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Abstract. In 1970, Keller and Segel proposed a parabolic system describing the

chemotactic feature of cellular slime molds and recently, several mathematical works

have been devoted to it. In the present paper, we study its blowup mechamism and

prove the following. First, chemotactic collapse occurs at each isolated blowup

point. Next, any blowup point is isolated, provided that the Lyapunov function is

bounded from below. Finally, only the origin can be a blowup point of radially

symmetric solutions.

1. Introduction

A system of parabolic partial di¨erential equations of mathematical bi-

ology is attracting interest. It was proposed by Nanjundiah [22] in 1973, as a

simpli®ed model of the Keller and Segel system [16] describing a chemotactic

feature, the aggregation of some organisms (cellular slime molds) sensitive to

gradient of a chemical substance. Precisely, with u�x; t� and v�x; t� standing

for the density of the organism and the concentration of the chemical substance

at the position x A W and the time t A �0;T�, respectively, it is given as

qu

qt
� ` � �`uÿ wu`v� in W� �0;T�

t
qv

qt
� Dvÿ gv� au in W� �0;T�

qu

qn
� qv

qn
� 0 on qW� �0;T�

u�� ; 0� � u0; v�� ; 0� � v0 on W;

8>>>>>>>>><>>>>>>>>>:
�KS�

where

(A1) t, a, g and w are positive constants

(A2) W is a bounded domain in R2 with smooth boundary qW

(A3) n denotes the unit outer normal vector
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(A4) u0 and v0 are smooth, nonnegative, and nontrivial initial values on W.

The ®rst equation describes the conservation of mass. Flux of u is given by

F � ÿ`u� wu`v

so that the e¨ect of di¨usion ` � `u and that of chemotaxis ` � wu`v are

competing for u to vary. The second equation is linear, and v is produced

proportionarily to u, di¨uses, and is destroyed by a certain rate.

The phenomenon of the blowup in a ®nite time of the solution is im-

portant from both mathematical and biological points of view. There are

conjectures by Nanjundiah [22], Childress [5], and Childress and Percus [6];

c� � c� � c � 8p=�aw� is the threshold number in the following sense: if

ku0kL1�W� < c� then the solution exists globally in time and if ku0kL1�W� > c�

then u�x; t� can form a delta function singularity in a ®nite time. The latter

case is referred to as the chemotactic collapse. The arguments were heuristic,

making use of numerical computations for the stationary problem, while recent

studies are supporting their validity rigorously ([12], [14], [19], [20] and [21]).

First, the existence of such numbers c� and c� was proven by JaÈger and

Luckhaus [14] for a simpli®ed system. Later, Nagai [19] treated another

system, (KS) with t � 0, referred to as N model in the present paper; as [6]

conjectured, 8p=�aw� is actually the threshold number in the above sense for

radially symmetric solutions. Then, several works were devoted to the full

system, (KS) with t > 0. Particularly, Herrero and VelaÂzquez [12] constructed

a radially symmetric solution with u collapsing at the origin in a ®nite time,

having the concentrated mass equal to 8p=�aw�. Its counter part was shown by

Nagai, Senba, and Yoshida [21]; radial solutions exist globally in time with

uniformly bounded, provided that ku0kL1�W� < 8p=�aw�. In this way, conjecture

[5] has been almost settled down in the a½rmative for radially symmetric

solutions.

As for the general case, contrarily to the conjecture, [21] gave only

ku0kL1�W� < 4p=�aw�
as a criterion for the existence of global solutions. (The same result is

obtained by Biler [3] and Gajewski and Zacharias [7] independently.) But this

number 4p=�aw� is also realized to be best possible and the reason for the

discrepancy between radial and non-radial cases has been clari®ed by Nagai,

Senba and Suzuki [20] and Senba and Suzuki [23]. Namely, the former

studied N model and showed, among others, that if 4p=�aw�U ku0kL1�W� <
8p=�aw� and the solution blows up in a ®nite time then the concentration

toward qW occurs to u. (This phenomenon is proven also for the full system

recently by Senba and Suzuki [25] and Harada, Nagai, Senba, and Suzuki

[10].) On the other hand the latter studied the stationary problem in details;
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the underlying variational structure and its e¨ects to the dynamics. In par-

ticular, it asserts that many non-radial stationary solutions, missed by [6], exist

and take roles in non-stationary problems even in the case that W is a disc.

Through those studies we are led to the following conjecture:

Component u forms a delta function singularity at each blowup point x0 A W

with the concentrated mass equal to 8p=�aw� and 4p=�aw� according to x0 A W

and x0 A qW, respectively.

Actually Senba and Suzuki [24] studied N model and proved the above

phenomenon with the mass greater than or equal to the expected values. The

present paper studies the full system and proves the following; if the solution

�u; v� blows-up in a ®nite time, then u forms a delta function singularity at each

isolated blowup point, and any blowup point is isolated, provided that the

Lyapunov function described below is bounded. Finally, only the origin can

be a blowup point of radially symmetric solutions.

2. Summary

Let us put that

t � a � g � w � 1

for simplicity. The following facts are known.

1. ([27], [3]) Given smooth nonnegative initial data u0 2 0 and v0, we have a

unique classical solution �u�� ; t�; v�� ; t�� to (KS) de®ned on the maximal time

interval �0;Tmax�. The solution is smooth and positive on W� �0;Tmax�. If

Tmax < �y, then it holds that

lim sup
t"Tmax

ku�� ; t�kLy�W� � �y:

2. ([21], [3], [7]) Putting

W�t� �
�

W

u log uÿ uv� 1

2
�j`vj2 � v2�

� �
dx;

we have

d

dt
W�t� �

�
W

v2
t dx�

�
W

uj` � �log uÿ v�j2dx � 0:

In particular, W�t� is a Lyapunov function. It is monotone decreasing, so

that either

inf
0Ut<Tmax

W�t� > ÿy �1�
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or

lim
t"Tmax

W�t� � ÿy

holds.

We prepare several notations and de®nitions.

Notation

( i ) B�x0;R� � fx A R2 j jxÿ x0j < Rg, where x0 A R2 and R > 0

( ii ) A�x0; r;R� � B�x0;R�nB�x0; r�
(iii) M�S� � fRadon measures on Sg, where S denotes a compact

Hausdor¨ space

(iv) w� ÿ lim � weak star limit in M�S�
( v ) d��� � Dirac's delta function concentrated at x � 0 in R2 and

dx0
��� � d�� ÿ x0� for x0 A R2

(vi) jWj � the Lebegue measure of WHR2

Definition

( i ) In the case of Tmax < �y, we say that x0 A W is a blowup point of u if

there exist ftkgyk�1 H �0;Tmax� and fxkgyk�1 HW satisfying u�xk; tk� !
�y, tk ! Tmax, and xk ! x0 as k !y. The set of blowup points of u

is denoted by B.

( ii ) We say that x0 A B is isolated if there exists R > 0 such that

sup
0Ut<Tmax

ku�� ; t�kLy�A�x0; r;R�VW� < �y

for any r A �0;R�. The set of isolated blowup points of u is denoted by

BI .

(iii) System (KS) is called radially symmetric if W � fx A R2 j jxj < 1g and

u0 � u0�jxj�, v0 � v0�jxj�.
Our results are stated as follows.

