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ABSTRACT. Let M be a compact connected orientable 3-manifold with non-empty

boundary and f : M ! R2 a stable map. In this paper we study the existence of an

immersion or embedding lift of f to Rn �nV 3� with respect to the standard projection

Rn ! R2. We also characterize the orientable 3-dimensional handlebody in terms of

stable maps which have only a restricted class of singularities. Moreover, by using the

concept of an embedding lift of a certain map of a 2-dimensional polyhedron into R2,

we give a characterization of S3.

1. Introduction

Let M be a smooth manifold, f : M ! Rm a smooth map and

p : Rn ! Rm �n > m� a standard projection. Then we ask if there exists an

immersion or embedding g : M ! Rn which satis®es f � p � g. Such a map g

is called an immersion or embedding lift of f.

In this paper, M will be a compact connected orientable 3-manifold with

non-empty boundary, of class Cy. Let f : M ! R2 be a stable map. We ask

if there exists an immersion or embedding lift of f to Rn �nV 3� with respect to

the standard projection p : Rn ! R2, �x1; x2; . . . ; xn� 7! �x1; x2�. A point x in

M is called a singularity if rank dfx < 2. S� f � denotes the set of singularities

of f. Our main result is the following theorem.

Theorem 1. Let M be a compact connected orientable 3-manifold with

non-empty boundary and f : M ! R2 a stable map. We consider the condition

(I): For any r A R2, f ÿ1�r� is either empty or homeomorphic to a ®nite disjoint

union of closed intervals and points. Then the following two conditions are

equivalent.

(a) f has an immersion lift to R3.

(b) S� f � � j and f satis®es the condition (I).
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By Whitehead [13], there exists an immersion i : M ! R3 for every

compact connected orientable 3-manifold M with non-empty boundary. Thus

f � p � i satis®es S� f � � j and the condition (I), provided that f is stable. We

show that a submersion f : M ! R2 whose restriction to qM is stable, is a

stable map in Lemma 2 of § 3. Hence, after a slight perturbation of i, we may

assume that f � p � i is a stable map. Moreover, it is not di½cult to prove

that the space of non-singular stable maps is open and dense in the space of

submersions of M to R2 by using Lemma 2.

Based on the arguments in the proof of Theorem 1, we consider the

structure of source manifolds of a certain class of stable maps. For a stable

map f : M ! R2 with S� f � � j, the normal forms around points of qM consist

exactly of four types: regular, FI , FII and C (for details, see § 3 and 4). A

point of qM is of regular type (or of type C) if it is a regular point (resp. a cusp

point) of f jqM. Fold points of f jqM are classi®ed into two types: FI and

FII . We consider a stable map which has only points of regular type or of

type FI on qM. Such a map is called a boundary special generic map.

Theorem 2. A compact connected orientable 3-manifold M with non-empty

boundary is an orientable 3-dimensional handlebody (i.e., M is di¨eomorphic to

\k�S1 �D2�, k V 0) if and only if there exists a boundary special generic map

f : M ! R2.

The tool for the proof of Theorems 1 and 2 is the Stein factorization which

consists of 2-dimensional polyhedron Wf , qf : M !Wf and f : Wf ! R2 with

f � f � qf . Although Wf is not a manifold, we can de®ne an embedding lift of

f and get the following theorem.

Theorem 3. Let M̂ be a closed, connected, orientable 3-manifold.

Suppose that there exists a stable map f : M̂ ÿ Int D3 ! R2 with S� f � � j and

the condition (I). If there exists an embedding lift ge : Wf ! R3 of f , then M̂ is

homeomorphic to S3.

The paper is organized as follows. In § 2 we recall some fundamental

concepts: stable maps, Stein factorizations and etc. In § 3 we clarify the local

normal forms of f on the neighborhoods of singular points of f jqM. In § 4 we

investigate the semi-local structures of f around simple or non-simple points of

qM and the Stein factorization. In § 5 we prove Theorem 1 using the Stein

factorization. In § 6 we consider the existence problem of an embedding lift to

Rn and get Proposition 10 which guarantees the existence of an embedding lift

for nV 5. Moreover we give some examples which have no embedding lifts

for n � 3; 4. In § 7, we prove Theorems 2 and 3.

The author would like to express his sincere gratitude to Professor Osamu

Saeki for suggesting the problem and many helpful discussions.
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2. Preliminaries

Let M be a smooth 3- or 2-dimensional manifold with or without

boundary. We denote by Cy�M;R2� the set of the smooth maps of M into

R2 with the Whitney Cy topology. For a smooth map f : M ! R2, S� f �
denotes the singular set of f; i.e., S� f � is the set of the points in M where the

rank of the di¨erential df is strictly less than two. A smooth map f : M ! R2

is stable if there exists an open neighborhood N� f � of f in Cy�M;R2� such

that every g in N� f � is right-left equivalent to f; i.e., there exist di¨eomorphisms

f : M !M and j : R2 ! R2 satisfying g � j � f � fÿ1.

We quote an explicit description of a stable map from a closed 3-manifold

M̂ into R2.

