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ABSTRACT. This paper treats the second order quasilinear elliptic system of the form

Dpu � H�jxj�va;Dqv � K�jxj�ub in RN with nonnegative functions H, K. Su½cient

conditions will be given to have positive radial entire solutions and to have no

nonnegative nontrivial radial entire solutions under some restriction on p; q; a and b.

When H and K behave like positive constant multiples of jxj n; n A R, we can completely

characterize the existence property of positive radial entire solutions.

1. Introduction and statement of results

This paper is concerned with second order quasilinear elliptic system of the

form

Dpu1 div�jDujpÿ2Du� � H�jxj�va

Dqv1 div�jDvjqÿ2
Dv� � K�jxj�ub

(
in RN ;�1�

where N V 1; p > 1; q > 1, a and b are positive constants satisfying

ab > �pÿ 1��qÿ 1�; and H;K : �0;y� ! �0;y� are continuous. An entire

solution of (1) is de®ned to be a function �u; v� A C1�RN� � C1�RN� such that

jDujpÿ2
Du; jDvjqÿ2

Dv A C1�RN� and satis®es (1) at every x A RN . Such a

solution of (1) is said to be radial if it depends only on jxj.
The problem of existence and nonexistence of positive radial entire so-

lutions of scalar equations has been investigated by many authors under various

situations. To illustrate some of typical known results let us consider the

equation

Dpu � H�x�us in RN ;�2�
where p > 1; s > pÿ 1, and H is a nonnegative continuous function in RN .

The existence and nonexistence results of positive (radial) entire solutions of (2)

may be described roughly as follows:
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Theorem A ([8, Theorems 2.1, 3.1 and 3.2]). If H has radial symmetry

and

H�x�U C

jxjp�e ; jxjV r0 > 0; p < N;

H�x�U C

jxjp�logjxj�s�1�e
; jxjV r0 > 1; p � N;

H�x�U C

jxjN��s�pÿN�=�pÿ1���e
; jxjV r0 > 0; p > N;

8>>>>>>>>><>>>>>>>>>:
for some constants C > 0 and e > 0, then (2) has positive radial entire solutions.

Theorem B ([15, Theorems 1, 2 and 3]). If

H�x�V C

jxjp ; jxjV r0 > 0; p < N;

H�x�V C

jxjp�logjxj�s�1
; jxjV r0 > 1; p � N;

H�x�V C

jxjN��s�pÿN�=�pÿ1�� ; jxjV r0 > 0; p > N;

8>>>>>>>><>>>>>>>>:
for some constants C > 0, then (2) does not possess any positive entire solution.

In [8], actually existence results are proved under weaker assumptions than

above.

When H is a radial function and behaves like cjxj l , l A R and c > 0, as

jxj !y, Theorems A and B characterize the decaying order of H for (2) to

admit positive entire solutions. Related results are found in [11, 12, 16].

The aim of this paper is to extend such results to elliptic system (1). As

far as the author is aware, there are no results dealing with this subject except

for the case p � q � 2 ([5, 20]).

Our results are as follows:

Theorem 1. Suppose that H and K satisfy

H�jxj�U L1

jxjl
; K�jxj�U L2

jxjm ; jxjV r0 > 0;�3�

where L1 > 0; L2 > 0; l and m are constants. Then, under one of the next four

conditions, system (1) has in®nitely many positive radial entire solutions:
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( i ) pUN, qUN and

l >
a�qÿ m�

qÿ 1
� p

m >
b�pÿ l�

pÿ 1
� q

8>>><>>>:
( ii ) p > N, q > N and

l >
a�qÿ m�

qÿ 1
� ab�pÿN�
�pÿ 1��qÿ 1� �N

m >
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N

8>>><>>>:
(iii) pUN, q > N and

l >
a�qÿ m�

qÿ 1
� p

m >
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N

8>>><>>>:
(iv) p > N, qUN and

l >
a�qÿ m�

qÿ 1
� ab�pÿN�
�pÿ 1��qÿ 1� �N

m >
b�pÿ l�

pÿ 1
� q

8>>><>>>:
Theorem 2. Suppose that H and K satisfy

H�jxj�V L1

jxjl
; K�jxj�V L2

jxjm ; jxjV r0 > 0;�4�

where L1 > 0; L2 > 0; l and m are constants. Then, under one of the next four

conditions, system (1) does not possess any nonnegative nontrivial radial entire

solutions:

( i ) pUN, qUN and

lU
a�qÿ m�

qÿ 1
� p or

mU
b�pÿ l�

pÿ 1
� q

8>>><>>>:
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( ii ) p > N, q > N and

lU
a�qÿ m�

qÿ 1
� ab�pÿN�
�pÿ 1��qÿ 1� �N or

mU
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N

8>>><>>>:
(iii) pUN, q > N and

lU
a�qÿ m�

qÿ 1
� p or

mU
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N

8>>><>>>:
(iv) p > N, qUN and

lU
a�qÿ m�

qÿ 1
� ab�pÿN�
�pÿ 1��qÿ 1� �N or

mU
b�pÿ l�

pÿ 1
� q

8>>><>>>:
We note that, for the case where p � q � 2 (and N 0 2), Theorem 1

reduces to Theorems 3.1 and 3.3 in [20], and Theorem 2 to Theorems 2.1 and

2.3 in [20].

We give an illustrative example to show the sharpness of our results.