Theorem 1. Given x0 A BI , we have 0 < Rf 1, mVm�, and

f A L1�B�x0;R�VW�VC�B�x0;R�VWnfx0g�;
satisfying f V 0 and

w� ÿ lim
t"Tmax

u�� ; t�dx � mdx0
�dx� � f dx �2�

in M�B�x0;R�VW�, where

m� � 8p �x0 A W�
4p �x0 A qW�

�

Toshitaka Nagai et al.466



Theorem 2. If (1) occurs, then B � BI .

Theorem 3. If (KS) is radially symmetric and Tmax < �y, then B � f0g.
In our notation, the delta function dx0

�dx� A M�W� acts as

hh; dx0
�dx�i � h�x0�

for x0 A W and h A C�W�. It is easy to see that L1 norm of u�� ; t� is preserved

(see section 3). Therefore, Theorem 1 implies that the number of isolated

blowup points is ®nite. More precisely,

2� ]�BI VW� � ]�BI V qW�U ku0kL1�W�=4p:

Condition (1) actually holds for the blowup solution constructed by [12].

However, except for this example any criteria for (1) have not been known. In

this connection, it may be worth mentioning about the semilinear heat equation

ut � Du� jujpÿ1u in W� �0;T� with ujqW � 0 �3�

on a bounded domain WHRn. For the subcritical case 1 < p <
n� 2

nÿ 2
, it is

known that blowup occurs if and only if limt"Tmax
J�u�t�� � ÿy, where

J�u� � 1

2
k`uk2

2 ÿ
1

p� 1
kukp�1

p�1

stands for the Lyapunov function ([8], [13], e.g.). To our knowledge, it has not

been clari®ed whether limt"Tmax
J�u�t�� > ÿy and Tmax < �y can occur for

the other cases of (3). But those relations between Lyapunov functions and

blowup mechanisms may suggest that (KS) with two space dimension obeys

some features of (3); in the former case the boundedness of the Lyapunov

function implies the ®niteness of blowup points.

Our theorems are proven through localized energy estimates, particularly

the localized Lyapunov function. Concluding the section, we describe it in

short.

The localized Lyapunov function is de®ned by

Wj�t� �
�

W

u log uÿ uv� 1

2
�j`vj2 � v2�

� �
j dx;

where j is a nonnegative Cy function. If j1 1, Wj�t� is equal to W�t�, but

usually j is a cut-o¨ function satisfying

0U jU 1 in R2;
qj

qn
� 0 on qW: �4�

Actually it is taken in the following way.
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Given x0 A W, we have 0 < R 0 < R with B�x0; 2R�HW. Then we take j

satisfying

j�x� � 1 �x A B�x0;R
0��

0 �x A R2nB�x0;R��:
�

�5�

Given x0 A qW, we ®rst prepare z A Cy
0 �R2� satisfying z � z�jyj�, 0U zU 1 in

R2, and

z�y� � 1 �y A B�0; 1=2��
0 �y A R2nB�0; 1��:

�
Next, we take a smooth conformal mapping X : B�x0; 2R� ! OHR2 satisfying

x0 7! 0 and

X�B�x0;R�VW�H f�x1; x2�jx2 > 0g
X�B�x0;R�V qW�H f�x1; x2�jx2 � 0g

X �B�x0;R
0��HB�0; 1=2�

X �R2nB�x0;R��HR2nB�0; 1�
for 0 < R 0 < Rf 1. Then we set j�x� � z�X�x��. It holds that

q

qn
z � X � qX

qn
� �`z � X � � 0 on qW

because �qX �=�qn� is proportional to �0;ÿ1� on qW, and such j satis®es (4)

and (5).

We have the following.

Lemma 2.1. It holds that

d

dt
Wj�t� �

�
W

v2
t j dx�

�
W

uj`�log uÿ v�j2j dx � d

dt

�
W

uj dx� R1�u; v; j�; �6�

where

R1�u; v; j� �
�

W

��1ÿ v�`uÿ �u log uÿ uv� vt�`v� � `j dx�
�

W

�u log u�hj dx:

Proof. Multiplying �log uÿ v�j by the ®rst equation of (KS) and using

Green's formula, we have�
W

ut�log uÿ v�j dx

�
�

W

` � �`uÿ u`v��log uÿ v�j dx

� ÿ
�

W

uj`�log uÿ v�j2j dxÿ
�

W

�log uÿ v��`uÿ u`v� � `j dx: �7�
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Here, it holds that�
W

ut�log uÿ v�j dx � d

dt

�
W

�u log uÿ uv�j dxÿ d

dt

�
W

uj dx�
�

W

uvtj dx �8�

and �
W

�log u�`u � `j dx � ÿ
�

W

u` � �log u`j�dx�
�

qW

�u log u� qj

qn
dx

� ÿ
�

W

f�u log u�hj� `u � `jgdx: �9�

In use of the second equation of (KS), we have�
W

uvtj dx �
�

W

�vt ÿhv� v�vtj dx

�
�

W

v2
t �

1

2

q

qt
�j`vj2 � v2�

� �
j dx�

�
W

vt`v � `j dx;

which, together with (7), (8) and (9), leads to

d

dt
Wj �

�
W

v2
t j dx�

�
W

uj`�log uÿ v�j2j dx

� d

dt

�
W

uj dx�
�

W

�u log u�hj dx

�
�

W

��1ÿ v�`uÿ �u log uÿ uv� vt�`v� � `j dx:

The proof is complete. r

We sometimes write j � jx0;R 0;R.

Now we describe the way of proof and some technical di½culties.

Theorem 1 is proven by the method of [20], localizing estimates of [21]. The

crucial point for the proof of Theorem 2 is showing ®niteness of blowup

points. As is described in [24], it follows if local L1 norms of u have bounded

variations in time, and this actually holds if the Lyapunov function is

bounded. (In N model, it can be shown that the local L1 norms have always

bounded variation in time thanks to remarkable properties of the Green's

function. See [24].) Finally, Theorem 3 is a consequence of those arguments.

3. Preliminaries

Regard ÿh� 1 as a closed operator in Lp�W� �1 < p <y�, denoted by

Ap, by
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D�Ap� � v A W 2;p�W�
���� qv

qn
� 0 on qW

� �
:

It is sectorial so that ÿAp generates an analytic semigroup denoted by fTp�t�g
(see [15]). The spectrum s�Ap� is independent of p and satis®es s�Ap�H
fz A C jRe�z�V 1g. We have the following because WHR2 is bounded and

qW is smooth (see [26]):

Tp�t� is an operator of integration with the symmetric kernel G�x; y; t�
independent of p, satisfying

jDa
xDb

y G�x; y; t�jU C

t�2�jaj�jbj�=2
exp ÿ jxÿ yj2

Ct

 !
eÿdt �10�

for jajU 2, jbjU 2, and �x; y; t� A W�W� �0;�y�, where C > 0 is a constant

and 0 < d < 1.

An immediate consequence is

kTp�t�kL�Lp�W�;Lp�W��UCp;

where Cp > 0 is a constant determined by p A �1;y�.
For b A �0; 1� the fractional powers Ab

p of Ap is de®ned, and the domain

X b
p � D�Ab

p � is a Banach space under the norm kuk
X

b
p
� kAb

p ukLp�W�. We have

the following ([11]):

X b
p HW k;q�W� and X b

p HC m�W�, provided that k ÿ 2

q
< 2b ÿ 2

p
, qV p and

0U m < 2b ÿ 2

p
, respectively.

