x3]]1, {i, 3}] // Simplify

{ 1 X2 (x2 - x3) x1 - x3 }
-x1+x3 " (L1+x2)2x3  x1x2-x1x3

s - NSolve[{—l—— _ x2 (x2 - x3) 1 x1 -x3 _ 1}]

7 ==

-x1 + x3 (-1+x2)%x3 " x1x2-x1x3

{{x3>1.89923 +0.4005321i, x1 >0.899232+0.4005321, x2-50.971274+0.8138591},
{%x351.89923-0.4005321, x1 >0.899232-0.4005321, x2-50.971274-0.8138591},
{x3-5-0.399232+0.325641, x1 >-1.39923+0.325641, x2-50.278726+0.483421},
{x3>-0.399232-0.325641, x1 5-1.39923-0.325641, x250.278726-0.483421}}

Table[Im[x[[1]] Ox[(ij; VIx1, x2, x3]], {1, 3}] /. =

{{3.99339x10°'®, 1.50669x10**, 6.28319}, {-3.99339x10 %, -1.50669x10**, -6.28319},
{-2.07598x107'7, 1.21614x10**, 1.38414x10 %},
{2.07598x10° %, -1.21614x10 ', -1.38414x1071°}}

{v[xl, x2, x3] -2nmniLog[x3] /. 2z[[1]], v[x1l, x2, x3] /. 2[[3]]}
{0.211005+1.41511, -6.79074 +3.16396 1}



® The knot 6 _ 2

li[x_] := PolyLog[2, x]
.r 2 1 ) 1 . 1 . Y 72
vix_,y_,z_] := 11[—x-] +11[—z—] +1i[y] —11[;] -1li[z] —11[;] -1li[x] —11[;] .|._3_

x={x1, x2, x3}; dv = Table[Exp[x[[i]] Ox[(i;; VI[x1, x2, x3]]1, {i, 3}] // Simplify

X2 (x2 - x3) x1 (-1 +x3)2
-x1 + x3
{ " (-1+x2)%x3 " (x1-x3) (x2-x3) )
x2 (x2 - x3 x1 (-1 +x3)2
z=NSolve[{—x1+x3 =1, ( ) =1, ( ) == 1}]
(-1 +x2)?% x3 (x1 -x3) (x2-x3)

{{x2->0.871221+1.107661, x1 >1.20635-0.3408521, x3 >2.20635-0.3408521},
{x2-50.871221-1.107661, x1 >1.20635+0.3408521, x3 -52.20635+0.3408521},
{x2->0.629714, x1 ->-0.482881, x3->0.517119},

{x2-5-0.186078+0.8746461, x1 >-0.964913-0.6218961, x3 > 0.0350866-0.6218961},
{x25-0.186078-0.8746461, x1 >-0.964913+0.6218961, x3 >0.0350866+ 0.621896 1}}

Table[Im[x[[1]] Ox[(ij; VI[x1, x2, x3]], {1, 3}] /. =

({-4.78966x10'%, -1.71751x10*°, 6.28319}, {4.78966x10°%, 1.71751x10*>, -6.28319},
{0, 0.,0.}, {6.5484x10° %, 2.71463x10° %%, -3.50586x10 17},
(-6.5484x10'7, -2.71463x10°*°, 3.50586x10'"}}

{v[xl, x2, x3] -2nriLog[x3] /. z[[1]], v[x1l, x2, x3] /. 2[[3]], v[x1l, x2, x3] /. 2[[4]]}
{0.3291+1.530581, 2.40108+ 0.1, 5.87256 +4.40083 1}



® The knot 6 _ 3
:= 1i Y 1li 1li 1li ! 1li ! 1li 1li ! 1li z
i T R Rl Sl B g B el R

x = {x1, x2, x3}; dv = Table[Exp[x[[1]] Ox[(ij; V[x1, x2, x3]], {i, 3}] // Simplify

{ -x1+x2  xl (-1+x2)? X3 (—x2+x3)}

(-1+x1)% " (x1-x2) (x2-%x3) " x2 (-1 +x3)?
-x1 + x2 x1 (-1 +x2)?2 x3 (-x2 +x3

z = NSolve[{ ——— 8 — =1, - ( ) =1, ( ) = 1}]
(-1 + x1)?2 (x1 - x2) (%2 -x3) x2 (-1+x3)7

{{x3->0.659772 +0.2984541, x1 -0.0829546 -0.5923791, x2>0.573013+0.4940981},
{x35>0.659772-0.2984541, x1 >0.0829546+ 0.5923791, x2-50.573013-0.4940981},
{x3-0.108378-0.8188911, x1 >0.158836-1.200141, x2-5-0.57395+0.8188911},
{x3-0.108378+0.8188911, x1 >0.158836+1.200141, x2>-0.57395-0.8188911},
{x3-50.23185+1.655641, x1 >1.25821-0.5691621, x2->1.00094-0.8630881},
{x3-50.23185-1.655641, x1 »1.25821+0.5691621, x2 >1.00094+0.8630881}}

Table[Im[x[[1]] Ox[(ij; VIx1, x2, x3]1], {1, 3}] /. =

{{-4.34041x10'%, -5.63794x10*°, 2.27002x107*"},
{4.34041x10°'%, 5.63794x10°'%, —2.27002x10'7},
{-3.47798x107'%, 3.27939x10'%, -1.7647x10'°},
{3.47798x10°'%, -3.27939x107'%, 1.7647x10'%},
{9.4853x10° %%, -1.22141x10*%, -1.55317x10 %%},
{-9.4853x107°, 1.22141x10*%, 1.55317x10°}}

{v[xl, x2, x3] /. z[[2]], v[x1l, x2, x3] /. =z[[4]], v[x1l, x2, x3] /. 2[[5]]}
{-1.89061+0.9243051, -1.11022x107'® +5.693021i, 1.89061 + 0.924305 i}



1. An ideal triangulation of M

We first prepare an ideal octahedron at each crossing of D.

