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A white noise approach to an evolutional equation in biology
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ABSTRACT. In this paper we shall discuss a white noise di¨erential equation that comes

from some biological phenomena. Having applied the so-called S-transform to the

white noise functionals the given equation turns into an equation for a U-functional.

There the advantage of the white noise calculus is heavily used. Thus the solution is

obtained in an explicit form in terms of white noise, and we see that the solution is a

generalized functional which is in the space of Cochran-Kuo-Sengupta. Some char-

acteristic properties of the solution are shown, for instance, positivity of the solution.

Further, its mean lies in between 0 and 1. The expression of the solution shows the

most signi®cant property that there is an asymmetry in time for the phenomenon in

question.

1. Introduction

A biological organism is composed of one cell or many cells. The surface

of a cell is covered with a plasma membrane and the membrane is the border

between the inside and the outside of a cell. Disproportion of sodium,

potassium, calcium and chlorine ions exist between the inside and the outside

of a cell and this fact brings about the di¨erence in electric potential. Ion

channels are macromolecules that open and close in a random fashion on

membrane and play the role of gatekeepers which control the ¯ux of their ions

coming in and out of the cell.

F. Oosawa et al. [10] has introduced a di¨erential equation which is

proposed to describe the probabilistic behavior of ion channels in a ¯uctuating

electric ®eld. They claim that the openÐclose ¯uctuation in an assembly of

channels has an asymmetry with respect to time reversal. In their theory, the

probability which is the ratio of the number of channels in open state to the

total number of channels is denoted by p�t� and it is given by the solution to

the equation.

dp�t�
dt
� ÿk�o expfÿbE�t�gp�t� � kÿo expf�bE�t�g�1ÿ p�t��; �1:1�

where k�o > 0, kÿo > 0, b � �1=2�dm=kT (dm: the free energy di¨erence between
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an opened state and a closed state, k: the Boltzman constant, T : the absolute

temperature, hE�t�i � 0, and E�t� is Gaussian).

We are interested in their approach and understand the equation (1.1)

to be expressed in terms of ¯uctuation. Namely, we regard the E�t� in the

above equation as an operator describing the ¯uctuation expressed by creating

operators of the ®eld.

Thus, the purpose of this paper is to give a mathematical interpretation

to the solution of (1.1) from the viewpoint of white noise analysis and to show

asymmetry of the phenomenon for ion channels with respect to time reversal,

by using the explicit expression of p�t�.
We get a solution of the equation in the space �E ��

Bj
which is recently

obtained by Cochran-Kuo-Sengupta [1]. Our method gives an investigation of

the equation introduced by F. Oosawa et al. and also gives an example which is

actually useful to study the theory of the space �E ��
Bj

.

The paper is organized as follows. In § 2 we summarize basic concepts of

white noise calculus, including the space of white noise distributions in the sense

of Cochran-Kuo-Sengupta [1] as well as the creation operator and the anni-

hilation operator acting on the space. The space is provided rich enough so

as the solution can live within the space constructed. In § 3 we obtain the

solution of the equation (1.1) which can be transformed to the equation of the

U-functional. The solution is, in fact, a generalized white noise functional

which is in the space of Cochran-Kuo-Sengupta. In § 4 we prove the positivity

of the solution, which is requested as a probability. This fact should be

clari®ed since the solution itself is a generalized white noise function and it

is impossible to show positivity in the ordinary sense. The positivity of a

generalized white noise functional is rephrased as the positive de®niteness of

its S-transform, and actually this property is proved. In the last section which

is the main section we prove an asymmetry of the equation with respect to time

reversal.

2. Preliminaries

We now prepare some background of white noise calculus to discuss the

equation (1.1). Basic notation is introduced following Hida [2], [4], Cochran-

Kuo-Sengupta [1] and Kuo [6].

Let L2�R� be the Hilbert space consisting of real-valued square integrable

functions on R with norm j � j0. We start with the real Gel'fand triple:

E � S�R�HL2�R�HE � � S 0�R�;

where S�R� is the Schwartz space consisting of rapidly decreasing Cy-
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functions on R and S 0�R� is its dual space, i.e., the space of tempered

distributions.