Making use of those estimates instead of the elliptic estimate for the

second equation, we get the following similarly to N model (see [20]). We

have v�t0� A D�Ap� for 0 < t0 < Tmax and henceforth suppose that v0 A D�Ap�.
Proposition 3.1. The following relations hold for the solution �u; v� to

(KS), where Cq; e > 0 is a constant determined by q A �1; 2� and e A �0; 1=2�:
ku�� ; t�kL1�W� � ku0kL1�W� �11�

kv�� ; t�kW 1; q�W�UCq; e�kA1=2�e
q v0kLq�W� � ku0kL1�W�� �12�

Proof. Integrating the equations of (KS) over W, we have

d

dt

�
W

u�x; t�dt � 0 �13�

Toshitaka Nagai et al.470



and

d

dt

�
W

v�x; t�dt � ÿ
�

W

v�x; t�dt�
�

W

u�x; t�dt: �14�

Equality (13) implies (11) because u > 0. Then,

kv�� ; t�kL1�W� � eÿtkv0kL1�W� � �1ÿ eÿt�ku0kL1�W�

follows from (14) and v > 0.

PoincareÂ-Wirtinger's inequality assures the equivalence

kvkW 1; q�W�Ak`vkL q�W� � kvkL1�W�;

so that (12) is reduced to

k`v�� ; t�kLq�W�UCq; e�kA1=2�e
q v0kL q�W� � ku0kL1�W��: �15�

Rewrite the second equation of (KS) as

v�� ; t� � Tq�t�v0 �
� t

0

Tq�tÿ s�u�� ; s�ds:

Inequality (15) will follow from

`

� t

0

Tq�tÿ s�u�� ; t�ds

 
W 1; q�W�

UCqku0kL1�W�

and

kTq�t�v0kW 1; q�W�UCq; ekA1=2�e
q v0kW 1; q�W�:

In fact, we have

`

� t

0

Tq�tÿ s�u�� ; t�ds

 q

Lq�W�
�
�

W

� t

0

�
W

`xG�x; y; tÿ s�u�y; s�dyds

���� ����qdx

U
�

W

I�t�qÿ1II�x; t�dx

with

I �
� t

0

�
W

�tÿ s��6ÿ5q�=�4qÿ4�
u�y; s�edq�sÿt�=�2qÿ2� dyds

and

II �
� t

0

�
W

�tÿ s��5qÿ6�=4j`xG�x; y; tÿ s�jqu�y; s�edq�tÿs�=2 dyds:
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If q A �1; 2� then �6ÿ 5q�=�4qÿ 4� > ÿ1, so that we have

I�t�UCqku0kL1�W�:

On the other hand, inequality (10) gives that

�
W

II�x; t�dxUC

�
W

� t

0

�
R2
�tÿ s�ÿ�q�6�=4 exp ÿ qjxÿ yj2

C�tÿ s�

 !
u�y; s�edq�sÿt�=2 dxdsdy

UC

�y
0

tÿ�q�2�=4eÿdqt=2 dtku0kL1�W� � Cqku0kL1�W�:

Therefore, we get

`

� t

0

Tq�tÿ s�u�� ; s�ds

 q

Lq�W�
UCqku0kq

L1�W�:

Finally,

kTq�t�v0kW 1; q�W�UCq; ekA1=2�e
q Tq�t�v0kL q�W�

� Cq; ekTq�t�A1=2�e
q v0kLq�W�UC 0q; ekA1=2�e

q v0kL q�W�

and (15) follows. The proof is complete. r

We note that inequality (122) with 1U q < 2 implies

kv�� ; t�kp UCp �16�
for 1 < p <y.

Lemma 5.10 of Adams [1] reads;

kwk2
L2�W�UK 2�kwk2

L1�W� � k`wk2
L1�W�� �17�

for w A W 1;1�W�, where K > 0 is a constant determined by W. Inequality (17)

implies some estimates on u.

Recall the cut-o¨ function jx0;R 0;R intoduced at the end of section 2.

Then, c � �jx0;R 0;R�6 satis®es

c�x� � 1 �x A B�x0;R
0��

0 �x A R2nB�x0;R��
�

0UcU 1 in R2;
qc

qn
� 0 on qW

j`cjUAc5=6; jhcjUBc2=3 in R2;

where A > 0 and B > 0 are constants determined by 0 < R 0 < Rf 1.
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Lemma 3.2 The following inequalities hold for any s > 1, where C > 0 is a

constant:�
W

u2c dxU 2K 2

�
B�x0;R�VW

u dx �
�

W

uÿ1j`uj2c dx� K 2 A2

2
� 1

� �
kuk2

L1�W� �18�

�
W

u2c dxU
4K 2

log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

uÿ1j`uj2c dx

� Ckuk2
L1�W� � 3s2jWj �19�

�
W

u3c dxU
72K 2

log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

j`uj2c dx

� Ckuk3
L1�B�x0;R�VW� � 10jWjs3 �20�

Proof. Putting w � uc1=2, we have

�
W

j`wjdx

� �2

U 2

�
W

j`ujc1=2 dx

� �2

�2

�
W

uj`c1=2jdx

� �2

U 2

�
W

j`ujc1=2 dx

� �2

�A2

2
kuk2

L1�W�

U 2

�
B�x0;R�VW

u dx �
�

W

uÿ1j`uj2c dx� A2

2
kuk2

L1�W�:

Hence (18) follows from (17) and kwkL1�W�U kukL1�W�.
We turn to (19). Take w � �uÿ s��c1=2 with a� � maxfa; 0g. We have

kwk2
L2�W� �

�
fu>sg
�uÿ s�2c dx

V
�
fu>sg

1

2
u2 ÿ s2

� �
c dx

�
�

W

1

2
u2c dxÿ

�
fuUsg

1

2
u2c dxÿ

�
W

s2c dx

V
1

2

�
W

u2c dxÿ 3

2
s2jWj:

On the other hand we have kwk2
L1�W�U kuk2

L1�W� and
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k`wk2
L1�W�U

�
fu>sg
�j`ujc1=2 � �uÿ s��j`c1=2j�dx

( )2

U 2

�
fu>sg

j`ujc1=2 dx

( )2

�2

�
W

uj`c1=2jdx

� �2

U 2

�
fu>sg

j`ujc1=2 dx

( )2

�A2

2
kuk2

L1�W�:

Here,

�
fu>sg

j`ujc1=2 dx

( )2

U
�

B�x0;R�Vfu>sg
u dx �

�
fu>sg

uÿ1j`uj2c dx

U
1

log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

uÿ1j`uj2c dx

because s log sVÿeÿ1 for any s > 0. This implies (19).