Let us consider the elliptic system

Dpu � C

�1� jxj�l
va

Dqv � C

�1� jxj�m ub

8>>><>>>: in RN ;�5�

where N V 2, N > p > 1, N > q > 1, ab > �pÿ 1��qÿ 1�, l; m A R, and C is a

positive constant. We can completely characterize the existence of positive

radial entire solutions of this system in terms of p; q; a; b; l and m. In fact, the

inequalities

L1

jxjl
U

C

�1� jxj�l
U

L2

jxjl
; jxjV 1

and

L3

jxjm U
C

�1� jxj�m U
L4

jxjm ; jxjV 1
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hold, where Li, i � 1; . . . ; 4; are some positive constants. From Theorem 2, if

lU
a�qÿ m�

qÿ 1
� p or mU

b�pÿ l�
pÿ 1

� q, then (5) does not admit any positive

radial entire solutions. Conversely, from Theorem 1 if l >
a�qÿ m�

qÿ 1
� p and

m >
b�pÿ l�

pÿ 1
� q, then (5) has in®nitely many positive radial entire solutions.

See the ®gure below.

For another case that H and K are nonpositive functions, there have been

a great number of works on qualitative theory for solutions in the last three

decades. We can ®nd necessary and/or su½cient conditions to have positive

entire solutions in this case with (or without) prescribed asymptotic forms near

y; see [4, 9, 18]. For the scalar equation, we moreover know how oscillatory

radial entire solutions behave near y.

As far as the author knows, the study for equation (2) was initiated

essentially by J. B. Keller [10], who considered, for example, equation

Du � ua; a > 1, in RN , and showed that this equation admits no positive entire

solutions. In [17], equation (2) with p � 2 have been considered. It is known

that there are some applications of qualitative theory for (2) to Riemannian

geometry; see [17] and the references therein.

Equations of the type (2) have been investigated deeply not only in the

entire space RN but also in bounded domains. For example, the singular

boundary value problem

Du � ua in D;

u!y as x! qD;

�
�6�

Positive radial entire solutions 441



where D is a bounded domain, has been treated by several authors. Problems

of this type (in fact, (6) with ua replaced by eu) were ®rstly considered by

Bieberbach [3]. In this case the problem plays an important role in the theory

of Riemannian surfaces and in the theory of automorphic functions. Fur-

thermore, according to [19] this problem arises in the study of the electric

potential in a glowing hollow metal body. Related results on this topic are

found in [2, 6, 13, 14, 21]. From these observations we do believe that

considering system (1) is of practical interest as well as of theoretical interest.

Since for positive solutions �u; v� of (1), the functions maxjxj�r u�x� and

maxjxj�r v�x�, rV 0, are nondecreasing, it seems that the usual variational

method does not always work e¨ectively. Some of di½culties appearing in the

analysis of (1) come from this fact. For non-symmetric solutions we refer to

[1, 7].

The organization of the paper is as follows. The proofs of Theorems 1

and 2 are given in § 2 and § 3, respectively. In § 4 we give existence and

nonexistence theorems for the particular case p � q � N which give stronger

results than Theorems 1 and 2.

2. Proof of Theorem 1

In this section Theorem 1 is proved. We ®rst observe that �u; v� is a

positive radial entire solution of (1) if and only if the function �y�r�; z�r�� �
�u�x�; v�x��, r � jxj, satis®es the system of second order ordinary di¨erential

equations

r1ÿN�rNÿ1jy 0jpÿ2y 0� 0 � H�r�za; r > 0; y 0�0� � 0;

r1ÿN�rNÿ1jz 0jqÿ2
z 0� 0 � K�r�yb; r > 0; z 0�0� � 0;

(
�7�

where 0 � d=dr. Furthermore, integrating (7) twice, we obtain the following

system of integral equations equivalent to (7):

y�r� � a�
� r

0

s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�pÿ1�
ds; rV 0;

z�r� � b�
� r

0

s1ÿN

� s

0

tNÿ1K�t�y�t�bdt

� �1=�qÿ1�
ds; rV 0;

8>>>><>>>>:�8�

where a � y�0�, b � z�0�.
Proof of Theorem 1. Without loss of generality, we may assume that

r0 � 1 in (3). It su½ces to solve (8). Choose constants a > 0 and b > 0 so

that
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�2b�a
�1

0

H�t�dt

� �1=�pÿ1�
U

a

2
;

M1�N; p� �2b�a max

� 1

0

H�t�dt;
L1

N ÿ l� al

� �� �1=�pÿ1�
U

a

2
;

8>>>>><>>>>>:
�9�

and

�2a�b
�1

0

K�t�dt

� �1=�qÿ1�
U

b

2
;

M2�N; q� �2a�b max

�1

0

K�t�dt;
L2

N ÿ m� bk

� �� �1=�qÿ1�
U

b

2
;

8>>>>><>>>>>:
�10�

where

k � �qÿ 1��lÿ p� ÿ a�qÿ m�
ab ÿ �pÿ 1��qÿ 1� > 0;

l � �pÿ 1��mÿ q� ÿ b�pÿ l�
ab ÿ �pÿ 1��qÿ 1� > 0;

M1�N; p� �
pÿ 1

pÿ l� al
for pUN;

pÿ 1

pÿN
for p > N;

8>><>>:
and

M2�N; q� �
qÿ 1

qÿ m� bk
for qUN;

qÿ 1

qÿN
for q > N:

8>><>>:
The inequalities M1�N; p�V 1 and M2�N; q�V 1 hold from the condition of l

and m when pUN and qUN, respectively. They are trivial when p > N and

q > N respectively. It is possible to choose such a and b by our assumption

ab > �pÿ 1��qÿ 1�. De®ne functions A and B by

A�r� � 2a for 0U rU 1;

2ark for rV 1;

�
and

B�r� � 2b for 0U rU 1;

2brl for rV 1;

�
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respectively. Put R� � �0;y�. We regard the space C�R�� � C�R�� as a

FreÂchet space equipped with the topology of uniform convergence of functions

on each compact subinterval in R�. Let Y HC�R�� � C�R�� denotes the

subset de®ned by

Y � f�y; z� A C�R�� � C�R�� : aU y�r�UA�r�; bU z�r�UB�r�; rV 0g:

Obviously, Y is a non-empty closed convex subset of C�R�� � C�R��.
Consider the mapping F : Y ! C�R�� � C�R�� de®ned by F�y; z� � �~y;~z�,
where

~y�r� � a�
� r

0

s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�pÿ1�
ds; rV 0;

and

~z�r� � b�
� r

0

s1ÿN

� s

0

tNÿ1K�t�y�t�bdt

� �1=�qÿ1�
ds; rV 0:

In order to apply the Schauder-Tychono¨ ®xed point theorem, we will show

that F is a continuous mapping from Y into itself such that F�Y� is relatively

compact.