Lemma 1. ([7]) Let M̂ be a closed 3-manifold. Then a smooth map

f : M̂ ! R2 is stable if and only if f satis®es the following local and global

conditions. For each point p A M̂ there exist local coordinates centered at p and

f �p� such that f is expressed by one of the following four types:

�I� �u; x; y� 7! �u; x�; p: regular point;

�II� �u; x; y� 7! �u; x2 � y2�; p: de nite fold point;

�III� �u; x; y� 7! �u; x2 ÿ y2�; p: inde nite fold point;

�IV� �u; x; y� 7! �u; y2 � uxÿ x3�; p: cusp point:

®

®

Also f should satisfy the following global conditions:

�G1� if p is a cusp point, then f ÿ1� f �p��VS� f � � fpg, and

�G2� f jS� f � ÿ fcuspsg is an immersion with normal crossings.

Let us recall the de®nition of the Stein factorization. Let M be a compact

orientable 3-manifold with or without boundary, and let f : M ! R2 be a

stable map. For p, p 0 A M, we de®ne p@ p 0 if f �p� � f �p 0� and p, p 0 are in

the same connected component of f ÿ1� f �p�� � f ÿ1� f �p 0��. Let Wf be the

quotient space of M under this equivalence relation and we denote by

qf : M !Wf the quotient map. By the de®nition of the equivalence relation,

we have a unique map f : Wf ! R2 such that f � f � qf . The quotient space

Wf or more precisely the commutative diagram

M �!f R2

qf f

Wf

���! ���!

is called the Stein factorization of f. In general, Wf is not a manifold, but is
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homeomorphic to a 2-dimensional ®nite CW complex. This fact has been

obtained for the case qM � j in [7] and [9] (see also [6]). In the case where

qM 0j with S� f � � j and the condition (I), this will be shown in § 4.

3. Local normal forms of f around singular points of f jqM

Our purpose of this section is to investigate the local normal forms of a

stable map f around singular points of f jqM.

Throughout this section, M is a compact orientable 3-manifold with non-

empty boundary, and f : M ! R2 is a stable map with S� f � � j. Since f is

stable, f jqM is also stable by [10, p. 2564, Lemma].

Recall the theorem of Whitney ([14]): Let N be a closed 2-manifold, and

let h : N ! R2 be a stable map. Then for each point x in N, there exist local

coordinates �x1; x2� centered at x and �y1; y2� centered at h�x� such that h is

given by one of the following local normal forms:

�i� �x1; x2� 7! �y1; y2� � �x1; x2�; x: regular point;

�ii� �x1; x2� 7! �y1; y2� � �x2
1 ; x2�; x: fold point;

�iii� �x1; x2� 7! �y1; y2� � �ÿx3
1 � x1x2; x2�; x: cusp point:

Proposition 1. Let x be a fold point of f jqM. Then there exist local

coordinates �T ;X1;X2� of M centered at x and �Y1;Y2� of R2 centered at f �x�
such that f is given by one of the local normal forms �Y1;Y2� � �X 2

1 GT ;X2�,
where qM corresponds to fT � 0g and Int M corresponds to fT > 0g.

Proof. By the theorem of Whitney, for x A qM, we can choose local

coordinates �t; x1; x2� centered at x and �y1; y2� centered at f �x� such that

f jqM is expressed by �0; x1; x2� 7! �x2
1 ; x2�, where qM corresponds to

ft � 0g and Int M corresponds to ft > 0g. Then we put f �t; x1; x2� �
�j�t; x1; x2�;c�t; x1; x2�� so that

j�0; x1; x2� � x2
1 ;

j�0; x1; x2� � x2:

Since the Jacobian matrix of f at x � �0; 0; 0� is

Jf �0� �
qj

qt
�0� 0 0

qc

qt
�0� 0 1

0BB@
1CCA

and rank Jf �0� � 2 by our assumption that S� f � � j, we obtain �qj=qt��0�0 0.
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Then, we de®ne the map F : �t; x1; x2� 7! �T ;X1;X2� by

T � j�t; x1; x2� ÿ x2
1 ;

X1 � x1;

X2 � c�t; x1; x2�:

8<:
By the condition �qj=qt��0�0 0, we see that the determinant of the Jacobian

matrix of F at �0; 0; 0�, jJF�0�j, is not equal to 0, since

JF�0� �

qj

qt
�0� 0 0

0 1 0

qc

qt
�0� 0 1

0BBBB@
1CCCCA:

Hence, �T ;X1;X2� forms local coordinates. Then we get f �T ;X1;X2� �
�j�t; x1; x2�;c�t; x1; x2�� � �X 2

1 � T ;X2�. Moreover, ft � 0g corresponds to

fT � 0g by this coordinate change, since F�0; x1; x2� � �j�0; x1; x2�ÿ
x2

1 ; x1;c�0; x1; x2�� � �0; x1; x2�.
Then on a neighborhood of x, ftV 0g corresponds to fT V 0g or to

fT U 0g by F. By replacing T with ÿT if necessary, we may always assume

that fT > 0g corresponds to Int M and fT � 0g corresponds to qM.