Finally, take w � �uÿ s�3=2
� c1=2. We have

kwk2
L2�W� �

�
fu>sg
�uÿ s�3�c dx

V
�
fu>sg

1

4
u3 ÿ s3

� �
c dx

V
1

4

�
W

u3c dxÿ 5

4
s3jWj:

Because

j`wjU 3

2
�uÿ s�1=2

� j`ujc1=2 � 1

2
A�uÿ s�3=2

� c1=3

we have

k`wk2
L1�W�U

9

2

�
fu>sg
�uÿ s�1=2j`ujc1=2 dx

( )2

�A2

2

�
fu>sg
�uÿ s�3=2

c1=3 dx

( )2

:

Here, it holds that
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�
fu>sg
�uÿ s�1=2j`ujc1=2 dx

( )2

U
�
fu>sg

u1=2j`ujc1=2 dx

( )2

U
�

B�x0;R�Vfu>sg
u dx �

�
fu>sg

j`uj2c dx

U
1

log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

j`uj2c dx

and �
fu>sg
�uÿ s�3=2c1=3 dx

( )2

U
�
fu>sg

uc1=3u1=2 dx

( )2

U
�

W

u3c dx

� �2=3

kukL1�B�x0;R�VW�jWj1=3

U e

�
W

u3c dx� CejWjkuk3
L1�B�x0;R�VW�; �21�

where Ce > 0 is a constant determined by e > 0. Therefore,

k`wk2
L1�W�U

9

2 log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

j`uj2c dx

� A2

2
e

�
W

u3c dx� A2

2
CejWj kuk3

L1�B�x0;R�VW�:

Since c1=2 Uc1=3, it follows from (21) that

kwk2
L1�W�U e

�
W

u3c dx� CejWjkuk3
L1�B�x0;R�VW�:

We get

1

4
ÿ K 2 A2

2
� 1

� �
e

� ��
W

u3c dx

U
9K 2

log s

�
B�x0;R�VW

�u log u� eÿ1�dx �
�

W

j`uj2c dx

� K 2CejWj A2

2
� 1

� �
kuk3

L1�B�x0;R�VW� �
5

4
s3jWj

by (17). Taking e > 0 as
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1

4
ÿ K 2 A2

2
� 1

� �
e � 1

8
;

we obtain (20). r

4. Finiteness of blowup points

This section is devoted to the proof of Therems 2 and 3. First, a

technical estimate is derived for local norms of the solution �u; v� to (KS).

Henceforth, we always asume Tmax < �y and a generic positive constant

(possibly changing from line to line) is denoted by C.

Lemma 4.1. It holds that

d

dt

�
W

�u log u�c dx� 1

2

�
W

uÿ1j`uj2c dx�
�

W

uvc dx

� 1

2

�
W

v2
t c dx� 1

2

d

dt

�
W

�j`vj2 � v2�c dxU 2

�
W

u2c dx� C: �22�

Proof. We show the following equality ®rst:

d

dt

�
W

�u log u�c dx�
�

W

uÿ1j`uj2c dx�
�

W

uvc dx� 1

2

d

dt

�
W

�j`vj2 � v2�c dx

�
�

W

u2c dxÿ
�

W

v2
t c dxÿ I ÿ II ÿ III ÿ IV ; �23�

where

I �
�

W

vt`v � `c dx

II �
�

W

�1� log u�`u � `c dx

III �
�

W

v�1� log u�`u � `c dx

IV �
�

W

�uv log u�hc dx:

This can be derived by (6), but here we prove it directly by (KS).

In fact, multiplying �log u�c by the ®rst equation of (KS), we get that

d

dt

�
W

�u log u�c dx �
�

W

ut�log u�c dx�
�

W

utc dx

�
�

W

f` � �`uÿ u`v�g�1� log u�c dx
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� ÿ
�

W

`u � `f�1� log u�cgdx�
�

W

u`v � `f�1� log u�cgdx

� ÿV � VI :

Here,

VI �
�

W

u`v � �uÿ1c`u� �1� log u�`c�dx

�
�

W

�`v � `u�c dx�
�

W

u�1� log u�`v � `c dx

� ÿ
�

W

u` � �c`v�dx�
�

W

u�1� log u�`v � `c dx

� ÿ
�

W

uchv dx�
�

W

�u log u�`v � `c dx

� ÿ
�

W

u�vt � vÿ u�c dx�
�

W

�u log u�`v � `c dx

� ÿ
�

W

u�vt � vÿ u�c dxÿ
�

W

v�u log u�Dc dxÿ
�

W

v�1� log u�`u � `c dx

by the second equation of (KS). On the other hand,

V �
�

W

`u � fuÿ1c`u� �1� log u�`cgdx

�
�

W

uÿ1j`uj2c dx�
�

W

�1� log u�`u � `c dx:

Therefore, it holds that

d

dt

�
W

�u log u�c dx�
�

W

uÿ1j`uj2c dx�
�

W

uvc dx

�
�

W

�u2 ÿ vtu�c dxÿ
�

W

�1� log u�`u � `c dx�
�

W

�u log u�`v � `c dx

�
�

W

�u2 ÿ vtu�c dxÿ II ÿ III ÿ IV :

On the other hand we have

1

2

d

dt

�
W

�j`vj2 � v2�c dx �
�

W

�`vt � `v� vtv�c dx

�
�

W

vt�ÿDv� v�c dxÿ
�

W

vt`v � `c dx

�
�

W

�ÿv2
t � vtu�c dxÿ I :

Equality (23) has been proven.
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Now we proceed to the proof of (22). First, in use of (18), we get that

jII jUC

�
W

u1=6 � u1=3j1� log ujc1=3 � uÿ1=2j`ujc1=2 dx

UCkuk1=6

L1�W�

�
W

uj1� log uj3c dx

� �1=3 �
W

uÿ1j`uj2c dx

� �1=2

:

Recall the elementary inequality: Let 1U a < 2 and b > 0. Then

ua�1� jlog uj�b UC�u2 � 1� �u > 0�:
We obtain

jII jUCku0k1=6

L1�W�

�
W

u2c dx� 1

� �1=3 �
W

uÿ1j`uj2c dx

� �1=2

U
1

4

�
W

uÿ1j`uj2c dx� 1

4

�
W

u2c dx� C

by (11). Similarly, we have

jIII jUC

�
W

uÿ1=2j`ujc1=2 � u1=2j1� log ujc1=3 � v dx

UC

�
W

uÿ1j`uj2c dx

� �1=2 �
W

u3=2j1� log uj3c dx

� �1=3

kvkL6�W�

U
1

4

�
W

uÿ1j`uj2c dx� 1

4

�
W

u2c dx� C

and

jIV jU
�

W

juv log ujc2=3 dx

U
�

W

ju log uj3=2
c dx

� �2=3

kvkL3�W�

U
1

4

�
W

u2c dx� C:

by (16). Finally,

jI jUA

�
W

jvt`vjc5=6 dx

U
1

4

�
W

v2
t c dx� A2

�
W

j`vj2c2=3 dx:
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Here, �
W

j`vj2c2=3 dx � ÿ
�

W

v` � �c2=3`v�dx

�
�

W

v�ÿDv�c2=3 ÿ 2

3
cÿ1=3v`c � `v

� �
dx

�
�

W

v�ÿvt � uÿ v�c2=3 dxÿ 2

3

�
W

cÿ1=3v`c � `v dx

U
�

W

vc1=6 � uc1=2 dx�
�

W

vtc
1=2 � vc1=6 dx

���� ����
� 2A

3

�
W

j`vjc1=3 � vc1=6 dx

U
1

8A2

�
W

u2c dx� 16A2kvk2
L2�W� �

1

8A2

�
W

v2
t c dx

� 32A2kvk2
L2�W� �

1

2

�
W

j`vj2c2=3 dx� 2A2

9
kvk2

L2�W�:

Therefore, it holds that�
W

j`vj2c2=3 dxU
1

4A2

�
W

v2
t c dx� 1

4A2

�
W

u2c dx� C;

which implies

jI jU 1

2

�
W

v2
t c dx� 1

4

�
W

u2c dx� C:

Inequality (22) has been proven. r

We show a key fact for the proof of Theorems.