(I) F maps Y into itself. Let �y; z� A Y . Clearly, ~y�r�V a and

~z�r�Vb. For 0U rU 1, we have

~y�r�U a�
� r

0

� s

0

H�t�z�t�adt

� �1=�pÿ1�
ds

U a�
�1

0

�2b�a
�1

0

H�t�dt

� �1=�pÿ1�
ds

U a� a

2
U 2a:

When pUN, for rV 1, we have

~y�r� � a�
�1

0

�
� r

1

� �
s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�pÿ1�
ds

U a� a

2
�
� r

1

s�1ÿN�=�pÿ1� �2b�a
�1

0

H�t�dt� �2b�aL1

� s

1

tNÿ1ÿl�aldt

� �1=�pÿ1�
ds

U
3

2
a� �2b�a max

�1

0

H�t�dt;
L1

N ÿ l� al

� �� �1=�pÿ1�� r

1

s��pÿl�al�=�pÿ1��ÿ1 ds
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U
3

2
a�M1�N; p� �2b�a max

�1

0

H�t�dt;
L1

N ÿ l� al

� �� �1=�pÿ1�
r� pÿl�al�=� pÿ1�

U
3

2
a� a

2
rk U 2ark:

When p > N, for rV 1, we have

~y�r� � a�
�1

0

�
� r

1

� �
s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�pÿ1�
ds

U a� a

2
�

� r

1

s�1ÿN�=�pÿ1�ds

� � � r

0

tNÿ1H�t�z�t�adt

� �1=�pÿ1�

U
3

2
a�M1�N; p�r� pÿN�=�pÿ1�

� �2b�a
�1

0

H�t�dt� L1�2b�a
� r

1

tNÿ1ÿl�aldt

� �1=�pÿ1�

U
3

2
a�M1�N; p� �2b�a max

�1

0

H�t�dt;
L1

N ÿ l� al

� �� �1=�pÿ1�
r� pÿl�al�=�pÿ1�

U
3

2
a� a

2
rk U 2ark:

Thus we obtain

aU ~y�r�UA�r�; rV 0:

A similar computation shows that

bU~z�r�UB�r�; rV 0:

Therefore F�Y �HY .

(II) F is continuous. Let f�ym; zm�g be a sequence in Y which con-

verges to �y; z� A Y uniformly on each compact subinterval of R�. Put

fm�r� � r1ÿN

� r

0

sNÿ1H�s�zm�s�ads:

Then we have

jfm�r� ÿ f�r�jU
� r

0

H�s�jzm�s�a ÿ z�s�ajds;�11�

and

j~ym�r� ÿ ~y�r�jU
� r

0

jfm�s�1=�pÿ1� ÿ f�s�1=�pÿ1�jds:�12�
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Let R > 0 be an arbitrary constant. Since fzmg converges to z uniformly

on �0;R�, it follows from (11) that ffmg converges to f uniformly on �0;R�; and

hence ff1=�pÿ1�
m g converges to f1=�pÿ1� uniformly on �0;R�. From this fact

and (12), we see that f~ymg converges to ~y uniformly on �0;R�. Similarly, f~zmg
converges to ~z uniformly on each compact subinterval of �0;y�. These imply

the continuity of F.

(III) F�Y� is relatively compact. To see this, it su½ces to verify the

local equicontinuity of F�Y �, since F�Y � is locally uniformly bounded by the

fact that F�Y�HY . Let �y; z� A Y and R > 0. Then we have

~y 0�r� �
� r

0

s

r

� �Nÿ1

H�s�z�s�ads

 !1=�pÿ1�
U

�R

0

H�s�B�s�ads

� �1=�pÿ1�

and

~z 0�r� �
� r

0

s

r

� �Nÿ1

K�s�y�s�bds

� �1=�qÿ1�
U

�R

0

K�s�A�s�bds

� �1=�qÿ1�
:

Obviously, these imply the local boundedness of the set f�~y 0;~z 0�j�y; z� A Yg.
Hence the relative compactness of F�Y � is shown by the Ascoli-ArzelaÁ

theorem.

Therefore, there exists �y; z� A Y such that �y; z� �F�y; z� by the

Schauder-Tychono¨ ®xed point theorem, that is, �y; z� satis®es the integral

equation (8). The function �u�x�; v�x�� � �y�jxj�; z�jxj�� then gives a solution

of (1). Since in®nitely many �a; b� satisfy (9) and (10), we can construct an

in®nitude of positive radial entire solutions of (1). This completes the proof.

3. Proof of Theorem 2

In this section, we prove Theorem 2. We give a preparatory observation

as a ®rst step.