According to this change of coordinates, f is expressed either by �T ;X1;X2� 7!
�X 2

1 � T ;X2� or by �T ;X1;X2� 7! �X 2
1 ÿ T ;X2�. This completes the proof.

r

Proposition 2. Let x be a cusp point of f jqM. Then there exist local

coordinates �T ;X1;X2� of M centered at x and �Y1;Y2� of R2 centered at f �x�
such that f is given by the local normal form �Y1;Y2� � �ÿX 3

1 � X1X2 � T ;X2�,
where qM corresponds to fT � 0g and Int M corresponds to fT > 0g.

Proof. By the theorem of Whitney, for x A qM, we can choose local

coordinates �t; x1; x2� centered at x and �y1; y2� centered at f �x� such that

f jqM is expressed by �0; x1; x2� 7! �ÿx3
1 � x1x2; x2�, where qM corresponds to

ft � 0g and Int M corresponds to ft > 0g. Then we put f �t; x1; x2� �
�j�t; x1; x2�;c�t; x1; x2�� so that

j�0; x1; x2� � ÿx3
1 � x1x2;

c�0; x1; x2� � x2:

In this case, we consider the map F : �t; x1; x2� 7! �T ;X1;X2� de®ned by

T � j�t; x1; x2� � x3
1 ÿ x1c�t; x1; x2�;

X1 � x1;

X2 � �t; x1; x2�:

8><>:
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Then, by an argument similar to that in the proof of Proposition 1, we see that

�T ;X1;X2� forms local coordinates. So, by the same reason, we get the local

normal form f �T ;X1;X2� � �ÿX 3
1 � X1X2 GT ;X2�. However, these two types

of normal forms coincide with each other through the changes of coordinates

�T ;X1;X2� 7! �T ;ÿX1;X2� and �Y1;Y2� 7! �ÿY1;Y2�. This completes the

proof. r

We can also obtain the following proposition.

Proposition 3. Let x be a regular point of f jqM. Then there exist local

coordinates �T ;X1;X2� of M centered at x and �Y1;Y2� of R2 centered at f �x�
such that f is given by the local normal form �Y1;Y2� � �X1;X2�, where qM

corresponds to fT � 0g and Int M corresponds to fT > 0g.
Now, we show the following Lemma 2. This lemma guarantees the

existence of a stable map which satis®es the condition (b) of Theorem 1 as

explained in § 1.

Lemma 2. Let M be a compact 3-manifold with non-empty boundary and

f : M ! R2 a submersion such that f jqM is a stable map. Then f is also stable.

Proof. Let us prepare a notion of the in®nitesimal stability of Mather

([4, p. 73] and [11]) modi®ed for the case qM 0j as follows. Let a : M ! R2

be a smooth map and pR2 : TR2 ! R2 the canonical projection. A smooth

map w : M ! TR2 is called a vector ®eld along a if w satis®es a � pR2 � w.

Then we say that a is strongly in®nitesimally stable if for every w, a vector ®eld

along a, there always exist a vector ®eld s on M whose restriction to qM is a

vector ®eld on qM (i.e., each vector of s on qM is tangent to qM) and a vector

®eld t on R2 such that

w � �da� � s� t � a;

where da : TM ! TR2 is the di¨erential of a.

By using an argument similar to that of Mather [11], we can show that a

strongly in®nitesimally stable map is stable. Thus, it is su½cient to prove that

f is strongly in®nitesimally stable.

Since f jqM is stable and hence in®nitesimally stable, for any w, wjqM is

expressed by wjqM � d� f jqM� � sq � tq � � f jqM�, where sq is a vector ®eld on

qM and tq is a vector ®eld on R2. It is easy to see that there exists a vector

®eld sq on M such that sqjqM � sq. If we de®ne the new vector ®eld w 0 along

f by w 0 � wÿ �df � � sq ÿ tq � f , then w 0 satis®es w 0jqM � 0. By the argument

in the proof of [4, p. 78, Proposition 2.1], we see that there exists a smooth

subbundle H complementary to Ker�df � in TM and that the isomorphism

dfx : Hx ! Tf �x�R2 �x A M� induces an isomorphism on sections, Cy�H� !
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Cy
f �TR2�. Here, Cy�H� denotes the set of sections of H HTM over M and

Cy
f �TR2� denotes the set of vector ®elds along f. Hence we can construct a

vector ®eld s� : M ! H HTM such that w 0 � �df � � s�. Obviously we have

s�jqM � 0, since w 0jqM � 0, and w is expressed by w � �df � � �sq � s�� � tq � f .

Note that the vector ®eld sq � s� is tangent to qM on qM. This completes the

proof. r

4. Stein factorization

In § 3, we gave the local normal forms of a stable map f : M ! R2 with

S� f � � j around singular points of f jqM. In this section, we investigate the

structure of the Stein factorization of a stable map f : M ! R2. Our purpose

is to show that (b) implies (a) in Theorem 1. So, throughout this section we

assume S� f � � j and the condition (I).