Proposition 4.2. Suppose Tmax < �y and let x0 A W and 0 < Rf 1.

Then, if a solution �u; v� to (KS) satis®es

sup
0Ut<Tmax

�
B�x0;R�VW

u log u dx < �y �24�

it holds that

sup
0Ut<Tmax

ku�� ; t�kLy�B�x0; r�VW� < �y �25�

for any r A �0;R�.
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Proof. We divide the argument in ®ve steps. Take R 0 A �0;R� and let

c � �jx0;R 0;R�6.

Step 1 We show that (24) with Tmax < �y implies�Tmax

0

�
B�x0;R 0�VW

v2
t dxdt < �y: �26�

Therefore, taking R > 0 smaller, we can assume that�Tmax

0

�
B�x0;R�VW

v2
t dxdt < �y: �27�

In fact, inequality (19) with

M � sup
0Ut<Tmax

�
B�x0;R�VW

�u log u� eÿ1�dx < �y �28�

gives that �
W

u2c dxU
4K 2M

log s

�
W

uÿ1j`uj2c dx� C � 3s2jWj:

Therefore, taking s > 1 as 8K 2M=�log s� < 1=2, we have (26) by (22).

Step 2 Multiplying uc by the ®rst equation of (KS), we have

1

2

d

dt

�
W

u2c dx�
�

W

j`uj2c dx�
�

W

u`u � `c dx

�
�

W

uc`v � `u dx�
�

W

u2`v � `c dx: �29�

From the second equation of (KS) follows that�
W

uc`v � `u dx � 1

2

�
W

c`v � `u2dx

� ÿ 1

2

�
W

u2chv dxÿ 1

2

�
W

u2`v � `c dx

� 1

2

�
W

u3c dxÿ 1

2

�
W

u2�vt � v�c dxÿ 1

2

�
W

u2`v � `c dx

U
1

2

�
W

u3c dxÿ 1

2

�
W

u2vtc dxÿ 1

2

�
W

u2`v � `c dx:

Therefore, in use of�
W

u2`v � `c dx � ÿ
�

W

v`u2 � `c dxÿ
�

W

u2vhc dx
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and �
W

u`u � `c dx � ÿ 1

2

�
W

u2hc dx;

we obtain

1

2

d

dt

�
W

u2c dx�
�

W

j`uj2c dxU
1

2

�
W

u3c dxÿ 1

2

�
W

u2vtc dx

� 1

2

�
W

v`u2 � `c dx� 1

2

�
W

u2�v� 1�hc dx: �30�

Here, last three terms of the right-hand side are dominated as follows.

First, inequality (16) gives that

1

2

�
W

u2�v� 1�Dc dx

���� ����U B

2

�
W

�v� 1� � u2c2=3 dx

U
B

2
�kvkL3�W� � jWj1=3�

�
W

u3c dx

� �2=3

U
1

3

�
W

u3c dx� C:

Similarly,

1

2

�
W

v`u2 � `c dx

���� ����U 3A

�
W

v � uc1=3 � j`ujc1=2 dx

U 3AkvkL6�W�

�
W

u3c dx

� �1=3 �
W

j`uj2c

� �1=2

U
1

8

�
W

j`uj2c dx� 1

3

�
W

u3c dx� C:

Finally, Gagliardo-Nirenberg's inequality

kwkL4�W�UK�k`wk1=2

L2�W�kwk
1=2

L2�W� � kwkL2�W��
to w � uc1=2 implies that

1

2

�
W

u2vtc dx

���� ����U 1

2

�
B�x0;R�VW

v2
t dx

( )1=2 �
W

u4c2 dx

� �1=2

UC

�
B�x0;R�VW

v2
t dx

( )1=2

� �k`�uc1=2�kL2�W�kuc1=2kL2�W� � kuc1=2k2
L2�W��
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U
1

16

�
W

j`�uc1=2�j2dx� C

�
B�x0;R�VW

v2
t dx � kuc1=2k2

L2�W�

� C

�
B�x0;R�VW

v2
t dx

( )1=2

kuc1=2k2
L2�W�

U
1

16

�
W

j`�uc1=2�j2dx� C

�
B�x0;R�VW

v2
t dx� 1

 !
kuc1=2k2

L2�W�

Here, we have�
W

j`�uc1=2�j2dxU 2

�
W

j`uj2c dx� A2

2

�
W

u2c2=3 dx

U 2

�
W

j`uj2c dx� 16

3

�
W

u3c dx� C;

so that

1

2

���� �
W

u2vtc dx

����U 1

8

�
W

j`uj2c dx� 1

3

�
W

u3c dx

� C

�
B�x0;R�VW

v2
t dx� 1

 !
�
�

W

u2c dx� C:

In this way, inequality (30) has been reduced to

1

2

d

dt

�
W

u2c dx� 3

4

�
W

j`uj2c dx

U 2

�
W

u3c dx� C

�
B�x0;R�VW

v2
t dx� 1

 !�
W

u2c dx� C

U 3

�
W

u3c dx� C

�
B�x0;R�VW

v2
t dx �

�
W

u2c dx� 1

 !
: �31�

We can make use of (20) for the ®rst term of the right-hand side. It holds

that �
W

u3c dxU
72K 2M

log s

�
W

j`uj2c dx� C � 10jWjs3;

where M > 0 is the constant de®ned in (28). Making s > 1 large, this term is

absorbed into the left-hand side of (31). We obtain
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d

dt

�
W

u2c dx�
�

W

j`uj2c dxUC

�
B�x0;R�VW

v2
t dx �

�
W

u2c dx� 1

 !
:

In particular, g�t� � �W u2c dx solves

dg

dt
U hg� C �0U t < Tmax�

with a continuous function h�t�V 0 satisfying
� Tmax

0 h�t�dt < �y. This implies

sup
0Ut<Tmax

g�t� � sup
0Ut<Tmax

�
W

u2c dx < �y: �32�

Setp 3 We take R 00 A �0;R 0� and set c1 � �jx0;R 00;R 0 �6. Multiplying u2c1

by the ®rst equation of (KS), we have

1

3

d

dt

�
W

u3c1 dx� 2

�
W

uj`uj2c1 dx�
�

W

u2`u � `c1 dx

� 2

�
W

u2c1`v � `u dx�
�

W

u3`v � `c1 dx:

This means that

1

3

d

dt

�
W

w2c1 dx� 8

9

�
W

j`wj2c1 dx� 2

3

�
W

w`w � `c1 dx

� 4

3

�
W

wc1`v � `w dx�
�

W

w2`v � `c1 dx �33�

for w � u3=2. From (32) and

w log wU 3w4=3 � 3u2

we have

sup
0Ut<Tmax

�
B�x0;R 0�VW

�w log w�dx < �y:

Relation (33) is similar to (29). Inequality (20) holds with u replaced by

w, and kwkL1�B�x0;R 0�VW�UC follows from (32). Finally, if we make use of the

second equation of (KS), we obtain�
W

wc1`v � `w dxU
1

2

�
W

w8=3c1 dxÿ 1

2

�
W

w2vtc1 dxÿ 1

2

�
W

w2`v � `c1 dx

U
�

W

w3c1 dxÿ 1

2

�
W

w2vtc1 dxÿ 1

2

�
W

w2`v � `c1 dx� C
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similarly to (30). Under those circumstances we can repeat the arguments in

Step 2 and get

sup
0Ut<Tmax

�
B�x0;R 00�VW

u3 dx � sup
0Ut<Tmax

�
B�x0;R 00�VW

w2 dx < �y: �34�

If we repeat the arguments once more, we get

sup
0Ut<Tmax

ku�� ; t�kL4�B�x0; r�VW� < �y: �35�

for any r A �0;R�.
Step 4 Put u1 � uwB�x0; r�, u2 � uÿ u1, and let v1, v2 be the solutions for

vt �hvÿ v� f in W� �0;Tmax�;
qv

qn
� 0 on qW� �0;Tmax�;

v�� ; 0� � 0 in W:

8>>><>>>:
with f � u1, u2, respectively. It holds that

v2 �
� t

0

�
WnB�x0; r�

G�x; y; tÿ s�u�y; s�dyds;

so that

sup
0Ut<Tmax

kv2�� ; t�kW 2;y�B�x0; r 0�VW� < �y

for r 0 A �0; r� by (10) and (11).

To handle with v1�x; t�, we recall the operator Ap in Section 3. Let

5=6 < b < 1 and p � 3. Then we have

sup
0Ut<Tmax

kv1�� ; t�kX
b

p
� sup

0Ut<Tmax

kAb
p v1�� ; t�kL p�W�

U sup
0Ut<Tmax

� t

0

kAb
p Tp�tÿ s�u1�� ; s�kLp�W�ds

UC sup
0Ut<Tmax

� t

0

�tÿ s�ÿbku1�� ; s�kLp�W�ds < �y

by (34). Inclusion X b
p HC 1�W� holds and hence

sup
0Ut<Tmax

kv�� ; t�kC 1�B�x0; r�VW� < �y �36�

for any r A �0;R�.
Step 5 Take r 0 A �0; r� and put c1 � �jx0; r 0; r�6. We multiply upc

p�1
1 by

the ®rst equation of (KS) and get
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d

dt

1

p� 1

�
W

�uc1�p�1
dx � ÿ

�
W

`�upc
p�1
1 � � `u dx�

�
W

u`�upc
p�1
1 � � `v dx

� ÿI � II :

Here,

I �
�

W

�pupÿ1c
p�1
1 `u� up`c

p�1
1 � � `u dx

� 4p

�p� 1�2
�

W

j`u� p�1�=2j2c
p�1
1 dx� 1

p� 1

�
W

`c
p�1
1 � `up�1 dx

� 4p

�p� 1�2
�

W

j`u� p�1�=2j2c
p�1
1 dx

� 4

p� 1

�
W

c
� p�1�=2
1 `u� p�1�=2 � u� p�1�=2`c

� p�1�=2
1 dx

� 4p

�p� 1�2 ÿ
2

p� 1

( )�
W

j`u� p�1�=2j2c
p�1
1 dx

� 2

p� 1

�
W

j`�uc1�� p�1�=2j2dxÿ 2

p� 1

�
W

up�1j`c
� p�1�=2
1 j2dx

V
2

p� 1

�
W

j`�uc1�� p�1�=2j2dxÿ p� 1

2

�
W

up�1c
pÿ1
1 j`c1j2dx

V
2

p� 1

�
W

j`�uc1�� p�1�=2j2dxÿ A2�p� 1�
2

�
W

�uc1�p��2=3� � u1=3 dx

V
2

p� 1

�
W

j`�uc1�� p�1�=2j2dxÿ A2�p� 1�
2

ku0k1=3

L1�W�

�
W

�uc1�1��3=2�pdx

� �2=3

:

Furthermore, (36) implies

II UC

�
W

ju`�upc
p�1
1 �jdx

UC
p

p� 1

�
W

j`�uc1�p�1jdx� �p� 1�
�

W

up�1c
p
1 j`c1jdx

� �
UC

2p

p� 1

�
W

�uc1�� p�1�=2j`�uc1�� p�1�=2jdx� CA�p� 1�
�

W

�uc1�p��5=6�u1=6 dx

U
1

p� 1

�
W

j`�uc1�� p�1�=2j2dx� C�p� 1�
�

W

�uc1�p�1dx

� CA�p� 1�ku0k1=6

L1�W�

�
W

�uc1�1��6=5�p
� �5=6

:
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It holds that

d

dt

�
W

u
p�1
1 dxU ÿ

�
W

j`u
� p�1�=2
1 j2dx� C�p� 1�2

�
W

u
p�1
1 dx

� C�p� 1�2
�

W

u
1��3=2�p
1 dx

� �2=3

�
�

W

u
1��6=5�p
1 dx

� �5=6
 !

; �37�

where u1 � uc1. Here, C > 0 is independent of pV 1 and we can apply an

iteration scheme of Moser's type (see Alikakos [2]). To this end we make use

of Gagliardo-Nirenberg's inequality in the form of

kwkL q�W�UK�k`wk2
L2�W� � kwk2

L2�W���1ÿ�1=q��=2kwk1=q

L1�W�; �38�
where K > 0 independent of q A �1; q0� for given q0 > 1.

First, apply (38) for w � u
�p�1�=2
1 and q � 3p� 2

p� 1
A

5

2
; 3

� �
. We have

C�p� 1�2
�

W

u
1��3=2�p
1 dx

� �2=3

UC�p� 1�2
�

W

j`u
� p�1�=2
1 j2dx�

�
W

u
p�1
1 dx

� ��2p�1�=�3p�3� �
W

u
� p�1�=2
1 dx

� �2=3

:

Because
2p� 1

3p� 3
<

2

3
, the right-hand side is dominated by

C�p� 1�2
�

W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �2=3

�
�

W

u
� p�1�=2
1 dx

� �2=3

U
1

6

�
W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �
� C�p� 1�6

�
W

u
� p�1�=2
1 dx� 1

� �2

:

Second, apply (38) for w � u
�p�1�=2
1 and q � 12p� 10

5p� 5
A

22

10
;
12

5

� �
. We have

C�p� 1�2
�

W

u
1��6=5�p
1 dx

� �5=6

UC�p�1�2
�

W

j`u
� p�1�=2
1 j2dx�

�
W

u
p�1
1 dx

� ��7p�5�=�12p�12� �
W

u
� p�1�=2
1 dx

� �5=6

UC�p� 1�2
�

W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �7=12 �
W

u
� p�1�=2
1 dx

� �5=6
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U
1

6

�
W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �
� C�p� 1�24=5

�
W

u
� p�1�=2
1 dx

� �2

U
1

6

�
W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �
� C�p� 1�6

�
W

u
� p�1�=2
1 dx� 1

� �2

:

Finally, apply (38) for w � u
�p�1�=2
1 and q � 2. We have

C�p� 1�2
�

W

u
p�1
1 dx

UC�p� 1�2
�

W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx

� �1=2 �
W

u
� p�1�=2
1 dx

� �

U
1

6

�
W

�j`u
� p�1�=2
1 j2 � u

p�1
1 �dx� 1

� �
� C�p� 1�4

�
W

u
� p�1�=2
1 dx

� �2

:

Inequality (37) has been reduced to

d

dt

�
W

u
p�1
1 dx� 1

2

�
W

j`u
� p�1�=2
1 j2dx

U
1

2

�
W

u
p�1
1 dx� C�p� 1�6

�
W

u
� p�1�=2
1 dx� 1

� �2

:

However, again (38) for q � 2 implies

kwk2
L2�W�UK 2�k`wk2

L2�W� � kwk2
L2�W��1=2kwkL1�W�

U
1

2
�k`wk2

L2�W� � kwk2
L2�W�� � Ckwk2

L1�W�

and hence

ku� p�1�=2
1 k2

L2�W�U
1
2k`u

� p�1�=2
1 k2

L2�W� � Cku� p�1�=2
1 k2

L1�W�:

We obtain

d

dt

�
W

u
p�1
1 dx� 1

4

�
W

u
p�1
1 dxUC�p� 1�6

�
W

u
� p�1�=2
1 dx� 1

� �2

and hence

sup
0Ut<Tmax

�
W

u
p�1
1 dx� 1

� �

UC max �p� 1�6 sup
0Ut<Tmax

�
W

u
� p�1�=2
1 dx� 1

� �2

; ku0kp�1
Ly�W�jWj � 1

( )
:
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Therefore,

Fk � sup
0Ut<Tmax

�
W

u2 k

1 dx� 1

satis®es

Fk�1 UC maxf26�k�1�F2
k ; �jWj � 1��ku0kLy�W� � 1�2 k�1g

UC26�k�1�maxfF2
k ; �ku0kLy�W� � 1�2 k�1g �39�

for k � 1; 2; . . . :

Let d � ku0kLy�W� � 1. Then, (39) is reduced to

Fk�1 UC2kÿ3 � 2
Pk

l�2
6�l�1�2 kÿl �maxfF2 kÿ1

2 ; d 2k�1g
for k � 2; 3; . . . : We have

sup
0Ut<Tmax

�
W

u2 k�1

1 dx

� �1=2 k�1

UF
1=2 k�1

k�1

UC�2kÿ3�=2 k�1 � 26
Py

j�1
j2ÿj �maxfF1=4

2 ; dg;
and letting k ! �y,

sup
0Ut<Tmax

ku1�� ; t�kLy�W�UC max sup
0Ut<Tmax

ku1�� ; t�k4
L4�W� � 1

 !1=4

; d

8<:
9=;

follows. In use of (35), we obtain

sup
0Ut<Tmax

ku1�� ; t�kLy�W� � sup
0Ut<Tmax

ku�� ; t�c1kLy�W� < �y:

Since r 0 A �0; r� and r A �0;R� are arbitrary, we have (25).

The proof is complete. r

Theorems 2 and 3 are immediate consequences of the following.

Proposition 4.3. Let �u; v� be a solution to (KS) and Tmax < �y. Then,

any x0 A B and 0 < Rf 1 admit

lim sup
t"Tmax

�
B�x0;R�VW

u�x; t�dxV
1

16K 2
: �40�

Proof. Take r A �0;R� and c � �fx0; r;R
�6. If (40) does not hold, then

(18) implies
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�
W

u2c dxU 2K 2

�
B�x0;R�VW

u dx �
�

W

uÿ1j`uj2c dx� Ckuk2
L1�W�

U
1

8

�
W

uÿ1j`uj2c dx� C

for 0 < Tmax ÿ tf 1. Then (22) gives

lim sup
t"Tmax

�
W

�u log u�c dx < �y;

and hence

lim sup
t"Tmax

ku�� ; t�kLy�B�x0; r 0�VW� < �y

follows from Lemma 4.2, where r 0 A �0; r�. We get x0 B B and the proof is

complete. r

Proof of Theorem 3. In this case it holds that

u � u�jxj; t�: �41�

If x0 A Bnf0g, we have S1 fxj jxj � jx0jgHB.

Given a positive integer m, we take 0 < Rf 1 and x1; . . . ; xm A S sat-

isfying B�xi;R�VB�xj;R� �q for i0 j. Relation (40) admits a sequence

tk " Tmax satisfying �
B�xj ;R�VW

u�x; tk�dx >
1

18K 2

for j � 1 and hence for j � 2; . . . ;m by (41). Therefore,

ku�� ; tk�kL1�W�V
Xm

j�1

�
B�xj ;R�VW

u�x; tk�dx >
m

18K 2

follows, which contradicts (11) if mV 18K 2ku0kL1�W�. The proof is complete.

r

Proof of Theorem 2. If the solution satis®es (1), then�Tmax

0

�
W

�v2
t � uj`�log uÿ v�j2�dxdt < �y

follows.
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Take x0 A B, 0 < Rf 1 and let j � jx0;R=2;R. We have

d

dt

�
W

uj dx

���� ���� � �
W

utj dx

���� ���� � �
W

�`uÿ u`v� � `j dx

���� ����
UC

�
A�x0;R=2;R�

uj`�log uÿ v�jdx

UC kukL1�W� �
�

W

uj`�log uÿ v�j2dx

� �
�42�

and hence �Tmax

0

d

dt

�
W

uj dx

���� ����dt < �y:

This assures the existence of limt"Tmax

�
W

uj dx. In use of (40) we have

lim inf
t"Tmax

�
B�x0;R�VW

uV lim
t"Tmax

�
W

uj dx

V lim sup
t"Tmax

�
B�x0;R=2�VW

u dx

V
1

16K 2
:

Since x0 A B and 0 < Rf 1 is arbitrary, this implies that

]BU 16K 2ku0kL1�W� < �y
by (11), and in particular, any blow-up point is isolated. r

5. Isolated blowup points

In this section we study the behavior of u around the isolated blowup

points more precisely and prove Theorem 1.

We ®rst note the following.

Lemma 5.1. Let �u; v� be a solution to (KS) and x0 A BI . Then there exist

0 < Rf 1 and y A �0; 1=2� such that

kukC 2�2y; 1�y��A�x0; r;R�VW���0;Tmax�� � kvkC 2�2y; 1�y��A�x0; r;R�VW���0;Tmax�� < �y �43�
for any r A �0;R�.

Proof. Because x0 A BI , there exists R0 > 0 such that

sup
0Ut<Tmax

�ku�� ; t�kLy�A�x0; r0;R0�VW� � kv�� ; t�kLy�A�x0; r0;R0�VW�� < �y
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for any r0 A �0;R0�. Then the parabolic estimate for the second equation of

(KS) (see [26]) gives that

sup
0Ut<Tmax

k`v�� ; t�kLy�A�x0; r;R�VW� < �y

for R and r in r0 < r < R < R0 and the standard theory for the ®rst equation

(see Theorem 10.1 of Chapter IV of [17]) applies; R 0 and r 0 in r < r 0 < R 0 < R

admit y A �0; 1=2� such that

kukC 2y; y��A�x0; r 0;R 0�VW���0;Tmax�� < �y:

Now Theorem 10.1 in Section IV of [17] is available for the second and the

®rst equation in turn, and, given R 00 and r 00 in r 0 < r 00 < R 00 < R 0 we have

y 0 A �0; 1=2� such that

kvkC 2�2y 0 ; 1�y 0 ��A�x0; r 00;R 00�VW���0;Tmax�� < �y
and

kukC 2�2y 0 ; 1�y 0 ��A�x0; r 00;R 00�VW���0;Tmax�� < �y:

Since r 00 is arbitrary, proof is complete. r

An immediate consequence is the following.

