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ABSTRACT. In the framework of nonstandard analysis, Bang-He Li and the author

de®ned the product of any two distributions on Rn via their harmonic representations.

The product of d�x1; . . . ; xn� and d�x1� was calculated by Kuribayashi and the author in

[LK]. In this paper, the result of [LK] is improved to

d�x1; . . . ; xn� � d�x1� � 1

2pr
d�x1; . . . ; xn� mod infinitesimals

where r is a positive in®nitesimal. Moreover two combinatorial identities are obtained

as byproducts.

Thirty years ago, Bremermann and Durand [BD] de®ned the products of

distributions with one variable by using analytic representations. It was shown

by Itano [I1][I2] and further by Bang-He Li and the author [LL1] that this

multiplication is very broad, i.e. if the product of two distributions exists

for several other multiplications, then the same product is obtained for this

multiplication. So a problem that interested people was ``What is a gener-

alization of this multiplication to distributions with several variables?''.

Itano [I1] showed by an example that for distributions with more than one

variables, analytic representation can not o¨er well-de®ned multiplication.

Bang-He Li and the author [LL2] at last found that a suitable generalization of

this multiplication is the one via harmonic representations; For one variable,

harmonic and analytic representations are essentially the same. Bang-He Li

[L] adapted the multiplication of Bremermann and Durand into the framework

of nonstandard analysis. Its generalization to multiple variables via harmonic

representations [LL2] was also written in this framework. The merit to use

nonstandard analysis is that one needs not to worry about the existence of

products anymore, and when taking the ®nite part (if exists), we return to some

kind of standard product.
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In the case of one variable, systematic results for singular distributions

have been obtained by the author. We quote only the survey paper [LL4].

For multiple variables, only few calculations have been made in [LL4] and the

paper of Kuribayashi and the author [LK]. In this paper, we improve the

result of [LK] to the neatest form.

Denote by D�Rn� the Schwartz spase consisting of complex-valued Cy-

functions on Rn with compact supports, and D 0�Rn� its dual, i.e. the space of

Schwarts distributions.

For T A D 0�Rn�, its harmonic representation T̂ is a harmonic function on

Rn � R� such that

lim
y!0�

�
Rn

T̂�x1; . . . ; xn; y�f�x1; . . . ; xn� dx1 � � � dxn

�
�

R n

T�x1; . . . ; xn�f�x1; . . . ; xn� dx1 � � � dxn

for any f�x1; . . . ; xn� A D�Rn�.
Harmonic representation exists for any T A D 0�Rn�, and the di¨erence of

two such representations extends to a harmonic function on Rn � R skew-

symmetric for y (cf. [LL3]).

Denote by C the complex ®eld, �C a nonstandard model of C, R the real

®eld and r A �R a positive in®nitesimal. Let

rC � fx A �Cjfor some finite integer n; jxj < rÿng;

y � the set of all infinitesimals in �C and

rC 0 � rC=y:

Then rC 0 is a complex vector space, and we call a complex linear functional of

D�Rn� ! rC 0 a hyperdistribution on Rn.

Suppose S;T A D 0�Rn�, Ŝ, T̂ are harmonic representations of S and T ,

and �Ŝ, �T̂ are the nonstandard extensions of Ŝ and T̂ respectively.

Let c : rC ! rC 0 be the homomorphism modulo y. Then

j! c�hŜ�x; r�T̂�x; r�; j�x�i�
de®nes a complex linear functional of D�Rn� ! rC 0, i.e., a hyperdistribution

on Rn, and we call this hyperdistribution the harmonic product of S and T ,

denoted by S � T in [LL1] (see also [O]).

Let d�x1; . . . ; xn� be the d-function on Rn. The harmonic product of

d�x1; . . . ; xn� and d�x1� has been calculated in [LK] to get

d�x1; . . . ; xn� � d�x1� � A�1; n�d�x1; . . . ; xn�
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where

A�1; n� � 2p

c1cnr

Ynÿ3

j�1

� p

0

sin j y dy

�y
0

� p

0

tn sinnÿ2x dtdx

�1� t2��n�1�=2�1� t2 cos2 x�

and

cn � p�n�1�=2

G
n� 1

2

� � :
Furthermore, for odd n,

A�1; 2k � 1� � 2k

rp

1

4
�
Xkÿ1

j�1

Xjÿ1

p�0

k ÿ 1

j

� �
j ÿ 1

p

� � �ÿ1� j�2p� 1�!!�2j ÿ 2pÿ 1�!!
�2j � 2�!!�2p� 1�

 !

and for even n,

A�1; 2k � 2�

� 2k � 1

2rp

 
1�

Xkÿ1

j�0

Xj

r�0

Xjÿr

p�0

Xr

s�0

Xp�s

h�0

2k

k � 1� j

 !
j ÿ r

p

 !
r

s

 !
p� s

h

 !