Let A � 1� t2 ÿ d 2

dt2
be densely de®ned self-adjoint operator on L2�R�

such that there exists an orthonormal basis fej; j � 0; 1; 2; . . .gHE for

L2�R� satisfying Aej � �2j � 2�ej.

De®ne the norm j � jp by j f jp � jApf j0 for f A L2�R� and p A R. For any

p A R, also de®ne Ep by f f A L2�R�; j f jp <yg for pV 0 and the completion of

L2�R� with respect to the norm j � jp for p < 0. Then the space Ep is a Hilbert

space with norm j � jp for each p A R, and we get E �7
p

Ep and E � �6
p

Ep

with the projective limit topology and the inductive limit topology, respectively.

Take C�x� � eÿ�1=2�jxj20 , x A E. Since the functional C�x� satis®es condi-

tions (1) continuous, (2) positive de®nite, (3) C�0� � 1, we can appeal to the

Bochner±Minlos Theorem to guarantee the existence of a probability measure m

on E � such that the characteristic functional is given by�
E �

eihx;xidm�x� � C�x�; x A E:

The measure m is called the standard Gaussian measure or the white noise

measure de®ned on E � and �E �; m� is called a white noise probability space.

The Hilbert space �L2� � L2�E �; m� of complex-valued m-square-integrable

functionals de®ned on E � admits the well-known Wiener-ItoÃ decomposition:

�L2� �0
y

n�0

Hn;

where Hn is the space of multiple Wiener integrals of degree n A N and H0 � C.

Let L2
C�R�n̂n denote the n-fold symmetric tensor product of the complexi®-

cation L2
C�R� of L2�R�. It is known that a multiple Wiener integral of degree

n has a representation in terms of a kernel f A L2
C�R�n̂n, and hence it is denoted

by In� f � [3]. For j �Py
n�0 In� fn� A �L2�, the �L2�-norm kjk0 is equal to

kjk0 �
���������������������Xy
n�0

n!j fnj20
s

;

where j � j0 denotes the L2
C�R�nn-norm.

Set exp0�x� � x and de®ne

expj�1�x� � exp�expj�x��; j � 0; 1; 2; . . . :

inductively. Denote by Bj�n� the n-th coe½cent of the power series expansion

expj�x� �
Xy
n�0

Bj�n�
n!

xn:
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For each positive integer j V 1, Bj�n� � Bj�n�=expj�0� �nV 0� are called the j-th

order Bell numbers.

For pV 0 and j A NU f0g, we de®ne a norm k � kp;Bj
by

kjkp;Bj
�

��������������������������������Xy
n�0

n!Bj�n�j fnj2p
s

;

for j �Py
n�0 In� fn� A �L2�. Let �Ep�Bj

� fj A �L2�; kjkp;Bj
<yg. Then the

projective limit space, denoted by �E �Bj
, of the spaces �Ep�Bj

, pV 0, is a nuclear

space (for proof see [1]). Let �Ep��Bj
be the dual space of �Ep�Bj

. The space

�Ep��Bj
is de®ned in a usual manner and it is in agreement with the Hilbert

space obtained by the completion of �L2� with respect to the norm

kjkÿp;Bÿ1
j
�

��������������������������������������Xy
n�0

n!Bj�n�ÿ1j fnj2ÿp

s
;

for each pV 0. The dual space of �E �Bj
is denoted by �E ��

Bj
, which is one of

the spaces of white noise distributions in the sense of Cochran-Kuo-Sengupta.

We denote by hh�; �ii the canonical bilinear form on �E ��
Bj
� �E �Bj

. Then we

have

hhF; jii �
Xy
n�0

n!hFn; fni

for any F �Py
n�0 In�Fn� A �E ��Bj

and j �Py
n�0 In� fn� A �E �Bj

, where h�; �i is the

canonical bilinear form that links �Enn
C �� and Enn

C .