Let �u; v� be a nonnegative nontrivial radial entire solution of (1). Then

�u; v� satis®es the system of ordinary di¨erential equation

�rNÿ1ju 0�r�jpÿ2u 0�r��0 � rNÿ1H�r�v�r�a; r > 0; u 0�0� � 0;

�rNÿ1jv 0�r�jqÿ2v 0�r��0 � rNÿ1K�r�u�r�b; r > 0; v 0�0� � 0;

(
�13�

where r � jxj and 0 � d=dr. Integrating (13) over �0; r�, we have

ju 0�r�jpÿ2u 0�r� � r1ÿN

� r

0

sNÿ1H�s�v�s�ads; r > 0:

Hence, we see that u 0�r�V 0 for rV 0. Similarly we have v 0�r�V 0 for
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rV 0. Integrating (13) twice over �R; r�;RV 0, we have

u�r�V u�R� �
� r

R

� s

R

t

s

� �Nÿ1

H�t�v�t�adt

 !1=�pÿ1�
ds; rVR;

v�r�V v�R� �
� r

R

� s

R

t

s

� �Nÿ1

K�t�u�t�bdt

 !1=�qÿ1�
ds; rVR:

8>>>>>><>>>>>>:
�14�

Since the functions u and v are nondecreasing on �0;y�, there is an r�V 0 such

that u�r�� > 0 or v�r�� > 0. We see from (14) with R � r� that u�r� > 0 and

v�r� > 0 for r > r�. Let us ®x r1 > maxfr0; r�g.
Let R > r1. Using (4) and inequality

t

s

� �Nÿ1

V
1

3

� �Nÿ1

for RU tU sU 3R�15�

in (14), we have

u�r�V u�R� �
� r

R

� s

R

1

3

� �Nÿ1

L1tÿlv�t�adt

 !1=�pÿ1�
ds

VC1Rÿl=�pÿ1�
� r

R

� s

R

v�t�adt

� �1=�pÿ1�
ds; RU rU 3R;

and

v�r�VC2Rÿm=�qÿ1�
� r

R

� s

R

u�t�bdt

� �1=�qÿ1�
ds; RU rU 3R;

where C1 and C2 are some positive constants independent of r and R. Now,

we ®x R > r1 arbitrary for a moment, and put

f �r; R� � C1Rÿl=�pÿ1�
� r

R

� s

R

v�t�adt

� �1=�pÿ1�
ds; RU rU 3R;�16�

and

g�r; R� � C2Rÿm=�qÿ1�
� r

R

� s

R

u�t�bdt

� �1=�qÿ1�
ds; RU rU 3R:�17�

For simplicity of notation, we sometimes write f �r; R� � f �r� and g�r; R� � g�r�
if there is no ambiguity. Then

f �R� � f 0�R� � g�R� � g 0�R� � 0;
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f 0�r� � C1Rÿl=�pÿ1�
� r

R

v�s�ads

� �1=�pÿ1�
V 0; RU rU 3R;

g 0�r� � C2Rÿm=�qÿ1�
� r

R

u�s�bds

� �1=�qÿ1�
V 0; RU rU 3R;

f 00�r� > 0; g 00�r� > 0; R < rU 3R;

� f 0�r�pÿ1�0 � C3Rÿlv�r�a VC3Rÿlg�r�a; RU rU 3R;�18�
and

�g 0�r�qÿ1�0 � C4Rÿmu�r�b VC4Rÿmf �r�b; RU rU 3R;�19�
where C3 � C

pÿ1
1 and C4 � C

qÿ1
2 . From now on, we use C to denote various

positive constants independent of r and R, as we will have no confusion.

Multiplying (18) by g 0V 0 and integrating by parts the resulting inequality

on �R� e; r�, e > 0, we see that

f 0�r�pÿ1g 0�r�V C3

a� 1
Rÿlfg�r�a�1 ÿ g�R� e�a�1g; R� eU rU 3R:

Letting e! 0, we obtain

f 0�r�g 0�r�1=�pÿ1�VCRÿl=�pÿ1�g�r��a�1�=� pÿ1�; RU rU 3R:

Multiplying this inequality by g 0 and integrating by parts, we see that

f �r�g 0�r�p=�pÿ1�VCRÿl=�pÿ1�g�r��a�p�=�pÿ1�; RU rU 3R:

From (19), we have

�g 0�r�qÿ1�0g 0�r�pb=�pÿ1�VCRÿ�lb�m�pÿ1��=�pÿ1�g�r�b�a�p�=�pÿ1�; RU rU 3R:

Multiplying this relation by g 0 and integrating by parts, we obtain

g 0�r�VCRÿ�lb�m� pÿ1��=�bp�q�pÿ1��g�r��b�a�p��pÿ1�=�bp�q�pÿ1��; RU rU 3R:

Since
b�a� p� � pÿ 1

pb � q�pÿ 1� > 1, we can set
b�a� p� � pÿ 1

pb � q�pÿ 1� � d1 � 1; d1 > 0. Thus

g 0�r�g�r�ÿd1ÿ1 VCRÿ�lb�m�pÿ1��=�bp�q� pÿ1��; RU rU 3R:

Integrating over �2R; 3R�, we see that

g�2R; R�ÿd1 VCRh1 ; R > r1:�20�
Repeating similar argument as above by replacing g�r� by f �r�, we obtain

f �2R; R�ÿd2 VCRh2 ; R > r1:�21�
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Here the constants d1; h1; d2, and h2 are given, respectively, by

d1 � ab ÿ �pÿ 1��qÿ 1�
pb � q�pÿ 1� > 0; h1 �

b�pÿ l� � �pÿ 1��qÿ m�
pb � q�pÿ 1� ;

d2 � ab ÿ �pÿ 1��qÿ 1�
qa� p�qÿ 1� > 0 and h2 �

a�qÿ m� � �qÿ 1��pÿ l�
qa� p�qÿ 1� :

Inequalities (20) and (21) play important role to prove Theorem 2.

