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ABSTRACT. For a system of reaction-di¨usion equations of activator-inhibitor type, we

show that solutions undergo at least three stages of dynamical behaviour when the

activator di¨uses slowly and reacts fast, and the inhibitor di¨uses fast. In the ®rst

stage, the inhibitor quickly decays to its spatial average (spatial homogenization of the

inhibitor). In the second stage, the activator develops internal layers (formation of

internal layers). In the third stage, the layers move according to a certain motion law

(motion of interfaces) which is described by a system of ordinary di¨erential equations

on ®nite time intervals. Asymptotic behaviour of the solutions of the interface equation

is also analyzed. To describe the behaviour of the solutions of the reaction-di¨usion

equations after the last interface equation becomes powerless, another type of interface

equation is proposed.

1. Introduction

The reaction-di¨usion system

ut � d1Du� f �u; v�; vt � d2Dv� rg�u; v�
has been employed to model propagation phenomena of chemical waves in

excitable media [6], and to describe pattern formation in an activator-inhibitor

model [10]. In this system, d1 > 0, d2 > 0 are di¨usion rates of u and v, and

r > 0 measures the ratio of the reaction rates of u and v. Depending upon the

relative magnitude among d1; d2 and r, it has been found by many authors that

the system above, despite its simplicity, is capable of producing various spatio-

temporal patterns such as propagating fronts and localized spatial structures

[14]. These studies indicate that various patterns observed in reacting and

di¨using systems are produced by the interaction between local reaction kinetics

and global di¨usion e¨ects. It is therefore important to mathematically study

2000 Mathematics Classi®cations. 35B25, 35B35, 35K57.

Key words and phrases. spatial homogenization, internal layer, interface equation, singular

perturbation



the characteristics of the reaction-di¨usion system according to the magnitudes

of �d1; d2� and r.

When u di¨uses very slowly and v both di¨uses and reacts slowly, namely,

if

d1 � e2; d2 � e; r � e;

with e > 0 being small, then, rescaling the time by et! t, the system is

transformed to

�P� : ut � eDu� 1

e
f �u; v�; vt � Dv� g�u; v�:

For su½ciently small e > 0, interfacial phenomena in this system with ap-

propriate nonlinearity � f ; g� are well understood by the results in [3]. Roughly

speaking, the results in [3] are summarized as follows: Solutions of the system

with suitable initial conditions quickly develop internal layers and the location

of the layers (interfaces) propagates according to a certain motion law.

In this paper, we will deal with the situation where u di¨uses very slowly

and v reacts slowly, namely,

d1 � e2; d2 � D; r � e:

We always understand throughout this paper that the parameter e > 0 is

su½ciently small and D � O�1� as e! 0. By rescaling the time as above, the

system is recast as follows.

ut � eDu� 1

e
f �u; v�; vt � D

e
Dv� g�u; v� for t > 0; x A WHRN

qu

qn
� 0 � qv

qn
; for t > 0; x A qW;

u�x; 0� � f�x�; v�x; 0� � c�x� for x A W:

8>>>>><>>>>>:
�1:1�

In this system, W is a bounded domain with smooth boundary, and n stands

for the unit outward normal vector ®eld on qW. It is interesting to note that

the system (1.1) was derived from the system (P) above by rescaling �x; t�
appropriately in [9, 13], in order to capture stable mesoscopic structures.

The aim of this paper is to show that results similar to those in [3] are also

valid for (1.1) as described below. One di¨erence in our results from those in

[3] is the spatial homogenization of the inhibitor (v) at the initial stage.

We describe heuristically the behavior of solutions of (1.1) by using a

typical example of the reaction term � f ; g�, the Bonfoe¨er-van der Pol kinetics:

f �u; v� � uÿ u3 ÿ v; g�u; v� � uÿ v:
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Note that f �u; v� � 0 has three solutions

u � hÿ�v�; h0�v�; h��v� for v A �ÿ2=3
���
3
p

; 2=3
���
3
p
�

where hÿ�v� < h0�v� < h��v�. When e > 0 is su½ciently small, the largeness

of the di¨usion rate of v together with the homonegeous Neumann boundary

conditions suggests that v�x; t� rapidly decays to its spatial average v�t� �
jWjÿ1 �

W v�x; t�dx. On the other hand, due to the bistable nature of the

ordinaly di¨erential equation ut � eÿ1f �u; v� with u � hG�v� being stable

equilibria for jvj < 2=3
���
3
p

, as long as the di¨usion e¨ects eDu is negligible,

u�x; t� will quickly develop transition layers, i.e., u�x; t� tends either to h��v�t��
or to hÿ�v�t�� according to the sign of u�x; 0� ÿ h0�v�x; 0��. Subsequently the

transition layers get sharper and sharper, and eventually location of the layers

is so thin that it is considered as a hypersurface, called an interface. Once the

transition layers become sharp enough, the di¨usion e¨ect eDu is no longer

negligible and the interface starts to propagate to keep the two competing

forces, the local reaction kinetics and the global di¨usion e¨ect, in balance.

The propagation law of the interface is derived by using asymptotic expansion

methods in [11]. To the lowest order, it is given as in (2.5) below.

In this paper we make mathematically rigorous the intuitive statement

above. For this purpose, we now state the conditions that the nonlinearity

� f ; g� has to satisfy:

(A1): The vector ®eld � f ; g� is Cy on R2.

(A2): The system of ordinary di¨erential equations

ut � f �u; v�; vt � g�u; v�
has an invariant rectangle

R :� f�u; v�jaÿU uU a�; bÿU vU b�g:
Here R is said to be an invariant rectangle if the vector ®eld � f ; g� points

to the interior of R on the boundary qR.

(A3): The nullcline of f, f�u; v�j f �u; v� � 0g, has exactly three branches

of solutions (numbers b and b with bÿ < b < b < b� below are suitable

constants):

C0 � f�u; v�ju � hÿ�v�; vV bg;
Cÿ � f�u; v�ju � h0�v�; bV vV bg;
C� � f�u; v�ju � h��v�; vU bg

and

RI �hÿ�b�; h��b�� � �b; b�:
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(A4): The following inequalities hold true:

fu�hÿ�v�; v� < 0 for v > b;

fu�h��v�; v� < 0 for v < b;

fv�u; v�Uÿd0 < 0; gu�u; v�V 0 for �u; v� A R;

g�hÿ�v��; v�� < 0 < g�h��v��; v��;
gv�hG�v��; v�� < 0;

where v� is a zero of the function J�v� de®ned by

J�v� :�
� h��v�

hÿ�v�
f �s; v�ds

for v A �b; b�.
(A5): The value v� A �b; b� is a simple zero of J�v�, namely, J 0�v�� < 0.