Since exph�; xi and exp�ih�; xi� are in �E �Bj
, the S-transform S�F� and the

T-transform T �F� of F A �E ��
Bj

are, by de®nition, of the forms

S�F��x� � exp ÿ 1

2
hx; xi

� �
hhF; exph�; xiii;

and

T �F��x� � hhF; eih�;xiii; x A EC;

respectively. By the expansion

eihx;xi � eÿ�1=2�jxj20
Xy
n�0

i n

n!
:hx; xin:;

where :hx; xin: is the wick ordering of hx; xin (See [6] for example.), we can

calculate the norm keih�;xikp;Bj
for any p > 0 and j V 1 as follows:

keih� ;xik2
p;Bj
� eÿjxj

2
0

Xy
n�0

Bj

n!
jxj2n

p � eÿjxj
2
0

expj�jxj2p�
expj�0�

<y:
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Thus, for each j V 1, we get that eih�;xi A �E �Bj
and therefore we can estimate

jT �F��x�j for F A �E ��
Bj

and p > 0 as follows:

jT �F��x�j � jhhF; eih� ;xiiijU kFkÿp;B
ÿ1

j

keih�;xikp;Bj
:

This estimation implies that, for each F A �E ��
Bj

, the map T �F� : EC ! C

is continuous. From S�F��x� � exp ÿ 1
2 hx; xi

ÿ �
T �F��ÿix�, the S-transform

S�F��x� is also continuous in x.

For any j A �E �Bj
; de®ne the GaÃteaux derivative Dyj in the direction y A E �

by

Dyj�x� � lim
l!0

j�x� ly� ÿ j�x�
l

;

where the limit is taken in the topology of �E �Bj
. For y A E � and f A En̂n, we

introduce a notation ? by

y ? f �u1; . . . ; unÿ1� �
�

y�un� � f �u1; . . . ; un�dun:

Then, for j �Py
n�0 In� fn� A �E �Bj

, Dyj is expressed in the form

Dyj �
Xy
n�1

nInÿ1�y ? fn�;

provided that the convergence of the sum is guaranteed. We denote the

adjoint-operator of Dy by D�y .

The white noise di¨erential operator qt is de®ned to be the operator Ddt

acting on �E �Bj
. Then qt is a continuous linear operator from �E �Bj

to itself,

and its adjoint operator q�t is also a continuous linear operator from �E ��
Bj

into

itself.

It is noted that qt is an annihilation operator, while the adjoint q�t is a

creation operator.

3. A white noise version of the equation that describes an evolutional

phenomenon in biology

In this section we ®nd a solution of the equation in the space �E��
Bj

which is

recently obtained by Cochran-Kuo-Sengupta [1].

We consider the equation (1.1) with the following setting. Since F.

Oosawa et al. [10] assumed that E�t� is a centered stationary Gaussian process,

we can regard that E�t� is expressed in the form, F�t; u� A L2�R�VCy�R� and

E�t�1 � � t

ÿy F �t; u� _B�u�du, with the nondeterministic property.
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Let G t�u� � F�t; u�1�t0; t��u� for each t > 0. Set E�t� � D�G t

�� � t

t0
F�t; u�q�u du� and denote the set of all F A �E��

Bj
such that

Py
n�0

an

n!
�D�G t�nF

exists in �E��
Bj

by Dom�eaE�t��. Then we can de®ne an operator exp�aE�t��, a A

R by exp�aE�t�� �Py
n�0

an

n!
�D�G t�n.

Replacing p�t� in (1.1) with a white noise functional F�t; �� we may discuss

the following equation:

q

qt
F�t; x� � ÿk�o expfÿbE�t�gF�t; x� � kÿo expfbE�t�g�1ÿF�t; x��: �3:1�

The operator E�t� is continuous linear from �E��
Bj

into itself.

A generalized white noise functional F�t; x� is called to be a solution of

(3.1) if F�t; x� satis®es the following conditions:

(1) for each x, U�t; x� � S�F�t; ����x� is di¨erentiable in t.