On the other hand, from (17) and the monotonicity of u, we have

g�2R; R� � C2Rÿm=�qÿ1�
�2R

R

� s

R

u�t�bdt

� �1=�qÿ1�
ds�22�

VC2Rÿm=�qÿ1�u�R�b=�qÿ1�
�2R

R

�sÿ R�1=�qÿ1�ds

� CR�qÿm�=�qÿ1�u�R�b=�qÿ1�:

Similarly, from (16) and the monotonicity of v, we have

f �2R; R�VCR� pÿl�=�pÿ1�v�R�a=�pÿ1�:�23�
Proof of Theorem 2. Suppose to the contrary that system (1) has a

nonnegative nontrivial radial entire solution �u; v�. From preceding obser-

vation, we see that u�r�; v�r� > 0, rV r1 for some r1 > r0, and inequalities (20)±

(23) hold for rV r1. If h1 V 0 or h2 V 0, then we show that g�2R; R� !y or

f �2R; R� !y as R!y to get a contradiction. Otherwise, we show that

Rh1 g�2R; R�d1 !y or Rh2 f �2R; R�d2 !y as R!y. Through this proof,

the letter ~C will be used to denote various positive constants independent of r

and R.

(i) Let pUN and qUN. We may consider only the case that lU p

and mU
b�pÿ l�

pÿ 1
� q. The other case that mU q and lU

a�qÿ m�
qÿ 1

� p can be

treated similarly. We easily see that h1 V 0 in (20). So it su½ces to show that

g�2R; R� !y as R!y.

We ®rst show that, for rV r2 > r1,

u�r�V
~Cr� pÿl�=�pÿ1�; l < pUN;
~C log r; l � p < N;

~C�log r�p=�pÿ1�; l � p � N:

8><>:�24�

Let rV r1. Integrating (13) twice over �r1; r�, we have
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u�r�V u�r1� �
� r

r1

s�1ÿN�=� pÿ1�
� s

r1

tNÿ1H�t�v�t�adt

� �1=�pÿ1�
ds; rV r1;

v�r�V v�r1� �
� r

r1

s�1ÿN�=�qÿ1�
� s

r1

tNÿ1K�t�u�t�bdt

� �1=�qÿ1�
ds; rV r1:

8>>>><>>>>:�25�

Then from (4) and (25) we observe that, for l < pUN

u�r�V �L1v�r1�a�1=�pÿ1�
� r

r1�1

s�1ÿN�=�pÿ1�
� s

r1

tNÿ1ÿl dt

� �1=�pÿ1�
ds

V ~C

� r

r1�1

s�1ÿl�=�pÿ1� ds; rV r1 � 1;

for l � p < N

u�r�V �L1v�r1�a�1=�pÿ1�
� r

r1�1

s�1ÿN�=�pÿ1�
� s

r1

tNÿ1ÿl dt

� �1=�pÿ1�
ds

V ~C

� r

r1�1

sÿ1 ds; rV r1 � 1;

and for l � p � N

u�r�V �L1v�r1�a�1=�pÿ1�
� r

r1�1

sÿ1

� s

r1

tÿ1 dt

� �1=�pÿ1�
ds

V ~C

� r

r1�1

sÿ1�log s�1=�pÿ1�ds; rV r1 � 1:

Thus we obtain (24).

Let us ®x R > r2 arbitrarily. From (22) and (24), we obtain

g�2R; R�V
~CRt1 ; l < p;

~CR�qÿm�=�qÿ1��log R�b=�qÿ1�; l � p < N;

~CR�qÿm�=�qÿ1��log R�bp=��pÿ1��qÿ1��; l � p � N;

8><>:
where t1 � 1

qÿ 1
qÿ m� b�pÿ l�

pÿ 1

� �
. For l � p, we see that mU q, which

shows that g�2R; R� !y as R!y. For l < p, we observe that g�2R; R� !
y if m <

b�pÿ l�
pÿ 1

� q.

It remains only to discuss the case where l < p and m � b�pÿ l�
pÿ 1

� q. In

this case we will show that Rh2 f �2R; R�d2 !y as R!y. To this end, we
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prove that, for rV r3 > r2 � 1,

v�r�V
~C log r; q < N;

~C�log r�q=�qÿ1�; q � N:

(
�26�

Let r > r2 � 1. Then from (24) and (25) we observe that, for q < N

v�r�V �L2
~C b�1=�qÿ1�

� r

r2�1

s�1ÿN�=�qÿ1�
� s

r2

tNÿ1ÿm��b�pÿl�=�pÿ1�� dt

� �1=�qÿ1�
ds

� ~C

� r

r2�1

s�1ÿN�=�qÿ1�
� s

r2

tNÿ1ÿq dt

� �1=�qÿ1�
ds

V ~C

� r

r2�1

sÿ1 ds;

and for q � N

v�r�V �L2
~C b�1=�qÿ1�

� r

r2�1

sÿ1

� s

r2

tÿ1 dt

� �1=�qÿ1�
ds

V ~C

� r

r2�1

sÿ1�log s�1=�qÿ1�ds:

Thus we obtain (26).

We ®x R > r3 arbitrarily. Then from (23) and (26), we have

f �2R; R�V
~CR� pÿl�=�pÿ1��log R�a=�pÿ1�; q < N;

~CR� pÿl�=�pÿ1��log R�aq=��pÿ1��qÿ1��; q � N:

(

Hence, we see that

Rh2 f �2R; R�d2 V
~CRt2�log R�ad2=�pÿ1�; q < N;

~CRt2�log R�aqd2=��pÿ1��qÿ1��; q � N;

(

where t2 � h2 �
pÿ l

pÿ 1
d2. An easy computation shows that t2 � 0, and hence

Rh2 f �2R; R�d2 !y as R!y. Thus the proof of (i) is complete.