Lemma 5.2. Let x0 A BI and j � jx0;R 0;R for 0 < R 0 < Rf 1. Then we

have

sup
0Ut<Tmax

Wj�t� < �y �44�

and

lim sup
t"Tmax

�
W

j`vj2j dx � �y: �45�

Proof. Recall (6) and put

F �t� �Wj�t� ÿ
� t

0

R1�u; v; j�dsÿ
�

W

uj dx:

Relations (11) and (43) imply�
W

uj dx

���� ����U ku0kL1�W� and sup
0Ut<Tmax

jR1�u; v; j�j < �y;

respectively. By Lemma 2.1, F is monotone decreasing in �0;Tmax� and (44)

follows. Then we have
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�
W

�u log u�j dxUC �
�

W

uvj dx;

and

lim sup
t"Tmax

�
W

uvj dx � �y

follows from Proposition 4.2. In use of Young's inequality we have

a

�
W

uvj dxU
�

W

�u log u�j dx� 1

e

�
W

eavj dx

UWj �
�

W

uvj dx� 1

e

�
W

eavj dx

UC �
�

W

uvj dx� 1

e

�
W

eavj dx;

and hence

�aÿ 1�
�

W

uvj dxU
1

e

�
W

eavj dx� C:

If a > 1, we have

lim sup
t"Tmax

�
W

eavj dx � �y;

which implies (45) by the following Lemma. r

Lemma 5.3. Let a > 0, x0 A BI , and j � jx0;R 0;R for 0 < R 0 < Rf 1.

Then, the inequality �
W

eavj dxUC exp
a2

8p

�
W

j`vj2j dx

� �
�46�

holds on �0;Tmax�. If x0 A W, then�
W

eavj dxUC exp
a2

16p

�
W

j`vj2j dx

� �
: �47�

Proof. We recall the following inequalities due to Moser [18] and Chang

and Yang [4]: There exists a constant K determined by W such that

log

�
W

ew dx

� �
U

1

2p�
k`wk2

L2�W� �
1

jWj
�

W

w dx� K

for w A X, where
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p� � 4p if X � H 1�W�
8p if X � H 1

0 �W�:
�

Because x0 A BI , we have

sup
0Ut<Tmax

kv�� ; t�kLy�A�x0;R 0;R�VW� < �y:

Therefore, we get�
W

eavj dxU
�

B�x0;R 0�VW

eav dx�
�

A�x0;R 0;R�VW

eavj dx

UC exp
a2

8p
k`vk2

L2�B�x0;R 0�VW� � C

� �
� C

UC exp
a2

8p

�
W

j`vj2j dx

� �
by (43). This shows (46). A similar calculation gives (47) if x0 A W. The

proof is complete. r

The following lemma is a modi®cation of [21].

Lemma 5.4. We have�
W

uvj dxU
�

W

�u log u�j dx�Mj log

�
W

evj dx

� �
ÿMj log Mj; �48�

where Mj �
�

W uj dx.

Proof. Since ÿlog s is convex, Jensen's inequality applies as

ÿlog
1

Mj

�
W

evj dx

� �
� ÿlog

�
W

ev

u

u

Mj
j dx

� �

U
�

W

ÿlog
1

u
ev

� �
u

Mj
j

� �
dx

� ÿ 1

Mj

�
W

u log
ev

u

� �
j

� �
dx:

This means (48). r

This implies the following.

Lemma 5.5. Suppose Tmax < �y and take x0 A BI , and 0 < R 0 < Rf 1.

Then the relation
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lim
t"Tmax

�
W

uj dxVm�

follows, where m� is the constant in Theorem 1 and j � jx0;R 0;R.

Proof. In use of (43), we have

d

dt

�
W

uj dx

���� ����UC

similarly to (42), so that limt"Tmax
kujkL1�W� exists. Suppose

lim
t"Tmax

Mj�t� � lim
t"Tmax

kujkL1�W� < m�: �49�

In the case that x0 A W we have (47). Inequality (48) implies

1

2

�
W

�j`vj2 � v2�j dx �Wj ÿ
�

W

�u log uÿ uv�j dx

UWj �Mj log

�
W

evj dx

� �
ÿMj log Mj

UC �Mj

16p

�
W

j`vj2j dx�Mj log
C

Mj

by (44). It follows that

1

2
1ÿMj

8p

� ��
W

j`vj2j dxUC �Mj log
C

Mj
:

Therefore, (49) with m� � 8p gives

lim sup
t"Tmax

�
B�x0;R=2�VW

j`vj2dxU lim sup
t"Tmax

�
W

j`vj2j dx < �y:

This contradicts (45) with R replaced by R=2.

The case x0 A qW can be treated similarly and the proof is complete. r

We are able to give the following.

Proof of Theorem 1. Let x0 A BI and j � jx0;R=2;R. From above

lemma, the value

m�x0;R� � lim
t"Tmax

�
W

u�x; t�jR�x�dxVm�

exists for any x0 A BI and 0 < Rf 1. Moreover,

m�x0;R� ÿm�x0;R=2� � lim
t"Tmax

�
W

u�x; t��jR�x� ÿ jR=2�x��dxV 0
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and there exists

m�x0� � lim
k!y

m�x0;R=2k�Vm�:

Inequality (43) implies

sup
A�x0; r;R�VW��0;Tmax�

jutj < �y

for 0 < r < R. Therefore,

f �x� � u�x; 0� �
�Tmax

0

ut�x; t�dt

� lim
t"Tmax

u�x; t�V 0 �50�

exists for x A B�x0;R�VWnfx0g. In use of (43) again, convergence (50) holds

in the sense C�A�x0; r;R�VW�, where r 2 �0;R�. Also f A L1�W� follows from

(11).

For simplicity we set E � B�x0;R�VW. Given x A C�E�, we have�
E

ux dxÿm�x0�x�x0� ÿ
�

E

f x dx

� x�x0�
�

E

ujR=2 k dxÿm�x0�
� �

�
�

E

�xÿ x�x0��ujR=2 k dx

ÿ
�

E

x f jR=2 k dx�
�

E

x�uÿ f ��1ÿ jR=2k �dx

for k � 1; 2; 3; . . . : It follows that�
E

ux dxÿm�x0�x�x0� ÿ
�

E

f x dx

���� ����
U kxkLy�E�

�
E

ujR=2 k dxÿm�x0�
���� ����� ku0kL1�W�kxÿ x�x0�kLy�B�x0;R=2 k�VW�

� kxkLy�E�

�
E

f jR=2 k dx� kuÿ f kLy�A�x0;R=2k�1;R=2k�VW�

� �
and hence

lim sup
t"Tmax

�
E

ux dxÿm�x0�x�x0� ÿ
�

E

f x dx

���� ����
U kxkLy�E�jm�x0;R=2k� ÿm�x0�j

� ku0kL1�W�kxÿ x�x0�kLy�B�x0;R=2 k�VW� � kxkLy�E�

�
E

f jR=2 k dx:
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Making k ! �y, we get

lim
t"Tmax

�
E

ux dx � m�x0�x�x0� �
�

E

f x dx

by f A L1�E�. This means (2) and proof is complete. r
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