Remark 1.1. Note that (A4) implies

hG
v �v� < 0 for v A �b; b� and

d

dv
g�hG�v�; v�

����
v�v �

< 0:

We state our main results in precise terms in § 2. Then § 3 is devoted to

the proof of the main results. We present in § 4 a perspective on our results

and future projects.

2. Main results

Our ®rst result says that for e > 0 su½ciently small, the v-component of

the solution of (1.1) quickly decays to its spatial average.

Theorem 2.1. Suppose that (A1) and (A2) are satis®ed. Let the initial

condition satisfy

�f�x�;c�x�� A R for x A W;

and f;c A C2�W�. We denote by �ue�x; t�; v e�x; t�� the solution of (1.1). There

exist an e0 > 0 and a constant c� � c��e0; f;c;W� > 0 so that the following

estimates are valid for e A �0; e0�.

max
x A W

jve�x; t� ÿ ve�t�jU c� k`ck2
L2�W� exp ÿDl1

e
t

� �
�M 2

0 jWj
D2l1

e2

� �1=�N�1�

max
x A W

j`ve�x; t�jU c� k`ck2
L2�W� exp ÿDl1

e
t

� �
�M 2

0 jWj
D2l1

e2

� �3=�2N�3�
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for tV 2ejlog ej=Dl1, where

M0 :� supfjg�u; v�j j�u; v� A Rg; v e�t� :� 1

jWj
�

W

ve�x; t�dx

and l1 is the least positive eigevalue of

Df� lf � 0 in W;
qf

qn
� 0 on qW:

One can easily see that v e�t� satis®es an ordinary di¨erential equation

d

dt
v e�t� � 1

jWj
�

W

g�ue�x; t�; ve�x; t��dx; ve�0� � 1

jWj
�

W

c�x�dx;�2:1�

where jWj stands for the N dimensional volume of W. It is immediately

veri®ed from (2.1) that ve�t� satis®es

sup
x A W

ve�t� ÿ 1

jWj
�

W

c�x�dx

���� ����UM0t �tV 0�:

This estimate, combined with the ®rst estimate in the theorem above, implies

that at t � 2ejlog ej=Dl1, we have

sup
x A W

ve�x; t� ÿ 1

jWj
�

W

c�x�dx

���� ���� � O�e2=�N�1��

i.e., ve�x; t� decays to the spatial average of the initial function in a short time.

We now deal with the generation of internal layers in u-component of

the solutions of (1.1). Although the formation of the internal layers is taking

place in the same time scale as the spatial homogenization of v e�x; t�, it is not

technically so easy to analyze the two phenomena simultaneously. As a ®rst

step to carry out such an analysis, we need to know in detail the asymptotic

(t!y) form of the solution �u�x; t�; v�x; t�� of

ut � f �u; v�; vt � DDv for t > 0; x A W;

qv

qn
� 0 for t > 0; x A qW;

u�x; 0� � f�x�; v�x; 0� � c�x� for x A W:

8>>><>>>:
It is not so easy a task to determine the asymptotic form of the solution to this

equation in terms of the initial distribution �f;c�.
In the next theorem, we suppress the dynamics of the spatial homoge-

nization in ve by choosing a special kind of initial functions for v.

Theorem 2.2. Suppose that (A1) through (A4) are satis®ed. Let us ®x a

small s > 0 and consider the initial function c�x�1 v0 A �b� s; bÿ s�. Let the
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initial condition satisfy

�f�x�; v0� A R for x A W

and f A C 2�W�.
There exist constants e0 > 0, t1 > 0 and M1 > 0 such that for e A �0; e0� the

following estimates hold true.

hÿ�v0� ÿM1ejlog ejU ue�x; t1ejlog ej�U h��v0� �M1ejlog ej(2.2)

for x A W;

ue�x; t1ejlog ej�V h��v0� ÿM1ejlog ej(2.3)

for x A ff�x�V h0�v0� �M1ejlog ejg;
ue�x; t1ejlog ej�U hÿ�v0� �M1ejlog ej(2.4)

for x A ff�x�U h0�v0� ÿM1ejlog ejg:
This theorem says that a sharp interface develops in u-component near the

set

G0 � fx A W j f�x� � h0�v0�g

in a short time t � t1ejlog ej. This phenomenon is due to the strong bistability

of the ordinary di¨erential equation ut � eÿ1f �u; v�. Note that the fast dy-

namics of v due to the large di¨usivity D=e in (1.1) is suppressed by the choice

of the initial funciton for v.

The next stage in the dynamics of solutions to (1.1) is the propagation of

the interfaces. By using the method of matched asymptotic expansions, the

interface equation for (1.1) is derived in [11]. To the lowest order it reads as

follows:

qg�y; t�
qt

� n�y; t� � c�v�t��
d

dt
v�t� � Gÿ�v�t�� jW

ÿ�t�j
jWj � G��v�t�� jW

��t�j
jWj

v�0� � v0; g�y; 0� � g0�y�1 y A G0:

8>>>>><>>>>>:
�2:5�

In (2.5) above, it is understood that the domain W is devided into two parts

Wÿ�t� and W��t� by an inferface G�t�HW. Here for each tV 0, G�t� is an

N ÿ 1 dimensional hypersurface parameterized by g�� ; t� : G0 C u 7! g�y; t� A
G�t�, and n�y; t� is the unit normal vector ®eld on G�t� at x � g�y; t� pointing

to the interior of W��t�. The symbol jWj (resp. jWG�t�j) stads for the

N-dimensional volume of W (resp. WG�t�). The functions GG�v� are respectively
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de®ned by

GG�v� � g�hG�v�; v� for v A �b; b�:
Finally, c�v� is the wave speed of the parabolic equation ut � uzz � f �u; v�,
namely, c�v� is the unique value of c so that the following boundary value

problem has a solution:

uzz � cuz � f �u; v� � 0 for z A R;

u�Gy� � hG�v�; u�0� � h0�v�:
�

�2:6�

We recast (2.5) as an initial value problem for ordinaly di¨erential

equations. Let the initial interface G0 be of C2 class. In a neighborhood of

G0, we introduce a coordinate system �r; y� via

W C x � y� rn�y� �ÿr0 < r < r0; y A G0�;
where n�y� is the unit normal vector ®eld on G0 at y pointing to the interior of

W��0�. We set g�y; t� � y� r�y; t�n�y�, i.e., G�t� is expressed as the graph of

the function r�y; t� over G0. Since an elementary computation yields

q

qt
n�y; t� � G̀�t�c�v�t��;

where G̀ stands for the gradient operator on a manifold G , we have that

n�y; t� � n�y; 0� � n�y�. Now the ®rst equation in (2.5) is expressed as

qr�y; t�
qt

� c�v�t��; with r�y; 0�1 0 for y A G0:

Therefore b�y; t� :� G̀�t�r�y; t� satis®es the initial value problem:

q

qt
b � 0; b�y; 0� � 0;

which forces b�y; t�1 0. Therefore r is independent of y A G0.