Definition 1. Let M be a compact orientable 3-manifold with non-empty

boundary, and f : M ! R2 a stable map with S� f � � j. Then p A S� f jqM� is

a simple point if the connected component of f ÿ1� f �p�� containing p intersects

S� f jqM� only at p.

Let FI (or FII ) be the set of fold points of S� f jqM� around which f is

expressed by the local normal form �Y1;Y2� � �X 2
1 � T ;X2� (resp. �X 2

1 ÿ T ;X2�)
as in Proposition 1. Note that a point in FI is always simple and that FII

may contain non-simple points. We denote the set of non-simple points by T.

Let C be the set of cusp points of f jqM. Note that a cusp point is always

simple, since f jqM is a stable map. We denote the images of FI , FII , C and

T by qf in Wf by WFI , WFII , WC and WT, respectively. Furthermore, we

put S � qf �S� f jqM��. Note that, S �WFI UWFII UWC. For p A Wf , we

de®ne as follows:

p: regular point, p A Wf ÿ S,

p: fold point of type I, p A WFI ,

p: fold point of type II, p A WFII ,

p: cuspidal point, p A WC,

p: tridental point, p A WT.

Definition 2. Let M be a compact orientable 3-manifold with non-empty

boundary, and f : M ! R2 a stable map with S� f � � j. For any y A R2, an

embedding of a closed interval a : J ! R2 is called a transverse arc at y if y is

in a�Int J�, a is transverse to f jqM, and a�J�V f �S� f jqM�� � fygV f �S� f jqM��.
For x A M, if a : J ! R2 is a transverse arc at f �x�, then the component of

f ÿ1�a�J�� containing x is called a transverse manifold at x and is denoted by

T�x�.
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Let us ®rst consider simple singular points of f jqM. By using local

normal forms obtained in § 3 and by repeating Levine's argument as described

in [9, Chapter I], we obtain the following propositions, the proofs of which

are easy exercises. In [9], Levine considers compact 3-dimensional manifolds

without boundary, while we treat the case with boundary. Thus a main

di¨erence from the argument of [9] is the structures of the transverse manifolds.

But, we can easily obtain the structures of transverse manifolds based on the

local normal forms near singularities of f jqM as described in Propositions 1, 2

and 3.

Proposition 4. Let x be a simple point in FI (or FII ). Then the

transverse manifold, T�x�, of f at x is as in Figure 1 (i) (resp. Figure 1 (ii)), and

the Stein factorization Wf and the map f near qf �x� are as in Figure 1 (i) 0 (resp.

Figure 1 (ii) 0).

Proposition 5. Let x be a cusp point in C. Then the transverse manifold,

T�x�, of f at x, the Stein factorization Wf and the map f near qf �x� are as in

Figure 2.

Fig. 2
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Let us now consider a non-simple singular point of f jqM.

Proposition 6. Let x be a non-simple point in S� f jqM�. Then there

exists a neighborhood of qf �x� in the Stein factorization Wf as in Figure 3.

Proof. Since f jqM is stable, f �S� f jqM�� forms a normal crossing

around f �x�. Furthermore, non-simple points must belong to FII . By the

condition (I), a component of f ÿ1� f �x�� containing x is homeomorphic to a

closed interval, and it contains two singular points of f jqM.

As in Levine [9, p. 15, 1.4] we investigate how the ®bers are situated

around a non-simple point. Then we see that the connected component of

f ÿ1�U� containing x is as in Figure 4, where U is a certain compact

neighborhood of f �x� in R2. Thus, the corresponding Stein factorization is

easily seen to be as in Figure 3. r

Fig. 3

Fig. 4
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Summarizing the above results, we obtain the following proposition.

Proposition 7. Let M be a compact orientable 3-manifold with non-empty

boundary, and let f : M ! R2 be a stable map with S� f � � j and the condition

(I). For each x A M, there exists a neighborhood of qf �x� in Wf which is

homeomorphic to one of the polyhedrons as in Figure 5. Moreover, Wf is a

2-dimensional polyhedron.

Remark 1. Note that Wf ÿ S has a natural structure of a Cy-manifold

of dimension two which is induced from R2 by the local homeomorphism f ,

and that S ÿ �WCUWT� also has a natural structure of a Cy-manifold of

dimension one.

5. Immersion lift from M to R3

In this section, we prove Theorem 1. We may suppose that M and R2 are

oriented. Then each connected component of ®bers of f which is homeo-

Fig. 5
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morphic to a closed interval has the induced orientation.

We ®rst prove the implication �a� ) �b� in Theorem 1. Since f � p � F

for an immersion F and a submersion p, we have S� f � � j. Let r be a point

of f �M�. Then by Propositions 1, 2 and 3, for every x A f ÿ1�r�, there exists

an open neighborhood U of x in M such that U satis®es one of the following:

�1� U V f ÿ1�r�A�ÿ1; 1� �x A Int M UFII �;

�2� U V f ÿ1�r�A �0; 1� �x A �qM V �MnS� f jqM���UC�;

�3� U V f ÿ1�r� is a point �x A FI �;
where ``A'' denotes a homeomorphism. Thus, f ÿ1�r� is a disjoint union of

1-dimensional manifolds with or without boundary and discrete points. By the

compactness of f ÿ1�r�, f ÿ1�r� must be homeomorphic to a ®nite disjoint union

of circles, closed intervals and points. However, since f ÿ1�r�H frg � R,

f ÿ1�r� cannot contain circles. This implies the condition (I) and hence (b).