(ii) Let p > N and q > N. It su½ces to treat the case that

lU
a�qÿN�

qÿ 1
�N and mU

b�pÿ l�
pÿ 1

� ab�qÿN�
�pÿ 1��qÿ 1� �N. We show that

Rh1 g�2R; R�d1 !y or Rh2 f �2R; R�d2 !y as R!y. The proof is divided

further into three cases.
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(I) The case l <
a�qÿN�

qÿ 1
�N and m <

b�pÿ l�
pÿ 1

� ab�qÿN�
�pÿ 1��qÿ 1� �N.

First we show that

u�r�V ~Cr��qÿ1��pÿl��a�qÿN��=��pÿ1��qÿ1��; rV r2 > r1:�27�
From (25) we observe that, for r > r1 � 1

v�r�V v�r1� �
� r

r1�1

s�1ÿN�=�qÿ1�
� r1�1

r1

tNÿ1K�t�u�t�bdt

� �1=�qÿ1�
ds

V
� r1�1

r1

tNÿ1K�t�u�t�bdt

� �1=�qÿ1�� r

r1�1

s�1ÿN�=�qÿ1�ds:

Thus, we obtain

v�r�V ~Cr�qÿN�=�qÿ1�; rV~r1 > r1 � 1:�28�
From this estimate and (25), we have for rV~r1 � 1

u�r�V � ~CL1�1=�pÿ1�
� r

~r1�1

s�1ÿN�=�pÿ1�
� s

~r1

tNÿ1ÿl��a�qÿN�=�qÿ1�� dt

� �1=�pÿ1�
ds

V ~C

� r

~r1�1

s1=�pÿ1�f1ÿl��a�qÿN�=�qÿ1��g ds:

Thus we obtain (27).

Let us ®x R > r2 arbitrarily. From (22) and (27), we obtain

g�2R; R�V ~CRg;

where g � 1

qÿ 1
qÿ m� b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1�

� �
. From this estimate, we

have

Rh1 g�2R; R�d1 V ~CRt1 ;

where

t1 � h1 � gd1

� b�pÿ l� � �pÿ 1��qÿ m�
pb � q�pÿ 1�

� ab ÿ �pÿ 1��qÿ 1�
�qÿ 1�fpb � q�pÿ 1�g qÿ m� b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1�

� �

� ab

�qÿ 1�fpb � q�pÿ 1�g N ÿ m� b�pÿ l�
pÿ 1

� ab�qÿN�
�pÿ 1��qÿ 1�

� �
:
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From the condition of m we see that t1 > 0, which shows that

Rh1 g�2R; R�d1 !y as R!y.

(II) The case l <
a�qÿN�

qÿ 1
�N and m � b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N.

Let r > r2 � 1. Then from (25) and (27), we have

v�r�V � ~CL2�1=�qÿ1�
� r

r2�1

s�1ÿN�=�qÿ1��29�

�
� s

r2

tNÿ1ÿm��b�pÿl�=�pÿ1����ab�qÿN�=��pÿ1��qÿ1��� dt

� �1=�qÿ1�
ds

V ~C

� r

r2�1

s�1ÿN�=�qÿ1��log s�1=�qÿ1�ds

V ~Cr�qÿN�=�qÿ1��log r�1=�qÿ1�; rV r3 > r2 � 1:

Here, the ®nal inequality is given by integration by parts.

Let R > r3 be large enough. From (23) and (29), we obtain

f �2R; R�V ~CR��pÿl��qÿ1��a�qÿN��=��pÿ1��qÿ1���log R�a=��pÿ1��qÿ1��:

Hence, by this estimate we see that

Rh2 f �2R; R�d2 V ~CRh2����pÿl��qÿ1��a�qÿN��=��pÿ1��qÿ1���d2�log R�ad2=��pÿ1��qÿ1��:

By an easy computation we have h2 �
�pÿ l��qÿ 1� � a�qÿN�

�pÿ 1��qÿ 1� d2 � 0. This

shows that Rh2 f �2R; R�d2 !y as R!y.

(III) The case l � a�qÿN�
qÿ 1

�N and mU
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N

� b�pÿN�
pÿ 1

�N. Let r > ~r1 � 1. Then from (25) and (28), we have

u�r�V � ~CL1�1=�pÿ1�
� r

~r1�1

s�1ÿN�=�pÿ1�
� s

~r1

tNÿ1ÿl��a�qÿN�=�qÿ1��dt

� �1=�pÿ1�
ds�30�

V ~C

� r

~r1�1

s�1ÿN�=�pÿ1��log s�1=� pÿ1�ds

V ~Cr� pÿN�=�pÿ1��log r�1=� pÿ1�; rV r4 > ~r1 � 1:

Let R > r4 be su½ciently large. From (22) and (30), we see that

g�2R; R�V ~CR��qÿm��pÿ1��b�pÿN��=��pÿ1��qÿ1���log R�b=��pÿ1��qÿ1��:
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By this estimate, we obtain

Rh1 g�2R; R�d1 V ~CRt2�log R�bd1=��pÿ1��qÿ1��; RV r4;

where t2 � ab

�qÿ 1�fpb � q�pÿ 1�g N ÿ m� b�pÿN�
pÿ 1

� �
V 0. Hence, we see

that Rh1 g�2R; R�d1 !y as R!y. Thus the proof of (ii) is completed.

(iii) Let pUN and q > N. We consider the case (I) lU
a�qÿN�

qÿ 1
� p,

mU
b�pÿ l�

pÿ 1
� ab�qÿN�
�pÿ 1��qÿ 1� �N ®rst, and then the case (II) mUN, lU

a�qÿ m�
qÿ 1

� p. The proofs of (I) and (II) are almost the same as those of

(ii) and (i), respectively. So we leave the proof to the readers.

The proof of (iv) is essentially the same as that of (iii). Thus we may

conclude the proof of Theorem 2.