On the other hand, jWÿ�t�j is written in terms of r�t� as

jWÿ�t�j � jWÿ�0�j �
� r�t�

0

�
G0

�������������
g�y; s�

p
dSyds

where
�������������
g�y; s�p

dSyds � P Nÿ1
j�1 �1� skj�y��dSyds is the volume element in the

neighborhood of G0. Here kj�y� � j � 1; . . . N ÿ 1� are the principal curva-

tures of G0 at y. Therefore, by expanding the volume element as

P Nÿ1
j�1 �1� skj�y�� � 1�PNÿ1

j�1 Hj�y�s j, we obtain

jWÿ�t�j � jWÿ�0�j � r�t�jG0j �
XNÿ1

j�1

�
G0

Hj�y�dy

� �
r�t� j�1

j � 1
�: jWÿ�0�j �H�r�t��;
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where jG0j stands for the N ÿ 1 dimensional volume of G0. Thus the interface

equation (2.5) is equivalent to the system of ordinary di¨erential equations:

�ODE� :

rt � c�v�

vt � Gÿ�v� jW
ÿ�0�j �H�r�
jWj � G��v� jW

��0�j ÿH�r�
jWj

r�0� � 0; v�0� � v0:

8>>><>>>:
From this reformulation we obtain the following theorem.

Theorem 2.3. Suppose that (A1) through (A4) are satis®ed. Assume that

G0 is of a C2-hypersurface which is the boundary of Wÿ�0�HHW, and that

v0 A �b� s; bÿ s�.
Then there exists a T > 0 such that the interface equation (2.5) has a unique

solution �v�t�; g�y; t�� for t A �0;T �.
As for the relation between the solutions of (2.5) and those of (1.1), we

have the following theorem. We emphasize that the accuracy in the ap-

proximation of (1.1) by (2.5) crucially depends on the decay estimate in

Theorem 2.1 (cf. (2.8) and (2.9) below).

Theorem 2.4. In addition to the conditions of Theorems 2.2 and 2.3,

assume that there exists a constant l > 0 such that

f�x� ÿ h0�v0�V l dist�x;G0� if x A W��0�
f�x� ÿ h0�v0�Uÿl dist�x;G0� if x A Wÿ�0�:

�
�2:7�

Then there exist constants e0 > 0 and M2 �M2�T� such that the following

estimates hold for e A �0; e0�.
�2:8� jve�x; t� ÿ v�t�jUM2e2=�N�1� for x A W; t A �t1ejlog ej;T �;

jue�x; t� ÿ u�x; t�jUM2e2=�N�1��2:9�

for x A fWjdist�x;G�t�� > M2e2=�N�1�g; t A �t1ejlog ej;T �;

where �v�t�;G�t�� is the solution of (2.5) and

u�x; t� :� h��v�t�� x A W��t�UG�t�
hÿ�v�t�� x A Wÿ�t�.

�
At this point we should remark that Barles, Bronsard and Souganidis [1]

treated the scalar reaction-di¨usion equation

ut � eDu� 2

e
�uÿ m��1ÿ u2� t > 0; x A RN
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of bistable type and obtained results corresponding to Theorems 2.3 and

2.4. Although the results in [1] are formulated in the framework of viscosity

solutions, in terms of our terminology, the interface equation is given by

rt � 2m (where m A �0; 1� is a constant and the wave speed c � 2m). Results

along the same line were also obtained by Chen [2]. These are results for

scalar equations and the wave speed is a constant.

For a system of reaction-di¨usion equations, Hilhorst, Logak and Nishiura

[8] obtained a result close to ours. They treated the system

�RD� :
ut � eDu� eÿ1�1ÿ u2��2uÿ v�
tvt � sÿ1Dv� uÿ gÿ1v

(
with suitable boundary conditions. As s!y, it was shown that (RD)

converges to the shadow system:

�SS� :

ut � eDu� eÿ1�1ÿ u2��2uÿ z�t��

t _z�t� � 1

jWj
�

W

u�x; t�dxÿ 1

g
z�t�:

8><>:
Then, passing to another limit t! 0, it was shown that the shadow system (SS)

converges to the following non-local Allen-Cahn equation

�NLAC� : ut � eDu� 1

e
�1ÿ u2� 2uÿ g

1

jWj
�

W

u�x; t�dx

� �
for which the interface equation is given by

rt � g
1

jWj
�

W

u�x; t�dx:

Here the wave speed is regulated nonlocally by the distribution of the activator

u. In our interface equation (2.5), however, the wave speed is regulated by the

value of inhibitor v, and in turn, the value of the inhibitor v is controlled

nonlocally by the distribution of the activator u. We note that the interface

equation for the shadow system (SS) with t � 1 is given precisely by (2.5) with

c�z� � z, although this was not stated in [8]. One has to be careful, however,

not to conclude that (SS) captures the essential dynamics of (1.1). There are

some aspects in the dynamics of (1.1) that are lost in the process of taking the

limit s! 0 to obtain the shadow system. We believe that the interface

equation (2.5) describes, generically speaking, only the transient dynamics of

solutions to (1.1). For example, we have recently shown in [12] that (2.5) is

too crude to give rise to equilibrium solutions of (1.1). Instead, we have

shown that the interface equation (4.1)±(4.2) proposed in § 4 does capture the

equilibrium solutions of (1.1) and their stability property.
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As Theorem 2.4 states, the interface equation (2.5) approximates the

equation (1.1) only on ®nite time interval �0;T �. It is, however, of independent

interest to analyze the asymptotic behavior of solutions of (2.5). This is

summarized in the following.

Theorem 2.5. Suppose that (A1) through (A5) are satis®ed.

( i ) A pair �v0;G0�, where G0 HHW is a C2-hypersurface, is an equilibrium

solution of (2.5) if and only if v0 � v� (cf. (A5)) and G0 subdivides W into

two components WG such that W � Wÿ UG0 UW�,

jW�j � ÿGÿ�v��
�G�� jWj; jWÿj � G��v��

�G�� jWj�2:10�

with �G�� � G��v�� ÿ Gÿ�v��.
(ii) The equilibrium solution �v�;G0� is asymptotically stable relative to (ODE).

The proof of Theorem 2.5 (i) is trivial. The proof of (ii) is as easy as

follows. Linearize (ODE) around �r; v� � �0; v�� to obtain the coe½cient

matrix

A �
0 c 0�v��

ÿ�G�� jG0j
jWj

Gÿv �v��G��v�� ÿ G�v �v��Gÿ�v��
�G��

264
375:

It is easily shown that c 0�v�� � ÿ��yÿy u�z �z�2dz�ÿ1J 0�v�� > 0 (cf. (A5)), where

u��z� is the unique solution of (2.6) with v � v�. The inequalities in (A4)

imply

Gÿv �v��G��v�� ÿ G�v �v��Gÿ�v�� < 0:

Therefore we ®nd that trace A < 0 and det A > 0, which establishes the

statement (ii).