The remainder of this section is devoted to the proof of the implication

�b� ) �a� in Theorem 1 or its restatement, Proposition 9.

Set Y � fre
�����ÿ1
p

y A C j 0U rU 1; y � p=3; p; 5p=3g, Y0 � fre
�����ÿ1
p

y A Y j r0 0;

y � pg, Y1 � fre
�����ÿ1
p

y A Y j r0 0; y � p=3g and Y2 � fre
�����ÿ1
p

y A Y j r0 0; y �
5p=3g. De®ne s : Y ! �ÿ1; 1=2� by s�z� � Re z. Assume that x A FII ÿT.

Then, there exist homeomorphisms L : qf �T�x�� ! Y and l : f �T�x�� !
�ÿ1; 1=2� such that s � L � l � f jqf �T�x��. We say that Lÿ1�Y0� is the stem

and Lÿ1�Y1� and Lÿ1�Y2� are the arms of qf �T�x��. The transverse manifold

T�x�, its image qf �T�x�� in Wf and their images in R2 are described in Figure

6. The ®bers of f in T�x� are described by vertical lines with arrows consistent

with their orientations. The two arms in qf �T�x�� are classi®ed into the upper

arm a� and the lower arm aÿ by the images of the upper branch ~a� and the

lower branch ~aÿ respectively in T�x�. The upper branch ~a� contains the upper

part of the ®ber passing through the point x as in Figure 6, and the lower

branch ~aÿ contains the lower part.

Fig. 6
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Since Wf is a polyhedron by Proposition 7, we can take su½ciently small

regular neighborhoods N�p� of p A WCUWT so that N�p�VN�p 0� � j if

p0 p 0, and that N�p� coincides with a component of f ÿ1�D� for some DHR2,

where D is homeomorphic to I � I , I � �0; 1�. Moreover, if c is a connected

component of WFI ÿ6
p

Int N�p� (or WFII ÿ6
p

Int N�p�), then c has a

regular neighborhood N�c� relative boundary in Wf which is homeomorphic to

I � c (or Y � c resp.). In fact, since f is an immersion on Wf ÿ S, a regular

neighborhood N�c� is homeomorphic to an I-bundle (or Y-bundle resp.) over c.

When cHWFI ÿ6
p

Int N�p�, this I-bundle is immersed in R2 and hence

trivial. Furthermore, suppose that cHWFII ÿ6
p

Int N�p� and N�c� contains

a non-trivial Y-bundle over a circle c1 in c which exchanges the arms along c1.

Then for a section s of the sub I-bundle consisting of the stems along c1, qÿ1
f �s�

forms a non-orientable I-bundle, i.e., MoÈbius band. This contradicts the

induced orientations of ®bers.

We may assume that N�c�VN�c 0� � j if c0 c 0. We may also assume

�6
p

N�p��U �6
c

N�c�� � N�S�, the regular neighborhood of S.

Definition 3. Let M be a compact orientable 3-manifold with non-empty

boundary, and let f : M ! R2 be a stable map with S� f � � j and the con-

dition (I). Then a continuous map g : Wf ! R3 � R2 � R is said to be an

immersion lift of f to R3 if f � p � g and the following conditions (1), (2), (3)

and (4) are satis®ed.

(1) gj�Wf ÿ S� is a smooth immersion with normal crossings.

(2) gjS is an injection, and gj�S ÿ �WCUWT�� is a smooth embedding.

(3) gjN�S� is an injection, and gj�N�S� ÿ S� is a smooth embedding.

(4) For each x A FII ÿT, we have p 0 � g�a� > p 0 � g�b� for any point a of

the upper arm and any point b of the lower arm of qf �T�x��, where

p 0 : R3 ! R is the projection to the last coordinate.

Proposition 8. Let M be a compact orientable 3-manifold with non-empty

boundary, and let f : M ! R2 be a stable map with S� f � � j and the condition

(I). Then there exists an immersion lift g : Wf ! R3 � R2 � R of the form

g�x� � � f �x�; h0�x��.
Proof. Let p be a point of WCUWT. Then we de®ne gj�N�p�VS� :

N�p�VS ! R2 � R2 � f0gHR3 by gj�N�p�VS� � f j�N�p�VS�. Then

gj�N�p�VS� is injective. Moreover, g can be extended all over S by sepa-

rating normal crossing points of f j�S ÿ �WCUWT�� into extra dimension.

Thus we can de®ne gjS so that gjS satis®es the above condition (2).