(2) for each x and t, U�t; x� satis®es

q

qt
U�t; x� � �ÿk�o expfÿb ~E�t; x�g ÿ kÿo expfb ~E�t; x�g�U�t; x�

� kÿo expfb ~E�t; x�g; �3:2�
where ~E�t; x� � � t

t0
F �t; u�x�u�du, which is the S-transform of E�t�1.

The method in this section gives an investigation of the equation intro-

duced by F. Oosawa [10] and also gives an example which is actually useful to

study the theory of the space �E��
Bj

.

Note that S�expfaE�t�gF��x� � expfa ~E�t; x�gSF�x� for F A �E��
Bj

.

We can solve (3.2) which is a linear ordinary di¨erential equation of the

®rst order and get the solution of the form.

U�t; x� � exp

� t

t0

�ÿk�o expfÿb ~E�s; x�g ÿ kÿo expfb ~E�s; x�g�ds

� �

�
�

C1 � kÿo

� t

t0

exp b ~E�s; x� �
� s

t0

�k�o expfÿb ~E�u; x�g
�

� kÿo expfb ~E�u; x�g�du�ds

�
; �3:3�

where C1 is the initial value of U�t; x� satisfying 0 < C1 < 1.

It can be easily checked that U�t; x� satis®es the following two properties:

for each t �>t0�
i) U�t; zx� h�, z A C is entire function in z for any x; h A EC.

ii) there exist K1 > 0 and K2 > 0 such that

jU�t; x�jUK1 exp�exp�K2jxj20��; x A EC:
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In fact, we can take the constants K2 � 1 and

K1 � fC1 � kÿo�tÿ t0�g

� exp

�
1

2
f2�k�o � kÿo��tÿ t0� � 1g2 expfb2 sup

t0UsUt

� t

t0

F �s; u�2dug
�
:

These properties show that for each tV t0, U�t; �� is a U-functional of the

element in �E ��
B2

, i.e., U�t; �� A S��E ��
B2
�. (See [1].)

For F;C A �E ��
Bj

, the Wick product, denoted by F �C , can be de®ned by

S�F �C ��x� � S�F��x�S�C ��x�; x A EC;

since the product in right hand side is again U-functional by the characteris-

tic theorem. Similarly S�F��x�n de®ned a white noise distribution which are

denoted by F�n:

S�F�n��x� � �S�F��x��n:
With the notation established above we prove the following theorem.

Theorem 3.1. For each t > t0 the equation (3.1) has a unique solution in

�E ��
B2

given by

F�t; x� � exp�
� t

t0

�ÿk�o expfÿbE�s�1g ÿ kÿo expfbE�s�1g�ds

� �

�
�

C1 � kÿo �
� t

t0

exp� bE�s�1�
� s

t0

�k�o expfÿbE�u�1g
�

� kÿo expfbE�u�1g�du�ds

�
; �3:4�

where exp��C � �Py
n�0

1

n!
C �n for C A �E ��

B2
.

Remark. By (3.2) we can check the above conditions i) and ii) for

q

qt
U�t; x�. In fact,

q

qt
U�t; x�

���� ����UK1 expfexpfK2jxj20gg for each t > t0 with

K1 � �C1k�o � kÿof1� C1 � �k�o � kÿo��tÿ t0�g�

� exp f�k�o � kÿo��tÿ t0� � 1g2 � exp b2 sup
t0UsUt

� t

t0

F �s; u�2du

� �� �
and K2 � 1. Therefore

q

qt
F�t; x� is a member of �E ��

B2
.
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4. Characteristic properties of F�t; x�
In this section, as a characteristic property, we prove the positivity of

the solution F�t; x� of (3.1), which is requested as a probability. This fact

should be clari®ed since the solution itself is a generalized white noise

function so that it is impossible to show positivity in the ordinary sense.

Probability is a number between 0 and 1, while the F�t; x� is a generalized

function. We expect that F is a generalization of the probability p�t�. To

give a plausible interpretation to the F�t; x�, we show that its mean is in

between 0 and 1.