� �ÿ1� j�p�r�1G�k ÿ j�G�1ÿ h� � p� s� j � 1�=2�
22kÿ2�p�sÿjG�k ÿ h� �p� sÿ j � 3�=2�

!

where G�x� is the Gamma function.

It was also calculated in [LK] that

A�1; 2k � 1� � 1

2pr
; for k � 1; 2; 3; 4; 5; 6

and

A�1; 2k � 2� � 1

2pr
; for k � 0; 1; 2; 3:

It is a result of Bang-He Li [L] that

A�1; 1� � 1

2pr
; i:e:; d�x1� � d�x1� � 1

2pr
d�x1�

(see also [O] [DR]).

So it might be conjectured that A�1; n� � 1

2pr
for all nV 1. Here we ®nd

a very simple way to prove that it is indeed so, i.e., we have
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Theorem 1. For any n A N,

d�x1; . . . ; xn� � d�x1� � 1

2pr
d�x1; . . . ; xn�

Proof. A harmonic representation of d�x1; . . . ; xn� is the Poisson kernel

d̂�x1; . . . ; xn; y� � cÿ1
n y�jxj2 � y2�ÿ�n�1�=2; y > 0

and a harmonic representation of d�x1� is

d̂�x1; y� � cÿ1
1 y�x2

1 � y2�ÿ1:

For f A D�Rn�, it has been proved in [LK] that�
Rn

d̂�x1; . . . ; xn; r�d̂�x1; r�f�x�dx

� f�0�
�

Rn

d̂�x1; . . . ; xn; r�d̂�x1; r�dx mod infinitesimals

So, for nV 3

A�1; n� � r2

c1cn

�
R n

dx

�x2
1 � x2

2 � � � � � x2
n � r2��n�1�=2�x2

1 � r2�

� r2

c1cn

�
R nÿ2

dx1 � � � dxnÿ2

�x2
1 � r2�

�
R2

dxnÿ1dxn

�x2
1 � x2

2 � � � � � x2
n � r2��n�1�=2

:

By using polar coordinate, we have�
R2

dxnÿ1dxn

�x2
1 � x2

2 � � � � � x2
n � r2��n�1�=2

�
�2p

0

dy

�y
0

r dr

�x2
1 � x2

2 � � � � � x2
nÿ2 � r2 � r2��n�1�=2

� 2p

�nÿ 1��x2
1 � x2

2 � � � � � x2
nÿ2 � r2��nÿ1�=2

:

Since �nÿ 1�cn � 2pcnÿ2,

A�1; n� � r2

c1cnÿ2

�
R nÿ2

dx1 � � � dxnÿ2

�x2
1 � x2

2 � � � � � x2
nÿ2 � r2��nÿ1�=2�x2

1 � r2�
� A�1; nÿ 2�

and the proof is complete by using the known results

A�1; 1� � A�1; 2� � 1

2pr
:
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As corollaries of Theorem 1 and the results of [LK], we obtain two

combinatorial identities:

Proposition 2. For any k A N, k V 1,

Xkÿ1

j�1

Xjÿ1

p�0

k ÿ 1

j

� �
j ÿ 1

p

� � �ÿ1� j�2p� 1�!!�2j ÿ 2pÿ 1�!!
�2j � 2�!!�2p� 1� � 1

4k
ÿ 1

4

Proposition 3. For any k A N, k V 1,

Xkÿ1

j�0

Xj

r�0

Xjÿr

p�0

Xr

s�0

Xp�s

h�0

2k

k � 1� j

 !
j ÿ r

p

 !
r

s

 !
p� s

h

 !

� �ÿ1� j�p�r�1G�k ÿ j�G�1ÿ h� �p� s� j � 1�=2�
22kÿ2�p�sÿjG�k ÿ h� �p� sÿ j � 3�=2� � 1

2k � 1
ÿ 1
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