Let us extend g over N�S�. First, we lift the neighborhoods N�p�,
p A WCUWT, to R3 � R2 � R so that gjN�p� satis®es the condition (4), and

so that the angle between the images of two arms contained in N�p� ÿ Int N�p�

Non-singular stable maps 427



is d �0 < d < p� and that the image of each stem contained in N�p� ÿ Int N�p�
is horizontal. To extend g all over N�S�, let S be the set of the connected

components of S ÿ6
p

Int N�p�, p A WCUWT. We consider lifts on each

N�c�; c A S. Let P : N�c� ! c be the natural bundle projection whose ®bers

are homeomorphic to I � �0; 1� if cHWFI or to Y if cHWFII .

First, for cHWFI , de®ne g : N�c� ! R3 by x 7! � f �x�; h0�P�x���, where

h0 : c! R is the smooth function which gives the third coordinate. Second,

for cHWFII , N�c� is homeomorphic to Y � c. Then de®ne g : N�c� ! R3 by

x 7! � f �x�; h0�P�x�� � Z�x��, where h0 : c! R is the smooth function which

gives the third coordinate and Z : N�c� ! R is de®ned as follows: if x

belongs to a stem, then we de®ne Z�x� � 0, and if x belongs to an upper

(resp. lower) arm, then we de®ne Z�x� � k f �x� ÿ f �P�x��ktan d=2 (resp.

ÿk f �x� ÿ f �P�x��ktan d=2). Here note that our construction of the lifts on

N�p� and on N�c� are consistent, and then we may assume that gjN�S� is an

injection and that gj�N�S� ÿ S� is a smooth embedding by choosing a suf-

®ciently small d. Thus a lift on N�S� which satis®es the conditions (3) and (4)

has been constructed.

Finally, we can extend the lift to whole Wf by using an argument similar

to that of [7, pp. 26±27] and complete the proof. r

Proposition 9. Let M be a compact orientable 3-manifold with non-empty

boundary, and f : M ! R2 a stable map with S� f � � j and the condition (I).

Then there exists an immersion F : M ! R3 which makes the following diagram

commutative.

R3

F

???yp

M ���!f R2
������

��!

Proof. We use the same notations as in the proof of Proposition 8, and

construct an immersion lift F : M ! R3 based on g : Wf ! R3.

First, let us construct a lift on qÿ1
f �N�S�� to R3. We lift qÿ1

f �N�p�� �
�p A WCUWT� as the top ®gure in Figure 2 and Figure 4, and then we

lift the other part of qÿ1
f �N�S�� as the top ®gures in �i�0, �ii�0 of Figure 1

so that F jqÿ1
f �N�S�� is expressed by x 7! g�qf �x�� � �0; 0; h0�x��, where

h0 : qÿ1
f �N�S�� ! R is an orientation preserving embedding on each qf -

®ber. In the construction, we can arrange so that the orientation of the F-

image of each oriented ®ber of qf contained in frg � R �r A R2� coincides with

that of the last coordinate of R3. By (3) of De®nition 3, we can construct the

lift F jqÿ1
f �N�S�� as an embedding.

Similarly, for qÿ1
f �Wf ÿN�S��, we can construct a smooth function
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h1 : qÿ1
f �Wf ÿN�S�� ! R, where h1 � h0 on qÿ1

f �Wf ÿN�S��V qÿ1
f �N�S��, and

de®ne F jqÿ1
f �Wf ÿN�S�� by x 7! g�qf �x�� � �0; 0; h1�x�� so that the restriction

of h1 to each qf -®ber (which is homeomorphic to a closed interval by the con-

dition (I)) is an orientation preserving embedding, and that F jqÿ1
f �Wf ÿN�S��

is an immersion. This completes the proof of Proposition 9. r

Now we have completed the proof of Theorem 1 by proving �b� ) �a� by

Proposition 9 and �a� ) �b� at the beginning of this section. We give some

remarks before closing the section.

Remark 2. The condition S� f � � j does not imply the condition (I) in

Theorem 1 as follows. Let N be an annulus, and consider M � N � S1. Let

r : N ! R be a height function as in Figure 7 such that r is non-singular, while

rjqM is a Morse function with exactly four critical points, and that r contains

a ®ber homeomorphic to S1. Then de®ne r� id : N � S1 ! R� S1 by �x; t� 7!
�r�x�; t�. Finally, consider an embedding h : R� S1 ! R2 and we de®ne

f � h � �r� S1� : M ! R2. This f is stable, S� f � � j, and we can ®nd a point

r A R2 such that f ÿ1�r� is homeomorphic to S1.

However, the condition (I) does imply S� f � � j under the condition that

S� f �V qM � j. To show this, suppose S� f �0j. Then there exists a de®nite

fold or an inde®nite fold point as a singularity of f. If M contains a de®nite

fold point p A Int M, then there must exist a ®ber near p which contains a

connected component homeomorphic to S1. If M contains an inde®nite fold

point p 0 A Int M, then the connected component of the ®ber containing p 0

cannot be di¨eomorphic to a closed interval or a point. Hence, if S� f �0j,

then f does not satisfy the condition (I). Thus the condition (I) implies

S� f � � j, provided that S� f �V qM � j.