Definition 4.1. A generalized function F in �E ��
Bj

is called positive if

hhF; jiiV 0 for all nonnegative test function j in �E �Bj
. (cf. [6])

Lemma 4.2. Let F by a generalized white noise function F in �E ��
Bj

. Then

the following are equivalent:

(a) F is positive.

(b) TF is positive de®nite on �E �Bj
.

Proof. The proof is almost same to Theorem 15.3 in [6].

(a)!(b): Let xk A E; zk A C; k � 1; . . . ; n. Then we have

Xn

l;k�1

zlTF�xl ÿ xk�zk � F;
Xn

l�1

zle
ih�;xli

�����
�����

2* +* +
:

Observe that

Xn

l�1

zle
ih�;xli

�����
�����

2

�
Xn

l;k�1

zlzkeih�;xlÿxki

is a nonnegative test function in �E �Bj
. Hence by the positivity of F,

Xn

l;k�1

zlTF�xl ÿ xk�zk V 0:

This shows that TF is positive de®nite.

(b)!(a): Suppose TF is positive de®nite on E. From the argument in

§ 2, we see that TF is continuous on E. Hence by the Minlos Theorem there

exists a ®nite measure n on E � such that

TF�x� �
�

E �
eihx;xidn�x�; Ex A E;

or equivalently,
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hhF; eih�;xiii �
�

E �
eihx;xidn�x�; Ex A E: �4:1�

We need to show that n is a Hida measure inducing F, i.e., �E �Bj
HL1�n� and

hhF; jii �
�

E �
j�x�dn�x�; Ej A �E �Bj

: �4:2�

Let V be the subspace of �E �Bj
spanned by the set feih�;xi; x A Eg. It follows

from equation (4.1) that

hhF; jii �
�

E �
j�x�dn�x�; Ej A V : �4:3�

Note that if j;c A V , then jc A V . In paticular, if j A V , then jjj2 A V and

by equation (4.3) we have�
E �
jj�x�j2dn�x� � hhF; jjj2ii <y:

Hence j A L2�n�. This shows that V HL2�n�. Since V is dense in �E �Bj
, by

using the same method in [[6]; Theorem 15.3], we can prove that �E �Bj
HL2�n�

(so �E �Bj
HL1�n�) and equation (4.2) holds. This implies the positivity of F.

Lemma 4.3. If U�x� and V�x� are positive de®nite functions in S��E���,
then U�x� � V�x� is also a positive de®nite function in S��E���.

Proof. See [7] or [8] for example.

Theorem 4.4. For each t �>t0� the solution F�t; x� of (3.1) is positive.

Proof. By Lemma 4.2., it is su½cient to prove that T �F�t; ����x� is

positive de®nite.

Then we can calculate T �F�t; ����x� as follows:

XN

k; l�1

akalT �F�t; ����xk ÿ xl� �
XN

k; l�1

ak�alC�xk ÿ xl�S�F�t; ����i�xk ÿ xl��

�
XN

k; l�1

akalC�xk ÿ xl�U�t; i�xk ÿ xl��

Since a functional C�x� is positive de®nite, by Lemma 4.3., it is su½cient to

prove U�t; ix� is positive de®nite for each tV t0.
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XN

k; l�1

akalU�t; i�xk ÿ xl��

�
XN

k; l�1

akal

Xy
n1�0

�ÿk�o�n1

n1!

� t

t0

eÿq�s;k��q�s; l�ds

� �n1
" #

�
Xy
n2�0

�ÿkÿo�n2

n2!

� t

t0

eq�s;k�ÿq�s; l�ds

� �n2
" #

�
"

C1 � kÿo

� t

t0

(
eq�s;k�ÿq�s; l�Xy

n3�0

k n3�o

n3!

� s

t0

eÿq�r;k��q�r; l�dr

� �n3

�
Xy
n4�0

k n4ÿo

n4!