4. A further study for the case of p � q � N

To begin with, we give an example for which we cannot apply Theorems 1

and 2 for the case p � q � N. Let us consider the elliptic system

DNu � 1

�jxj � 2�N log�jxj � 2� v
a;

DNv � 1

�jxj � 2�N log�jxj � 2� u
b;

8>>><>>>: x A RN ;�31�

where N V 2; a > 0; b > 0 and ab > �N ÿ 1�2. We can easily ®nd that

C1

jxjN�e
U

1

�jxj � 2�N log�jxj � 2� U
C2

jxjN ; jxjV 2;

where e > 0, C1 � C1�e� > 0 and C2 > 0 are constants. We see therefore that

neither the condition of (i) of Theorem 1 nor that of (i) of Theorem 2

holds. But, according to [20, Theorem 2.2], it is found that (31) has no

positive radial entire solution when N � 2.

So, we will improve Theorems 1 and 2 for the case p � q � N so that we

can determine whether such systems have positive radial entire solutions or not.

Our results are as follows:

Theorem 3. Let p � q � N. Suppose that H and K satisfy

H�jxj�U L1

jxjN�logjxj�l
; K�jxj�U L2

jxjN�logjxj�m ; jxjV r0 > 1;
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where L1 and L2 are positive constants and

l >
a�b �N ÿ m�

N ÿ 1
� 1

m >
b�a�N ÿ l�

N ÿ 1
� 1:

8><>:
Then (1) has in®nitely many positive radial entire solutions.

Theorem 4. Let p � q � N. Suppose that H and K satisfy

H�jxj�V L1

jxjN�logjxj�l
; K�jxj�V L2

jxjN�logjxj�m ; jxjV r0 > 1;�32�

where L1 and L2 are positive constants and

l <
a�b �N ÿ m�

N ÿ 1
� 1 or

m <
b�a�N ÿ l�

N ÿ 1
� 1:

8>><>>:
Then (1) does not possess any nonnegative nontrivial radial entire solutions.

Remark. From Theorem 4, we ®nd that (31) has no nonnegative

nontrivial radial entire solutions even when N V 3.

Proof of Theorem 3. Without loss of generality, we may assume that

r0 � e. As in the proof of Theorem 1, it su½ces to solve (8). Choose

constants a > 0 and b > 0 so that

e �2b�a
� e

0

H�t�dt

� �1=�Nÿ1�
U

a

2
;

�2b�a max eNÿ1

� e

0

H�t�dt;
L1

al ÿ l� 1

� �� �1=�Nÿ1�
U

a

2
;

8>>>><>>>>:
and

e �2a�b
� e

0

K�t�dt

� �1=�Nÿ1�
U

b

2
;

�2a�b max eNÿ1

� e

0

K�t�dt;
L2

bk ÿ m� 1

� �� �1=�Nÿ1�
U

b

2
;

8>>>><>>>>:
where k � �N ÿ 1��lÿN� ÿ a�N ÿ m�

ab ÿ �N ÿ 1�2 > 0, l � �N ÿ 1��mÿN� ÿ b�N ÿ l�
ab ÿ �N ÿ 1�2 > 0.

It is possible to choose such a and b by the assumption ab > �N ÿ 1�2. Put
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A�r� � 2a; 0U rU e

2a�log r�k; rV e;

�
and

B�r� � 2b; 0U rU e

2b�log r� l ; rV e:

�
Consider the set

Y � f�y; z� A C�R�� � C�R�� : aU y�r�UA�r�; bU z�r�UB�r�; rV 0g;
which is a closed convex subset of C�R�� � C�R��. De®ne the mapping

F : Y ! C�R�� � C�R�� by F�y; z� � �~y;~z�, where

~y�r� � a�
� r

0

s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�Nÿ1�
ds; rV 0;

and

~z�r� � b�
� r

0

s1ÿN

� s

0

tNÿ1K�t�y�t�bdt

� �1=�Nÿ1�
ds; rV 0:

First we show that F�Y�HY . Let �y; z� A Y . Clearly, ~y�r�V a and

~z�r�V b. For 0U rU e, we have

~y�r� � a�
� r

0

sÿ1

� s

0

tNÿ1H�t�z�t�adt

� �1=�Nÿ1�
ds

U a�
� r

0

� s

0

H�t�z�t�adt

� �1=�Nÿ1�
ds

U a� e �2b�a
� e

0

H�t�dt

� �1=�Nÿ1�

U a� a

2
U 2a:

For rV e, we have

~y�r� � a�
� e

0

�
� r

e

� �
s1ÿN

� s

0

tNÿ1H�t�z�t�adt

� �1=�Nÿ1�
ds

U a� a

2
�

� r

e

sÿ1 ds

� � � r

0

tNÿ1H�t�z�t�adt

� �1=�Nÿ1�

U
3

2
a� �2b�aeNÿ1

� e

0

H�t�dt� L1�2b�a
� r

e

tÿ1�log t�alÿl
dt

� �1=�Nÿ1�
log r
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U
3

2
a� �2b�a max eNÿ1

� e

0

H�t�dt;
L1

al ÿ l� 1

� �� �1=�Nÿ1�
�log r��Nÿl�al�=�Nÿ1�

U
3

2
a�log r�k � a

2
�log r�k � 2a�log r�k:

Thus we obtain

aU ~y�r�UA�r�; rV 0:

A similar computation shows that

bU~z�r�UB�r�; rV 0:

Therefore F�y; z� A Y . The continuity of F and the relative compactness of

F�Y � can be veri®ed in a routine manner, and so by the Schauder-Tychono¨

®xed point theorem there exists an element �y; z� A Y such that �y; z� �
F�y; z�. It is clear that this �y; z� gives rise to a positive radial entire solution

�u; v� � �y�jxj�; z�jxj�� of (1). The proof is completed.