Fig. 7
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Remark 3. Hae¯iger [5, TheÂoreÁme 1] showed that for a stable map from

a closed 2-manifold N into R2, there exists an immersion lift to R3 with respect

to the standard projection p : R3 ! R2 if and only if each connected com-

ponent of its singular set has an orientable (or non-orientable) neighborhood if

the number of cusps on the connected component is even (resp. odd).

Let F be an immersion lift of a stable map f : M ! R2 as in Theorem 1.

Then the stable map f jqM : qM ! R2 is also lifted to R3 by F jqM. Then, by

Hae¯iger [5], each connected component of S� f jqM� must have an even

number of cusps, since qM is an orientable closed surface.

In fact, cusps of f jqM correspond exactly to cuspidal points of Wf by qf .

From the structure of Wf obtained in Proposition 7, the connected components

of FI and those of FII must connect one after the other alternately at cusp

points of f jqM as their connecting points, and all of them must form circles.

Hence, the number of cusps on each circle is even. Therefore, the stable map

f jqM automatically satis®es the condition of Hae¯iger.

Remark 4. Kushner-Levine-Porto [7] have given a su½cient condition for

the existence of an immersion lift to R4 with respect to the projection

p : R4 ! R2, �x1; x2; x3; x4� 7! �x1; x2�, for a stable map from a closed ori-

entable 3-manifold to R2. Of course, there is no immersion lift to R3 for a

closed 3-manifold.

6. Embedding lift from M to Rn

In § 5, we considered the existence problem of an immersion lift F to R3

for a stable map from M into R2. We will consider the embedding lift to Rn,

n � 3; 4 and nV 5.

Remark 5. There is a stable map f which satis®es the condition (b) in

Theorem 1 but has no embedding lifts to R3.

We take the compact orientable 3-manifold with boundary S2 � S1 ÿ
Int D3 for M. No stable map from M into R2 can have an embedding lift F

to R3. In fact, if M is embedded into R3, then qM � S2 bounds an embedded

3-ball in R3 by the theorem of SchoÈn¯ies. This means that M itself is

homeomorphic to D3; a contradiction. We identify M � S2 � S1 ÿ Int D3

with D2 � I Uj S2 � I and give an immersion i : M ! R3 as in Figure 8, where

j : D2 � qI ! S2 � qI is a handle attaching map. We can see that the map

f � p � i is stable by Lemma 2. Moreover, S� f � � j and f satis®es the

condition (I).

In this example, two cusps appear around each component of j�D2 � qI�.
The upper and lower arms in qf �T�x��HWf at the fold points x A qM of type

FII are drawn in the ®gure so as to satisfy the condition (4) of De®nition
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3. We understand that it is di½cult to modify the immersion lift of f to an

embedding keeping this condition.

Remark 6. There is a stable map f which satis®es the condition (b) in

Theorem 1 but has no embedding lifts to R4.

Let M be a punctured lens space L�2n; q��. It is a compact orientable 3-

manifold with boundary S2. Then we can construct a stable map f : M ! R2

with S� f � � j and our condition (I) by Lemma 2. However, it has been

shown in [3] that a punctured lens space L�2n; q�� cannot be embedded in R4.

Hence f cannot have an embedding lift to R4.

Definition 4. Let M be a compact orientable 3-manifold with non-empty

boundary, and let f : M ! R2 be a stable map with S� f � � j and the con-

dition (I). Then, a continuous map ge : Wf ! Rn is said to be an embedding

lift of f to Rn if ge satis®es f � p � ge with respect to the projection

p : Rn ! R2, �x1; x2; . . . ; xn� 7! �x1; x2�, and the following.

(1) ge is a topological embedding.

(2) gej�Wf ÿ S� is a smooth embedding.

(3) gej�S ÿ �WCUWT�� is a smooth embedding.

(4) ge�N�S��HR3 � f0gHRn, and gejN�S� satis®es the condition (4) of

Fig. 8
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De®nition 3 as a map into R3.

Remark 7. In the example given in Remark 5 (see Figure 8), we can see

that f has a lift to R3 which is a topological embedding. But we have no

embedding lift of f as de®ned in De®nition 4, because it contradicts the

following proposition.

Proposition 10. Let M be a compact orientable 3-manifold with non-

empty boundary, and let f : M ! R2 be a stable map with S� f � � j and the

condition (I). If there exists an embedding lift ge : Wf ! Rn of f with respect

to p : Rn ! R2, �x1; x2; . . . ; xn� 7! �x1; x2�, then there exists an embedding lift

Fe : M ! Rn of f. In particular, for nV 5, there always exists an embedding lift

Fe of f.

Proof. By virtue of the condition (4) of De®nition 4, we can construct an

embedding lift on qÿ1
f �N�S�� so that Fe�qÿ1

f �N�S���HR3 � f0g by using an

argument similar to that in the proof of Proposition 9.