Theorem 2.5, however, is not claiming that equilibrium solutions of (1.1)

can be thus obtained and are stable. If the initial value �v0;G0� for (2.5) is

such that v0 � v� and G0 satis®es (2.10), then Theorem 2.4 loses its power

substantially. Once the solutions of the interface equation (2.5) settle down

(very close) to the equilibrium states as in Theorem 2.5, it is very likely that

another dynamics, which evolves in a slower time scale, takes over. Heuristic

discussions on the slower dynamics are given in § 4.

From a viewpoint of dynamical system, our results together with some

speculations may be summarized as follows:

The solution �ue�x; t�; ve�x; t�� of (1.1) can be considered as a semi¯ow on

a phase space X;

X C �f;c� 7!Fe�f;c; t� � �ue�x; t�; ve�x; t�� A X :
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Theorems 2.1 and 2.2 may be interpreted as saying that there is a positively

invariant subset A0 in X which quickly attracts its neighborhood under the

semi¯ow Fe. The set A0 consists of pairs of functions �u�x�; v�x�� such that

u�x� has inernal layers and v�x� is nearly constant. Theorem 2.4 may be

considered as saying that the interface equation (2.5) describes the dynamics of

the semi¯ow on A0 on a ®nite time interval. Then Theorem 2.5 and our

speculations above indicate that there exists yet another positively invariant set

A1 HA0 which attracts its neighborhood. The dynamics of the semi¯ow on

A1 may be described by another interface equation which we hope to be the

one given in Section 4.

3. Proof of theorems

In this section, we prove the theorems stated in Section 2.

The ®rst part in the proof of Theorem 2.1 is a slight modi®cation (which is

absolutely necessary for Theorem 2.1) of that in [5]. The second part in the

proof contains a new idea which overcomes di½culties one faces when one tries

to apply the method in [5] to Theorem 2.1.

The proof of Theorem 2.2 is due to [3]. It is included here for the sake of

completeness and reference.

The proof of Theorem 2.4 is also inspired by the method in [3], although

we introduced a new step to make the idea in [3] ®t to our situation, namely,

we approximate the interface equation (2.5) by a genuine interface equation

(GIE) at the beginning of Section 3.3.

3.1. Proof of Theorem 2.1. Since the values of the initial condition are

contained in the invariant rectangle R, the solution �ue�x; t�; ve�x; t�� of (1.1)

stays in R for tV 0 (see [4]). Therefore we have:

jg�ue�x; t�; ve�x; t��jUM0 �x A W; tV 0�:
Let us set a�t� � �1=2�k`ve�� ; t�k2

L2�W�. We obtain the di¨erential inequality

_a �
�

W

`v e � `ve
t dx � ÿ

�
W

�Dve�ve
t dx

� ÿD

e

�
W

jDvej2dxÿ
�

W

�Dve�g�ue; ve�dx

UÿD

e

�
W

jDvej2dx� k

2

�
W

jDvej2dx�M 2
0

2k
jWj

for each k > 0. Choosing k � D=e, and using the inequality (cf. [5])

kDvk2
L2 V l1k`vk2

L2 ;
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we have

_aUÿDl1

e
a� e

M 2
0 jWj
2D

; a�0� � 1

2
k`ck2

L2 :

This di¨erential inequality, together with a PoincareÂ inequality (see [5])

l1kvÿ vk2
L2 U k`vk2

L2 ;

gives

��1� k`ve�� ; t�k2
L2 U k`ck2

L2 exp ÿDl1

e
t

� �
�M 2

0 jWj
D2l1

e2;

��2� kv e�� ; t� ÿ ve�t�k2
L2 U lÿ1

1 k`ck2
L2 exp ÿDl1

e
t

� �
�M 2

0 jWj
D2l1

e2

� �
:

We now improve these L2-estimates to a uniform one by using the

following two results.

Lemma 3.1. There exists a constant K0 > 0, which is independent of

e A �0; e0�, such that

�i� jve�x; t� ÿ ve�x 0; t�jUK0jxÿ x 0j tV 0; x; x 0 A W;

�ii� j`ve�x; t� ÿ `ve�x 0; t�jUK0jxÿ x 0j3=4 tV 0; x; x 0 A W:

In order to state the other result, let us de®ne the cone of height r > 0 by

C�r� :� fx A RN j x � �x1; . . . ; xN�; xj V 0 � j � 1; . . . ;N�; jxj < rg:
By C�x; r� we denote the cone C�r�, whose vertex is placed at x A W, rotated

around the vertex appropriately so that it is contained in W. Since W is a

smooth bounded domain, there exists r0 > 0 such that for each x A W we have

C�x; r�H W for 0U rU r0.

Lemma 3.2. Let w�x� be uniformly HoÈlder (or Lipschitz) continuous with

exponent n A �0; 1� and constant K0 > 0, satisfying

kwk2
L2 U

K 2
0 oN

2N�N � 1� n� r
N�2n
0 ;

where r0 is the constant above and oN is the surface area of the unit sphere

in RN .

Then w satis®es the estimate

max
x A W

jw�x�jUCK0; nkwk2n=�N�2n�
L2 ;
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where

CK0; n � max
2N

N � n

2N�N � 1� n�
oN

� �n=�N�2n�
;

2NN�N � n��N � 2n�
2n2oN

� �n=�N�2n�( )

� K
N=�N�2n�
0 :

We now continue the proof of Theorem 2.1.

Thanks to ��1� and ��2�, w�x� :� v e�x; t� ÿ v e�t� satis®es (with n � 3=4)

kwk2
L2 U

K 2
0 oN

2N�N � 2� r
N�2
0 ; k`wk2

L2 U
K 2

0 oN

2N�N � 1� n� r
N�2n
0

for tV 2ejlog ej=Dl1, since kwk2
L2 � O�e2� and k`wk2

L2 � O�e2� for such

t. Therefore applying Lemma 3.2, we obtain the estimates

max
x A W

jve�x; t� ÿ ve�t�jUCK0;1kve�� ; t� ÿ ve�t�k2=�N�2�
L2

max
x A W

j`ve�x; t�jUCK0; nk`ve�� ; t�k2n=�N�2n�
L2 with n � 3=4:

On the other hand, for each q > N, the Sobolev inequality implies

max
x A W

jve�x; t� ÿ ve�t�j

UC

�
W

jve�x; t� ÿ ve�t�jqdx�
�

W

j`ve�x; t�jqdx

� �1=q

UC

�
max
x A W

jv e�x; t� ÿ ve�t�jqÿ2

�
W

jv e�x; t� ÿ v e�t�j2dx

�max
x A W

j`ve�x; t�jqÿ2

�
W

j`ve�x; t�j2dx

�1=q

U c� k`ck2
L2 exp ÿDl1

e
t

� �
�M 2

0 jWj
D2l1

e2

� �m

with m � n

N � 2n

qÿ 2

q
� 1

q
:

Taking q � N � 1 we have

m � n

N � 2n

N ÿ 1

N � 1
� 1

N � 1
V

1

N � 1
;

which completes the proof of Theorem 2.1.