Proof of Theorem 4. It su½ces to treat the case that l < a� 1 and

m <
b�a�N ÿ l�

N ÿ 1
� 1. The proof is carried out by contradiction as before.

Suppose to the contrary that system (1) admits a nonnegative nontrivial radial

entire solution �u; v�.
Step 1. As in the proof of Theorem 2, we may suppose that u�r�; v�r� > 0,

rV r1 for some r1 > r0. Let R > r1 be su½ciently large. As in the proof of

Theorem 2, integrating (13) on �R; r� and using (32) and inequality (15), we

have

u�r�VC1RÿN=�Nÿ1��log R�ÿl=�Nÿ1�
� r

R

� s

R

v�t�adt

� �1=�Nÿ1�
ds;�33�

RU rU 3R;

and

v�r�VC2RÿN=�Nÿ1��log R�ÿm=�Nÿ1�
� r

R

� s

R

u�t�bdt

� �1=�Nÿ1�
ds;�34�

RU rU 3R;

where C1 and C2 are some positive constants independent of r and R. Let us

de®ne the functions f �r; R� and g�r; R� for RU rU 3R by the right hand sides

of (33) and (34), respectively. Then using similar arguments as in the proof of

Theorem 2, we see that

C3 V �log R�h1 g�2R; R�d1 ; R > r1;�35�

Positive radial entire solutions 457



and

C4 V �log R�h2 f �2R; R�d2 ; R > r1;�36�
where C3, C4, d1 and d2 are positive constants and h1 and h2 are constants

given by h1 � ÿ
bl� m�N ÿ 1�

Nb �N�N ÿ 1� and h2 � ÿ
am� l�N ÿ 1�

Na�N�N ÿ 1�. To get a con-

tradiction to (35) or (36), we will show that �log R�h1 g�2R; R�d1 !y or

�log R�h2 f �2R; R�d2 !y as R!y. Note that, as before, we can get

f �2R; R�VC5�log R�ÿl=�Nÿ1�v�R�a=�Nÿ1�; R > r1;�37�
and

g�2R; R�VC6�log R�ÿm=�Nÿ1�u�R�b=�Nÿ1�; R > r1;�38�
where C5 and C6 are some positive constants independent of r and R.

Step 2. First we will obtain the estimates of u and v from below. Using

the same letter C to denote various positive constants depending on

L1;L2;N; a; b; l and m. From (25) we observe that, for r > r1 � 1,

v�r�V v�r1� �
� r

r1�1

sÿ1

� r1�1

r1

tNÿ1K�t�u�t�bdt

� �1=�Nÿ1�
ds

V
� r1�1

r1

tNÿ1K�t�u�t�bdt

� �1=�Nÿ1�� r

r1�1

sÿ1 ds:

Then, we obtain
v�r�VC log r; rV r2 > r1 � 1:

From this estimate and (25), we have

u�r�V �C aL1�1=�Nÿ1�
� r

r2�1

sÿ1

� s

r2

tÿ1�log t�ÿl�adt

� �1=�Nÿ1�
ds

VC

� r

r2�1

sÿ1�log s��aÿl�1�=�Nÿ1�
ds

VC�log r��a�Nÿl�=�Nÿ1�; rV r3 > r2 � 1:

Again from this estimate and (25), we have

v�r�VC

� r

r3�1

sÿ1

� s

r3

tÿ1�log t�ÿm��b�a�Nÿl�=�Nÿ1��dt

� �1=�Nÿ1�
ds

VC

� r

r3�1

sÿ1�log s�1=�Nÿ1�fÿm��b�a�Nÿl�=�Nÿ1���1g
ds

VC�log r�1=�Nÿ1�fÿm��b�a�Nÿl�=�Nÿ1���1g�1; rV r4 > r3 � 1:
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By repeating this procedure, we can get inductively two positive sequences

fCmg and frmg satisfying

r1 < r2 < � � � < rm < � � � ;
u�r�VCm�log r�g��az=�Nÿ1�2�tm ; rV rm;�39�

and

v�r�VCm�log r��z=�Nÿ1��tm�1; rV rm;�40�
where

g � a�N ÿ l

N ÿ 1
> 0; z � ÿm� bg� 1 > 0;

tm � 1� ab

�N ÿ 1�2 � � � � �
ab

�N ÿ 1�2
( )mÿ1

; m � 1; 2; . . . :

Since ab > �N ÿ 1�2 by our fundamental assumption, we see that

limm!y tm �y.

From (37), (38), (39) and (40) we obtain

f �2R; R�V �Cm�a=�Nÿ1��log R���aÿl�=�Nÿ1����az=�Nÿ1�2�tm ; RV rm;

and

g�2R; R�V �Cm�b=�Nÿ1��log R���bgÿm�=�Nÿ1����abz=�Nÿ1�3�tm ; RV rm:

Therefore, we have

�log R�h1 g�2R; R�d1 V �Cm�ad1=�Nÿ1��log R�M1�M2tm ; RV rm

and

�log R�h2 f �2R; R�d2 V �Cm�bd2=�Nÿ1��log R�M3�M4tm ; RV rm;

where Mi, i � 1; . . . ; 4 are constants and M2 > 0;M4 > 0. Since limm!y tm �
y, there exist m 0 and m 00 such that M1 �M2tm 0 > 0 and M3 �M4tm 00 > 0.

These imply that �log R�h1 g�2R; R�d1 !y or �log R�h2 f �2R; R�d2 as R!y,

which contradicts (35) or (36). Thus the proof is completed.

Remark. Considering some results in [20], we conjecture that Theorem 4

is still true even though the condition for �l; m� is weakened to

lU
a�b �N ÿ m�

N ÿ 1
� 1 or

mU
b�a�N ÿ l�

N ÿ 1
� 1:

8>><>>:
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