Then, we construct the lift on qÿ1
f �Wf ÿN�S�� as follows. By the

construction of Fejqÿ1
f �N�S��, we have Fe�qÿ1

f �p��H f �p� � R� f0gH
R3f0gHRn for any p A N�S�. Hence, we can construct Fe on

qÿ1
f �Wf ÿN�S�� by x 7! ge�qf �x�� � �0; 0; h0�x�; 0; . . . ; 0�, where h0 is an ori-

entation preserving embedding on each qf -®ber. Since gejqf �Wf ÿN�S�� is a

smooth embedding, we can arrange so that Fe�x�0Fe�x 0� if qf �x�0 qf �x 0�.
Thus an embedding lift Fe of f has been constructed.

The existence of an immersion lift g : Wf ! R3 is guaranteed by our

Proposition 8. In general, the lift gj�Wf ÿN�S�� has normal crossings.

However, if nV 5, then we can separate the normal crossings into extra

dimensions in Rn by Thom's transversality theorem so that g satis®es p � g � f .

Therefore, for nV 5, we can always construct an embedding lift from Wf to Rn

and hence from M to Rn. This completes the proof. r

7. Applications

In this section, ®rst we prove Theorem 2 as an application of the results

obtained in § 4. For a closed orientable 3-manifold M̂, Burlet-de Rham [1]

have proved that there exists a special generic map f : M̂ ! R2 if and only if

M̂ is di¨eomorphic to S3 or to a connected sum ]k�S2 � S1�, where a special

generic map is a stable map which has only de®nite fold points as its sin-

gularities. Saeki [12] has obtained a characterization of graph manifolds by

using simple stable maps (de®ned in [12]), where a graph manifold is de®ned to

be a 3-manifold built up of S1-bundles over surfaces attached along their torus

boundaries. As an analogy, we consider the structure of source manifolds of
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the boundary special generic maps de®ned as follows.

Definition 5. Let M be a compact orientable 3-manifold with non-empty

boundary, and f : M ! R2 a stable map with S� f � � j. Then f is called a

boundary special generic map if S� f jqM� �FI .

Lemma 3. Let M be a compact orientable 3-manifold with non-empty

boundary. Then any boundary special generic map f : M ! R2 satis®es the

condition (I).

Proof. Let r be a point in f �M� and r 0 a point such that r 0 B f �M�.
Consider a smooth embedding C : �0; 1� ! R2 such that C�0� � r 0, C�1� � r

and C is transverse to f jqM. Then f j f ÿ1�C��0; 1��� : f ÿ1�C��0; 1��� ! C��0; 1��
is a non-singular function on a surface with boundary, and each singularity of

f jqM in f ÿ1�C��0; 1��� belongs to FI so that only arcs appear or disappear in

the inverse image. Set

A � ft A �0; 1� j f ÿ1�C�t��OS1g:
Then we have �1� A C 0, in particular, A0j, (2) A is open, and (3) the

complement of A is open. Since �0; 1� is connected, we see A � �0; 1�. Hence

f ÿ1�r� does not contain a circle component. Then the result follows as in the

proof of �a� ) �b� in Theorem 1 given at the beginning of § 5. r

Proof of Theorem 2. Suppose that M is a compact orientable 3-

dimensional handlebody. Then, we can construct a boundary special generic

map f from M into R2 as in Figure 9, where i is an embedding so that p � i has

only singularities of type FI at qM.

Fig. 9
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Conversely, suppose that f : M ! R2 is a boundary special generic map.

Then Wf must be a connected surface with non-empty boundary by Lemma 3

and Propositions 4 and 7. Since M is compact, so is Wf . By the smooth

structure of Wf ÿN�S� de®ned in Remark 1, the continuous map

qf jqÿ1
f �Wf ÿN�S�� is a di¨erentiable map, and moreover a submersion. Here,

note that rank d� f jqM�x � dim R2 for all x A qM V qÿ1
f �Wf ÿN�S��. So, by

applying Lemma 3 and Ehresmann's ®bration theorem ([2] and [8, p. 23]),

qÿ1
f �Wf ÿN�S�� has a structure of an I-bundle over Wf ÿN�S�. On the

other hand, by the local structure given by Proposition 4 for the fold points of

type FI , we see that qÿ1
f �N�S�� is a trivial I-bundle over N�S� which is

homeomorphic to qWf � I . Thus we see that M is an I-bundle over a

compact connected surface Wf with non-empty boundary and hence that M is

a 3-dimensional handlebody. r

Let us prove Theorem 3 as an application of the arguments in § 5 and 6.

Proof of Theorem 3. If there exists an embedding lift ge : Wf ! R3, then

there also exists an embedding lift Fe : M̂ ÿ Int D3 ! R3 by Proposition 10.

Since q�M̂ ÿ Int D3� � S2, S2 is embedded in R3 by Fe. By the theorem of

SchoÈn¯ies, S2 � q�M̂ ÿ Int D3� bounds a 3-ball in R3; i.e., M̂ ÿ Int D3 must be

homeomorphic to D3. Hence M̂ � �M̂ ÿ Int D3�UD3AD3 UD3AS3, where

each ``A'' denotes a homeomorphism. This completes the proof. r
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