+00 @

¢ —00

===

Then, glue the red edges above the crossing, and glue the blue
edges below the crossing, where +o0o denote the poles of S3.



This octahedron decomposes into 4 tetrahedra as follows.

—+00 400 —+00

T~—

+00 g,

We shall consider the ratios of the edge variables represent the
moduli around the vertical edge.
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Gluing them along the edges of D, we obtain S\ (K U {4o00}).

=

In the picture above, the moduli of the tetrahedra «, 3,~,d are
represented by a/x,,x, /b, c/x,,x,/d respectively.
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If we collapse the leaf below, the tetrahedra corresponding to the
* corners are collapsed, and we obtain an ideal triangulation S of
M. Note that the tetrahedra in S correspond to the dilogarithm
functions in V(z1,...,2,).

Suppose that x, = 2, gives the hyperbolic structure of M.
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The hyperbolicity equations for S can be read as follows.

] B B

a d a d a d
b/ < T = AN b/ < €T \_ b_/ T \C
(1—b/x)(1—d/x): (1—a/x)(1—x/c): (1—x/a)(1—:z:/c):
(1—a/x)(1—c/x) (1-b/x)(1—x/d) (1—x/b)(1—x/d)

Curiously, these equations coincide with the equations

ex xav =1
p vor, ) T

Let z, = z, be the geometric solution to the equations above.
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Remark. The lifts of 9N (K) form holospheres in H>. It is easy
to draw the triangulations of them induced by S if we know the
geometric solution zq,..., 2, to the hyperbolicity equations.
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2. Zickert’s formula

Let E be an edge of S and E its lift. T hen, the holospheres at
OF are interchanged by an element of PSLs(C) conjugate to

(e "),

We call £(F) € C the edge parameter of E. Note that the ratios
of the parameters of the red and blue edges coincides with z,’s.
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Order the vertices of each tetrahedron as follows.

i

1

==

For a tetrahedron 7 in S, define a(7),b(7) € {0,1,2,...,n} by
Zo(r) = §(702)/§(T03)s 2p(r) = &(T12)/&(T13),

where 7;; is the edge of 7 between the vertices ¢ and j, and put
’LL(T) = lnf(Tog) — lnf(Tlg) -+ lnf(Tlg) — 1n€(7'02),
v(T) = In&(702) — In&(723) + In&(113) — In&(701).

KL
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Then, there exist p,, g, € Z such that
u(t) =Inz; +p,mv—1, v(r) = —In(1 — 2;) + ¢, 7V —
) by

where we put 2; = 24(+)/2p(r). We now define L(7
1 2
e(T)L(1) = Lia(2,) + 5 Inz;In(1 —2;) — F

1
+ 57?\/—1{% Inz, +prIn(1 — 2;)},

where ¢(7) takes 1 or —1 according as 7 is right-handed or not.
In our case, p, is always even, and we can write

2

e(T)L(T) = LIQ(ZT)—%—I-—U 7){v(r) +2In(1 — 2;)} mod =*.

Zickert’s Theorem. c¢v(M) =3 _L(7) mod 72.
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3. Proof

Consider 4 tetrahedra around an edge of GG. Let A, B, X,Y be
the logarithm of the parameters of red, blue, green, orange edges
respectively.
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Let P,Q, R, S be the logarithms of the parameters of
o1 = Po1, @13 = P13, Y02 = 002, Yo1 = do1
respectively. Then, L(a) + L(8) + L(v) + L(d) is equal to
Lis(a/z,) — Lia(b/z,) — Lia(2, /c) + Liz (2, /d)
+{B—-Q+&(a12) —A}{A-X+Q—-P+2In(l—a/z,)}
—3{B—Q+¢&(b12) —AJ{A-Y +Q—-P+2In(1 —b/z,)}
—3{¢(y3) —B+A—-R}{R-Y +B—-S+2n(l —z,/c)}
+2{&(603) —B+A—R}{R—X+B—-S+2In(l—2,/d)},
and the coefficient of A — B, which is congruent to In z,,, becomes
—In(1—a/z,) +In(1 —b/2,) —In(1 — 2, /¢c) + In(1 — 2, /d)
which should be equal to —27v/—1-17,,.
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wo (7)) = %{lnf(ﬂ)g) — lnf(Tog)}{’U(T) + 21In(1 — zT)},

w_(71) = %{lnf(’ﬁg) — lnf(Tlg)}{v(T) + 21In(1 — 27-)},
so that

e(7)L(7) = Lis(z;) — 7%/6 + w4 (1) + w_(7) mod 7.

Then, the above observation implies that

wv)= Y e(Mwe(t)+ Y e(r)w-
b(T)=v

a(t)=v
equals —27/—1 -7, In 2z, modulo 472, and Y _ L(7) is equal to
Viziy..., 2 +Zw Vizi,..., )—QW\/—lzr,,lnzy
v=1

modulo 72. [