Proof of Lemma 3.1. By rescaling the time as t=e! t, we recast the

equation for v in (1.1) as

vt �Av � v� eg�u; v� �: G�v; x; t�;

Spatial homogenization and internal layers 389



where ÿAv � DDvÿ v. It is well known [7] that ÿA generates an analytic

semigroup on Lp�W� for p > 1; and that there exist constants C0 > 0 and

Ca > 0 for a A �0; 1� such that

keÿtAvkLp UC0eÿtkvkLp ; kAaeÿtAvkLp UCatÿaeÿtkvkL p :

Notice that jve�x; t�j is bounded on W� �0;y� and hence that there exists

C > 0 such that

kG�v; � ; t�kLp UCjWj1=p

for any tV 0 and p > 1. Therefore we have

kAav�t�kLp UC0eÿtkAav�0�kLp � CjWj1=p

� t

0

Ca�tÿ s�ÿaeÿ�tÿs�ds

UC0kAav�0�kLp � CjWj1=pCaG�1ÿ a�:
It is also known [7] that

D�Aa� ,! C 1�n�W� if 2aÿN=p > 1� n with n A �0; 1�:
Therefore by choosing a � 15=16 and p > 8N, we obtain

ve�� ; t� A C 1�n�W� and jv e�� ; t�j
C 1�n�W�UK0 for n � 3

4

with K0 > 0 being independent of e A �0; e0�. This completes the proof of

Lemma 3.1.

Proof of Lemma 3.2. We give the proof for n � 1, since other cases are

treated in almost the same manner. Let x in W be such that

a :� jw�x�j � max
x A W

jw�x�j:

By the Lipschitz continuity of w we have:

jw�x�jV aÿ K0jxÿ xj for x A WV jxÿ xjU a

K0

� �
:

There are two case to consider: (1) r0 < a=K0; (2) a=K0 U r0.

In case (1), since C�x; r�H W for r A �0; r0�, integrating the squared of the

last relation, we have the inequality

kwk2
L2 V

�
C�x;r�

�aÿ K0jxÿ xj�2dx

� oN

2N

rN

N
a2 ÿ 2K0

rN�1

N � 1
a� K 2

0

rN�2

N � 2

� �
:
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Choosing r > 0 so that

rN�2 � �N � 2�2N

K 2
0 oN

kwk2
L2 ;

we deduce

0V
rN

N
a2 ÿ 2K0

rN�1

N � 1
a; or aU

2K0N

N � 1
r:

This gives

aU
2N

N � 1

2N�N � 2�
oN

� �1=�N�2�
K

N=�N�2�
0 kwk2

L2 :

In case (2), arguing as above, we have

kwk2
L2 V

�
fjxÿxjUa=K0gVW

�aÿ K0jxÿ xj�2dx

V
oN

2N

1

N�N � 1��N � 2�
1

K N
0

aN�2;

which gives

aU
2NN�N � 1��N � 2�

2oN

� �1=�N�2�
K

N=�N�2�
0 kwk2

L2 :

This completes the proof of Lemma 3.2.

3.2. Proof of Theorem 2.2. We modify the function f �u; v� to ~f �u; v� for

v A �b� s; bÿ s� as in [1, (3.6) p. 884] so that

j f �u; v� ÿ ~f �u; v�jUC0ejlog ej:
Let ~w�x; t; v� be the solution of

d ~w

dt
� ~f �~w; v�; ~w�0� � x A �aÿ; a��:

We then have the following (cf. [1, Lemma 3.2]):

( i ) For tV 0, ~wx�x; t; v� > 0.

( ii ) There exists an e0 > 0 such that for e A �0; e0�, tV �2=k�jlog ej, the fol-

lowing estimates hold:

�3:1� ~w�x; t; v�V h��v� ÿ 2ejlog ej; x A �h0�v� � 2ejlog ej; a��
�3:2� ~w�x; t; v�U hÿ�v� � 2ejlog ej; x A �aÿ; h0�v� ÿ 2ejlog ej�
�3:3� hÿ�v� ÿ 2ejlog ejU ~w�x; t; v�U h��v� � 2ejlog ej; x A �aÿ; a��;
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where k > 0 is a constant for which the following estimates are valid:

f �u; v�V k minfuÿ h0�v�; h��v� ÿ ug for u A �h0�v�; h��v��
f �u; v�U k maxfuÿ h0�v�; hÿ�v� ÿ ug for u A �hÿ�v�; h0�v��

f �u; v�U k�h��v� ÿ u� for u A �h��v�; a��
f �u; v�V k�hÿ�v� ÿ u� for u A �aÿ; h��v��:

(iii) There exists C1 > 0 which depends only on e0 and k such that if e A �0; e0�
and 0U tU �2=k�jlog ej, then j~wxxjUC1 ~wx=e.

Now let us de®ne uG�x; t� by

uG�x; t� � ~w�f�x�GMt; t=e; v0 HMejlog ej�:
By choosing M > 0 large, we will show that uÿ�x; t� and u��x; t� are re-

spectively a sub-solution and a super-solution of (1.1) on �0; �2=k�jlog ej� and

satisfy

uÿ�x; 0�U ue�x; 0�U u��x; 0�:
Let us ®rst estimate

jeDuÿj � jef~wxDf� ~wxxj`fj2gj�3:4�

U �C1 � 1� sup
x A W

fejDfj � j`fj2g~wx �: C2 ~wx:

On the other hand, we have

uÿt ÿ
1

e
f �uÿ; ve� � ÿM ~wx � 1

e
� ~f �uÿ; v0 �Mejlog ej� ÿ f �uÿ; ve��

� ÿM ~wx � 1

e
� ~f �uÿ; v0 �Mejlog ej� ÿ f �uÿ; v0 �Mejlog ej��

� 1

e
� f �uÿ; v0 �Mejlog ej� ÿ f �uÿ; v e��

UÿM ~wx � C0jlog ej � 1

e
f v�uÿ; ]��v0 �Mejlog ej ÿ ve�;

where ] is a value between v e�x; t� and v0 �Mejlog ej. By using an easy

estimate

ve�x; t�U v0 �M0t;

we have

ve U v0 � �2=k�M0ejlog ej; 0U tU �2=k�ejlog ej:
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Therefore

v0 �Mejlog ej ÿ ve�x; t�V �M ÿ �2M0=k��ejlog ej; 0U tU �2=k�ejlog ej:
This, together with fv Uÿ d0, implies

uÿt ÿ
1

e
f �uÿ; v e�UÿM ~wx � C0jlog ej ÿ d0�M ÿ �2M0=k��jlog ej:�3:5�

We thus conclude from (3.4) and (3.5) that for 0U tU �2=k�ejlog ej,

uÿt ÿ eDuÿ ÿ 1

e
f �uÿ; ve�Uÿ�M ÿC2�~wxÿ d0�M ÿ �2M0=k� ÿ �C0=d0��jlog ejU0

by choosing M VmaxfC2; �2M0=k� � �C0=d0�g.
Arguing similarly, we also obtain

u�t ÿ eDu� ÿ 1

e
f �u�; v e�V 0:

Applying now the parabolic comparison theorem, we conclude

�3:6� uÿ�x; t�U u e�x; t�U u��x; t�; 0U tU �2=k�ejlog ej; x A W:

We will now establish the estimates (2.2)±(2.4) with t1 � 2=k. We denote

by k1 > 0 the Lipschitz constant of h0�v�; hÿ�v� and h��v� for v A �b� s; bÿ s�.
By using the second inequality in (3.3) and (3.6),

ue�x; t1ejlog ej�U ~w�f�x� � t1ejlog ej; t1jlog ej; v0 ÿMejlog ej�
U h��v0 ÿMejlog ej� � 2ejlog ejU h��v0� � �Mk1 � 2�ejlog ej:

Similarly, (3.6) and the ®rst inequality in (3.3) gives

ue�x; t1ejlog ej�V hÿ�v0� ÿ �Mk1 � 2�ejlog ej:
Therefore we have established (2.2) with any M1 VMk1 � 2.

On the other hand, if f�x� � t1Mejlog ejU h0�v0 ÿMejlog ej� ÿ 2ejlog ej,
namely, if f�x�U h0�v0� ÿ �Mk1 � 2t1M�ejlog ej, the estimates (3.2) and (3.6)

allow us to get:

ue�x; t1ejlog ej�U ~w�f�x� � t1Mejlog ej; t1jlog ej; v0 ÿMejlog ej�
U hÿ�v0 ÿMejlog ej� � 2ejlog ejU hÿ�v0� � �Mk1 � 2�ejlog ej:

Similarly, (3.1) and (3.6) imply that

ue�x; t1ejlog ej�V hÿ�v0� � �Mk1 � 2�ejlog ej:
provided f�x�V h0�v0� � �Mk1 � 2t1M�ejlog ej. Therefore we have established
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(2.3) and (2.4) with M1 �Mk1 � 2� t1M, completing the proof of Theorem

2.2.

3.3. Proof of Theorem 2.4. Let �ue�x; t�; ve�x; t�� be the solution of (1.1)

with the initial condition as in Theorem 2.2. We let U e and V e be de®ned by

U e�x; t� � u e�x; t� t1ejlog ej�; V e�x; t� � ve�x; t� t1ejlog ej�
and let V e�t� stand for the spatial average of V e�x; t�. Consider now the

initial value problem of moving hypersurfaces (which we call a genuine in-

terface equation):

�GIE� qge

qt
� ne � c�V e�t��; ge�y; 0� � y A G0 � fx A W j f�x� � h0�v0�g:

This problem has a unique solution ge�y; t� on a time interval �0;T � for some

T > 0. Let us de®ne G e�t� � fge�y; t� j y A G0g for t A �0;T �. G e�t� divides W

into two subdomains We;G�t�. We de®ne the signed distance function d e�x; t�
by:

d e�x; t� �
r0 if x A We;��t� and dist�x;G e�t��V r0

dist�x;G e�t�� if x A We;��t� and dist�x;G e�t��U r0=2

ÿdist�x;G e�t�� if x A We;ÿ�t� and dist�x;G e�t��U r0=2

ÿr0 if x A We;ÿ�t� and dist�x;G e�t��V r0,

8>>><>>>:
which is extended smoothly for x A fr0=2 < dist�x;G e�t�� < r0g.

Let us denote by U�z; v� the unique solution of (2.6) for v A �b� s; bÿ s�.
Notice that Uz�z; v� > 0 for z A R and that there exist constants B > 0 and

b > 0 such that

jUz�z; v�j � jUzz�z; v�j � jU�z; v� ÿ h��v�jUBeÿbz for zV 0

jUz�z; v�j � jUzz�z; v�j � jU�z; v� ÿ hÿ�v�jUBebz for zU 0:

�
�3:7�

With these preliminaries at our disposal, we now de®ne two functions UG�x; t�,
which play a crucial role in our proof below, by:

���� UG�x; t� � U
d e�x; t�GLemte2=�N�1�

e
; V e�t�HLe2=�N�1�

� �
where L > 0 and m > 0 are constants to be determined later. The proof of

Theorem 2.4 will amount to establishing the following steps:

Step-1: :

U�t ÿ eDU� ÿ 1

e
f �U�;V e�V 0; Uÿt ÿ eDUÿ ÿ 1

e
f �Uÿ;V e�U 0

for x A W; t A �0;T �;
and qUG=qn � 0 for x A qW, t A �0;T �.
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Step-2: :

Uÿ�x; 0�UU e�x; 0�UU��x; 0�; x A W:

Step-3: : There exists L1 > 0 such that

jU e�x; t� ÿ h��V�t��jUL1e2=�N�1� if d e�x; t�VL1e2=�N�1� t A �0;T �;

jU e�x; t� ÿ hÿ�V�t��jUL1e2=�N�1� if d e�x; t�UÿL1e2=�N�1� t A �0;T �:

Step-4: : There exists L2 > 0 such that

jge�y; t� ÿ g�y; t� t1ejlog ej�jUL2e2=�N�1�

jV e�t� ÿ v�t� t1ejlog ej�jUL2e2=�N�1�

�
for t A �0;T �; y A G0;�3:8�

where �v�t�; g�y; t�� is the unique solution of (2.5).

Once Step-3 and Step-4 are established, Theorem 2.4 is immediately

obtained as follows. By using Theorem 2.1 and the second inequality in (3.8),

jve�x; t� ÿ v�t�jU jv e�x; t� ÿ v e�t�j � jv e�t� ÿ v�t�j

U c�
M 2

0 jWj
D2l2

1

� L2

 !
e2=�N�1�:

If we choose M2 V 2L2 then for x A W such that dist�x;G�t��VM2e2=�N�1�, we

have either

d e�x; tÿ t1ejlog ej�V dist�x;G�t�� ÿ L2e2=�N�1�VL2e2=�N�1�;

or

d e�x; tÿ t1ejlog ej�Uÿdist�x;G�t�� � L2e2=�N�1�UÿL2e2=�N�1�;

and hence, by Step-3, it follows

ju e�x; t� ÿ hG�v�t��jU jue�x; t� ÿ hG�ve�t��j � jhG�ve�t�� ÿ hG�v�t��j

U �L1 � k1L2�e2=�N�1�:

Therefore, by choosing M2 as

M2 � max 2L2;L1 � k1L2; c
�M 2

0 jWj
D2l2

1

� L2

( )
;

we have established Theorem 2.4.