� s

t0

eq�r;k�ÿq�r; l�dr

� �n4

)
ds

#

� C1

Xy
n1�0

�ÿk�o�n1

n1!

Xy
n2�0

�ÿkÿo�n2

n2!

� t

t0

� � � �n1 � n2� � � �

� t

t0

XN

k�1

ake
ÿ
P n1

a1�1
q�sa1

;k��
P n2

a2�1
q�s 0a2

;k�
�����

�����
2

dudu 0

� kÿo

Xy
n1;...; n4�0

�ÿ1�n1�n2 k n1�n3�o k n2�n4ÿo

n1! � � � n4!

�
� t

t0

� � � �g� � � �
� t

t0

Yn3

i�1

1�t0; s��s 00i � �
Yn3

i�1

1�t0; s��s 000j �

�
XN

k�1

ake
q�s:k�ÿ

P n1

a1�1
q�sa1

;k��
P n2

a2�1
q�s 0a2

;k�ÿ
P n3

a3�1
q�s 00a3

;k��
P n4

a4�1
q�s 000a4

;k�
�����

�����
2

dsdudu 0dvdv 0:

where du � ds1 � � � dsn1
, du 0 � ds 01 � � � ds 0n2

, dv � ds 001 � � � ds 00n3
, dv 0 � ds 0001 � � � ds 000n4

, and

g � n1 � n2 � n3 � n4 � 1, and q�x; y� � ib
� x

t0
F�x; u�xy�u�du.

Therefore we have
PN

k; l�1 akalT �F�t; ����xk ÿ xl�V 0. Thus the assertion

is proved. r

Theorem 4.5. Let 0 < C1 < 1 and let F�t; x� be the solution of (3.1).

Then, it holds that 0 < E�F�t; ��� < 1 for each tV t0.

Proof. Since we have E�F�t; ��� � U�t; x�jx�0 for each t > t0 by the

de®nition of generalized expectation, from (3.3) the expectation E�F�t; ��� is
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given by

E�F�t; ��� � expfÿ�k�o � kÿo��tÿ t0�g

� C1 � kÿo

k�o � kÿo
�expf�k�o � kÿo��tÿ t0�g ÿ 1�

� �
: �4:1�

By the condition it is obvious that E�F�t; ��� > 0. The expectation E�F�t; ��� is

equal to

C1 ÿ kÿo

k�o � kÿo

� �
expfÿ�k�o � kÿo��tÿ t0�g � kÿo

k�o � kÿo
:

Since 0 < expfÿ�k�o � kÿo��tÿ t0�g < 1, 0 <
kÿo

k�o � kÿo
< 1 and the condition

0 < C1 < 1, we obtain E�F�t; ��� < 1. r

5. Asymmetry in time

In this section we discuss the asymmetry with respect to time reversal for

the solution F�t; x�, as in (3.4), of the equation (3.1) with F �t; u� � eÿa�tÿu�,
a > 0; t; u A R.

If we justify that E� p�t� _p�t� h�� � E� _p�t�p�t� h�� for any t and h, this

implies an asymmetry in time of p�t�. Since we now regard p�t� as a gen-

eralized white noise functional F�t�1F�t; x�, we introduce an asymmetry, the

�E��
B2

-asymmetry, in time for F�t; x� by

�F�t�; _F�t� h��0;Bÿ1
2
0 �F�t� h�; _F�t��0;Bÿ1

2
: �5:1�

As we can assume that F�t� is stationary, (5.1) is equal to

�F 0�t�;F�t� h��0;Bÿ1
2
0 �F 0�t�;F�tÿ h��0;Bÿ1

2
�5:2�

The S-transform U�t; x� of F�t; x� is given as in (3.3). Set

P�t; x� � exp

� t

t0

�ÿk�o expfÿb ~E�s; x�g ÿ kÿo expfb ~E�s; x�g�ds

� �
;

and set also

Q�t; x� �
� t

t0

exp b ~E�s; x� �
� s

t0

�k�o expfÿb ~E�u; x�g � kÿo expfb ~E�u; x�g�du

� �
ds:

Then, P�t; x� and Q�t; x� have the following expansions:

P�t; x� �
Xy
n�0

hxnn; fn�t�i; Q�t; x� �
Xy
n�0

hxnn; gn�t�i;
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where fn�t� and gn�t� are given by

fn�t� �
1

n!
�ÿb�neÿ�k�o�kÿo��tÿt0�

�
X

0Uk1U���UknUn
k1�����kn�n

Ak1;...;kn

Yn

n�1

��ÿ1�kn k�o � kÿo�Lk1
�t� n̂ � � � n̂Lkn

�t�; nV 1

f 0�t� � eÿ�k�o�kÿo��tÿt0�, and

gn�t� �
� t

t0

��ÿ1�ne2�k�o�kÿo��sÿt0�fn�s� � f �n �s��ds; n � 0; 1; 2; . . .

with

Ak1;...;kn
� n!

�1!�l1 � � � �n!�ln l1! � � � ln!
;

�for 1U j U n; lj denotes the frequancy of appearance of

j in ki's; i � 1; 2; . . . ; n�;

f �n �s� �
1

n!
bne�k�o�kÿo��sÿt0�

X
0Uk1U���UknUn

k1�����kn�n

Ak1;...;kn

Yn

n�1

��ÿ1�kn k�o � kÿo�

�
Xn

j�1

1

�ÿ1�kj k�o � kÿo

Lk1
�s�n̂ � � � n̂L 0kj

�s�n̂ � � � n̂Lkn
�s�; nV 1;

f �0 �s� � 0;

and

Ln�t��v1; . . . ; vn� �
� t

t0

F�s; v1� � � �F �s; vn�1�t0; s��v1� � � � 1�t0; s��vn�ds:

Since U�t; x� � P�t; x��C1 � kÿoQ�t; x��, we have the chaos expansion of

F�t; x�:

F�t; x� �
Xy
l�0

:xnl:;C1 fl�t� � kÿo

X
m�n�l

fm�t� n̂ gn�t�
* +

; �5:3�

where :xnl: is the Wick tensor of xnl (see [6]) and fm�t� n̂ gn�t� means the

symmetrization of fm�t�n gn�t�. Therefore from (5.3) the chaos expansion of
q

qt
F�t; x� is given by
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q

qt
F�t; x�

�
Xy
l�0

:xnl:;C1 f 0l �t� � kÿo

X
m�n�l

f f 0m�t�n̂gn�t� � fm�t� n̂ g 0n�t�g
* +

: �5:4�

It is su½cient to prove (5.2) to imply an asymmetry in time in F�t; x�,
where ��; ��0;Bÿ1

2
is the inner product of �E0��B2

. From (5.2), we may prove

kF 0�t�k0;Bÿ1
2
0 0. By (5.4) the norm kF 0�t�k0;Bÿ1

2
is given by

kF 0�t�k0;Bÿ1
2

�

����������������������������������������������������������������������������������������������������������������������������������������Xy
l�0

l!B2�l�ÿ1
C1 f 0l�t� � kÿo

X
m�n�l

f f 0m�t� n̂ gn�t� � fm�t� n̂ g 0n�t�g
�����

�����
2

0

vuut :

Using f 00�t� � ÿ�k�o � kÿo� f0�t� and
� t

t0
f0�s�ds � 1

k�o � kÿo
�1ÿ f0�t��, we have

C1 f 00�t� � kÿo f 00�t�n g0�t� � kÿo f0�t�n g 00�t�

� ÿ f0�t� C1�k�o � kÿo� ÿ kÿo� �;
because we employed g0�t� � �expf�k�o � kÿo��tÿ t0�g ÿ 1�=�k�o � kÿo�.

Thus, we have the following.

Theorem 5.1. Let F�t; x� be a solution of (3.1) as in (3.4) and let C1 0

limt!y E�F�t�� � kÿo

k�o � kÿo

� �
. Then, for any t A R and h > 0, F�t; x� has the

�E��
B2

-asymmetry in time.
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