We now prove Step-1 through Step-4.
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Step-1: In the sequel, the functions U ;Uz;Uzz and Uv are all evaluated at

�z; v� � d e�x; t� � Lemte2=�N�1�

e
;V e�t� ÿ Le2=�N�1�

� �
:

According to the de®nition of U�, we easily ®nd

U�t ÿ eDU� ÿ 1

e
f �U�;V e� � I1 � 1

e
I2Uz ÿ 1

e
I3;

where

I1 � UvV e
t ÿUzDd e ÿ 1

e
Uzz�j`d ej2 ÿ 1�;

I2 � d e
t � c�V e ÿ Le2=�N�1�� �mLemte2=�N�1�;

I3 � f �U�; ve� ÿ f �U�;V e ÿ Le2=�N�1��:
Since j`d ej � 1 for jd ejU r0=2 and Uzz has the decay property as in (3.7), one

easily ®nd that jI1jUC1 for t A �0;T � with some constant C1 > 0 which is

independent of e. To estimate I2, let k2 > 0 denote the Lipschitz constant of

c�v� for v A �b� s; bÿ s�. It then follows that

I2 � d e
t � c�V e� �mLemte2=�N�1� � c�V e ÿ Le2=�N�1�� ÿ c�V e�

V d e
t � c�V e� �mLemte2=�N�1� ÿ k2Le2=�N�1�:

Note that d e
t � c�V e� � 0 when d e � 0. This is because, by de®nition, we have

d e�ge�y; t�; t� � 0

which, upon di¨erentiation with respect to t, gives:

0 � `d e�ge; t� � qge

qt
� d e

t �ge; t� � qge

qt
� ne � d e

t � c�V e� � d e
t :

Therefore, by the smoothness of d e and the mean value theorem, there exists a

constant k3 > 0, which is independent of e, such that jd e
t � c�V e�jU k3jd ej. By

using these observations, we now continue to estimate I2:

I2 V d e
t � c�V e� �mLemte2=�N�1� ÿ k2Le2=�N�1�

Vÿk3jd ej �mLemte2=�N�1� ÿ k2Le2=�N�1�

Vÿk3jd e � Lemte2=�N�1�j � �mÿ k3�Lemte2=�N�1� ÿ k2Le2=�N�1�

Vÿk3jd e � Lemte2=�N�1�j � �mÿ k2 ÿ k3�Le2=�N�1�:

By choosing m large, m > k2 � k3, we get I2 Vÿk3jd e � Lemte2=�N�1�j which,
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together with (3.7), gives rise to

1

e
I2Uz Vÿk3

d e � Lemte2=�N�1�

e

���� ����Uz
d e � Lemte2=�N�1�

e
; V e ÿ Le2=�N�1�

� �
Vÿk3C2;

for some constant C2 > 0 which is independent of e.

I3 is estimated as follows.

I3 � fv�U�; ]��V e ÿ V e � Le2=�N�1��;
where ] is a value between V e and V e ÿ Le2=�N�1�. From Theorem 2.1, there

exists a constant L0 > 0 such that

jV e�x; t� ÿ V e�t�jUL0e2=�N�1�; x A W for tV 0:

Therefore, by choosing L > L0 and using fv Uÿd0 (see (A4)), we have

U�t ÿ eDU� ÿ 1

e
f �U�;V e�VÿC1 ÿ C2 � d0�Lÿ L0�e�1ÿN�=�N�1�V 0:

Similarly, we can show

Uÿt ÿ eDUÿ ÿ 1

e
f �Uÿ;V e�U 0:

That qUG=qn � 0 follows from the de®nition of UG.

Step-2: In order to show that U��x; 0�VU e�x; 0�, we note that there

exists a k4 > 0 such that hG�vÿ a� ÿ hG�v�V k4a for a > 0 and b� sU vÿ a,

vU bÿ s (cf. Remark 1.1). From the second condition in (2.7), it follows that

if d e�x; 0�Uÿ�M1=l�ejlog ej then

f�x� ÿ h0�v0�Uÿl dist�x;G0� � ld e�x; 0�UÿM1ejlog ej:
Therefore, by Theorem 2.2, U e�x; 0�U hÿ�v0� �M1ejlog ej. On the other

hand,

U��x; 0� � U
d e�x; 0� � Le2=�N�1�

e
; V e�0� ÿ Le2=�N�1�

� �
V hÿ�V e�0� ÿ Le2=�N�1��V hÿ�v0� � k4�Le2=�N�1� ÿ jV e�0� ÿ v0j�

V hÿ�v0� � k4�Lÿ L0�e2=�N�1�:

Therefore for e0 > 0 small and L > L0, it holds that

U��x; 0�V hÿ�v0� � L0e2=�N�1�V hÿ�v0� �M1ejlog ejVU e�x; 0�
for e A �0; e0�.
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If d e�x; 0�Vÿ�M1=l�ejlog ej, then it follows that

U��x; 0�VU ÿM1

l
jlog ej � Le�1ÿN�=�N�1�; V e�0� ÿ Le2=�N�1�

� �
:

By choosing e0 small, we have

L
e�1ÿN�=�N�1�

jlog ej ÿM1

l
V

2

b
for e A �0; e0�:�3:9�

Therefore (3.7) gives

U��x; 0�V h��V e�0� ÿ Le2=�N�1�� ÿ Be2 V h��v0� � k4�Lÿ L0�e2=�N�1�

V h��v0� �M1ejlog ejVU e�x; 0�:
We have thus established U e�x; 0�UU��x; 0� for x A W.

Similar arguments yield U e�x; 0�VUÿ�x; 0� for x A W.

Step-3: By applying the parabolic comparison theorem, Step-1 and Step-2

imply that

Uÿ�x; t�UU e�x; t�UU��x; t� for �x; t� A W� �0;T �:
If we choose

L1 Vmaxf2LemT ; k1L� Bg;
then for d e�x; t�VL1e2=�N�1� we have:

U e�x; t�VUÿ�x; t�VU�LemT e2=�N�1�; V e�t� � Le2=�N�1��
V h��V e�t� � Le2=�N�1�� ÿ B exp�ÿbLemT e�1ÿN�=�N�1��
V h��V e�t�� ÿ k1Le2=�N�1� ÿ Be2 V h��V e�t�� ÿ L1e2=�N�1�:

In the fourth inequality above, we used the fact that bLemT �e�1ÿN�=�N�1�=jlog ej
V 2 for e A �0; e0� from (3.9).

On the other hand, we have

U e�x; t�UU��x; t�U h��V e�t�� � k1Le2=�N�1�U h��V e�t�� � L1e2=�N�1�:

Therefore the ®rst inequality in Step-3 is established. The second inequality in

Step-3 follows from the same line of arguments.

Step-4: From Step-3, we can rewrite the equation for �V e�t�; ge�t�� as:

V e
t �t� �

1

jWj
�

W

g�U e�x; t�;V e�x; t��dx

� Gÿ�V e�t�� jW
e;ÿ�t�j
jWj � G��V e�t�� jW

e;��t�j
jWj �O�e2=�N�1��;

qge

qt
� ne � c�V e�t��
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V e�0� � 1

jWj
�

W

ve�x; t1ejlog ej��dx � v0 �O�e2=�N�1��

ge�y; 0� � y A G0:

Comparing this initial value problem with (2.5), one can ®nd L2 > 0 that makes

(3.8) true, by virture of the continuous dependence of solutions on the initial

conditions and on the vector ®elds. This completes the proof of Step-4.

4. Discussion

We have established in this paper that the solutions of (1.1) exhibit at least

three di¨erent types of dynamic behaviors for a class of initial conditions.

Although the spatial homogenization of ve�x; t� and the development of internal

layers in ue�x; t� take place in the same time scale, the particular choice of

initial conditions as in Theorem 2.2 enables us to observe these two phenomena

separately. The motion of interfaces, the third type of dynamic behavior, is

described by the system of ordinary di¨erential equations (2.5). The asymptotic

behavior of the last equations is shown to be rather simple, namely, solutions

converge to an equilibrium of (2.5). As indicated at the end of Section 2, it is

natural to ask the question:

What would happen to the motion of the internal layer solutions of (1.1), after

the solutions of (2.5) have reached equilibrium states?

It is likely that the location of the internal layer evolves according to a slower

dynamics which is described by another interface equation. In fact, such an

interface equation can be read o¨ from the computation in [7]. Rescaling the

time by et! t, the equation is given by:

qg�y; t�
qt

� n�y; t� � ÿH�y; t� � c 0�v��b�y; t� ÿ A�t��4:1�

with

A�t� � ÿ 1

jG�t�j
�

G�t�
H�y; t�dSy � c 0�v�� 1

jG�t�j
�

G�t�
b�y; t�dSy;

where H�y; t� is the sum of principal curvatures of G�t� at g�y; t�, dSy the

surface measure on G�t�, and b�y; t� is the value of the function V�x; t� which

is a unique solution of

�a� DDV � ÿGG�v��; x A WG�t� qV

qn
� 0 on qW;

�b� V�� ; t� A C1�W�;
�

W

V�x; t�dx � 0:

�4:2�
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The initial conditions for (4.1) and (4.2) are:

g�y; 0� � g0�y�; V�y; 0� � V0�y�

with V0 sa®sfying (4.2) for t � 0. The interface equation (4.1)±(4.2) was also

derived in [9] by a reasoning di¨erent from ours.

It is not our intention here to present the detail of how to derive (4.1)±

(4.2). Instead, let us comment on the compatiblity of (4.1) and (4.2).

For any given interface G�t�HHW with W � Wÿ�t�UG�t�UW��t�, the

problem (4.2) has a unique solution if and only if

jWÿ�t�j � G��v��
�G�� jWj; jW��t�j � ÿGÿ�v��

�G�� jWj;�4:3�

namely, the volume of WG�t� is independent of t. On the other hand, due to

the nonlocal nature, the solution G�t� of (4.1) evolves in such way that the

volume of WG�t� is preserved:

d

dt
jWG�t�j �H

�
G�t�

qg�y; t�
qt

� n�y; t�dSy � 0:

Therefore, (4.1) and (4.2) are compatible.

When G�t� has several connected components G j�t� � j � 1; . . . ; k�, the

equation (4.1) should be replaced by k equations

qgj�y; t�
qt

� nj�y; t� � ÿH j�y; t� � c 0�v��b j�y; t� ÿ A�t� � j � 1; . . . ; k�

where A�t�, which is independent of j, is given by

A�t� � 1

jG�t�j
Xk

j�1

ÿ
�

G j�t�
H j�y; t�dSy � c 0�v��

�
G j�t�

b j�y; t�dSy

 !
:

In the above, gj is a parametrization of G j, nj the unit normal vector on G j

pointing to W��t�, H j the sum of principal curvatures on G j, and b j is the

value of V on G j. In this context, a one dimensional version (N � 1 and

W � �0; 1�) of (4.1)±(4.2) is given by:

�ÿ1� j�1 _gj�t� � c 0�v�� b j�t� ÿ 1

k

Xk

i�1

bi�t�
 !

� j � 1; . . . ; k�;

�4:4� DVxx�x; t� � ÿGG�v�� x A WG�t�; Vx�0; t� � 0 � Vx�1; t�;

V�� ; t� A C1�0; 1�;
� 1

0

V�x; t�dx � 0; b j�t� � V�gj�t�; t� � j � 1; . . . ; k�:
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In (4.4),

G�t� � fg1�t�; . . . ; gk�t�g with g0�t�1 0 < g1�t� < � � � < gk�t� < gk�1�t�1 1;

and WG�t� is given by

Wÿ�t� �60U2jUk
�g2j�t�; g2j�1�t��; W��t� �60U2jÿ1Uk

�g2jÿ1�t�; g2j�t��:
It is easy to see that (4.4) with suitable initial conditions is well posed and that

the solutions can be explicitly written down by an elementary computation.

Note also that there are only k ÿ 1 independent equations in the ®rst line of

(4.4).

When the domain W is the unit disk in RN �N V 2�, assuming that the

interfaces G j�t� are concentric spheres with radius rj�t� and that V�x; t� is

radially symmetric, our interface equation reduces to (4.2) coupled with the

following

�ÿ1� j�1 _rj�t� � �ÿ1� j�N ÿ 1� 1

rj�t�
ÿ �N ÿ 1�

Pk
i�1�ÿ1� iri�t�Nÿ2Pk

i�1 ri�t�Nÿ1
�4:5�

� c 0�v�� b j�t� ÿ
Pk

i�1 ri�t�Nÿ1bi�t�Pk
i�1 ri�t�Nÿ1

 !
:

We have recently established in [12] that an equilibrium solution of (4.5) gives

rise to an internal layer solution of (1.1). It is our future projects to show the

well posedness of (4.1)±(4.2) and to clarify the relationship between the so-

lutions of this problem and those of (1.1).
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