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AsBsTrACT. We consider a quasi-linear second order elliptic differential equation on a
euclidean domain, and for a compactification of the domain we define the harmonic
boundary relative to the structure condition of the equation. Properties of harmonic
boundary known in the classical potential theory are extended to our nonlinear case.
We show that the comparison principle with respect to harmonic boundary holds for
our equation, and give relations between Dirichlet-regular points and the harmonic
boundary points.

Introduction

In an ideal boundary theory for Riemann surfaces, the notion of harmonic
boundary has been introduced as a potential theoretically essential part of the
given ideal boundary (cf. [CC]). Among others, the minimum principle with
respect to harmonic boundary (cf. [CC; Satz 8.4 and Folgesatz 8.1]) and the
fact that the harmonic boundary on the Royden boundary coincides with the
set of all regular points with respect to the Dirichlet problem (cf. [CC;
Folgesatz 9.2]) are typical results showing the importance of this notion. Such
results have been also considered on Riemannian manifolds (cf. e.g., [GN]) and
behavior of solutions of the equation du — Pu =0 at the harmonic boundary
have been studied (cf. [GKa] and [GN]). Further, these results are extended to
the p-Royden boundary of a Riemannian manifold Q, for which the minimum
principle (or, rather the comparison principle) and the Dirichlet problem are
considered with respect to the p-Laplacian ([T1] and [T2]) or more generally,
with respect to the quasi-linear elliptic equation

—div.o/(x,Vu(x)) =0,

where .oZ(x,¢) : Q x RY — R" satisfies structure conditions of p-th order with
1 <p< oo (see [N]).
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On the other hand, the authors discussed Dirichlet problems with respect
to ideal boundaries for the equation

(E) —div .o/ (x,Vu(x)) + #(x,u(x)) =0

on a euclidean domain Q, where .o/ (x, ¢) satisfies weighted structure conditions
of p-th order with a weight x# and %(x,7): Q x R — R is nondecreasing in ¢
(see [MaO] or §1 below for more details).

In this paper, we consider the Q-compactification of Q for a family Q of
bounded continuous functions with finite (p,u)-Dirichlet integrals and the
associated harmonic boundary. We show that comparison principle with
respect to this harmonic boundary still holds for the equation (E) and that
the set of regular points for the Dirichlet problem with respect to the Q-
compactification and the equation (E) coincides with the harmonic boundary,
under an additional condition on Q. To obtain these results, we first discuss in
§2 harmonizability of bounded continuous functions with finite (p, u)-Dirichlet
integrals with respect to (E).

§1. Preliminaries

In this section, we recall definitions and results in [MaO] which will be
used in our later discussions. Throughout this paper, let 2 be a fixed domain
in RY and we consider a quasi-linear elliptic differential equation

(E) —div .o/ (x,Vu(x)) + #(x,u(x)) =0

on Q. Here, .7 :QxRY - R" and #:Q xR — R satisfy the following

conditions for 1 < p < co and a weight w which is p-admissible in the sense of

[HKM]:

(A1) x— .o/(x,&) is measurable on Q for every ¢ e RY and ¢ — .o/ (x,¢) is
continuous for a.e. x € ;

(A.2) oA(x,&) &= ow(x)|E]” for all ¢eRY and ae. xeQ with a constant

o > 0;

(A3) |A(x,&)] < oow(x)[E]”" for all ¢eRY and ae. xeQ with a constant
o > 0;

(A4) (A(x, &) —A(x,5)) - (& — &) >0 whenever &,& eRY, & # &, for
a.e xe8;

(B.1) x+> %(x,t) is measurable on Q for every teR and ¢+~ %(x,t) is
continuous for a.e. x € Q;
(B.2) For any open set D€, there is a constant o3(D) >0 such that
|(x,1)| < a3(D)w(x)(|]""" + 1) for all 1R and a.e. x e D;
(B.3) t~— %(x,t) is nondecreasing on R for a.e. x e Q.
We remark that if .o/ and £ satisfy the above conditions, then ./ and %
which are defined by
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oA (x,&) = —ot (x, &) and B(x,t) = —B(x,—1)
also satisfy these conditions with the same constants o, oy and o3(D).

For the nonnegative measure u:du(x) = w(x)dx and an open subset D
of @, we consider the weighted Sobolev spaces H':”(D;u), HOI“"’ (D; 1) and
H'?(D;p) (see [HKM] for details). ue H"”(D;p) is said to be a (weak)

loc loc

solution of (E) in D if

J ;z{(x,Vu)~V(pdx+J B(x,u)pdx =0
D D

for all ¢ e C°(D). ueHIL’Cp (D;u) is said to be a supersolution (resp. sub-
solution) of (E) in D if

J o (x,Vu) -Vodx +J B(x,u)pdx >0 (resp. <0)
D D
for all nonnegative ¢ € Ci°(D).

A continuous solution of (E) in an open set D < Q is called (</,%)-
harmonic in D. Note that if & is (/,%)-harmonic in D, then —h is (o7, %)-
harmonic in D.

ProposiTiON 1.1. (Harnack principle) [MaO; Theorem 1.6] If {h,} is a
nondecreasing or nonincreasing sequence of (of,B)-harmonic functions in a
domain D and if {h,(xo)} is bounded for some xo € D, then h:=lim,_ h, is
(o, B)-harmonic in D.

We say that an open set D in Q is (<7, #)-regular, if D € Q and for any
0e Hli)’f (Q; 1) which is continuous at each point of 0D, there exists a unique

he C(D)NH"?(D;u) such that =0 on 0D and h is (.«/,%)-harmonic in D.

ProrosiTION 1.2. [MaO; Corollary 1.2] For any compact set K and an
open set D such that K = D < Q, there exists an (o , B)-regular open set G such
that K = G = D.

A function u: D — RU {0} is said to be (.7, B)-superharmonic in D if it
is lower semicontinuous, finite on a dense set in D and, for each open set
G € D and for h e C(G) which is (<7, %)-harmonic in G, u > h on dG implies
u>hin G. (o, RB)-subharmonic functions are similarly defined. A function v

is (.7, %)-subharmonic in D if and only if —v is (.</, 8)-superharmonic in D.

THEOREM 1.1. (Comparison principle) [MaO; Theorem 2.1] Let u be
(o7 , B)-superharmonic in D and let v be (of, B)-subharmonic in D. If

lim_glf{u(x) —v(x)} =0



516 Fumi-Yuki MaepA and Takayori ONo

for all £ € 0°D, then u > v in D, where 0°D is the boundary of D in the one point
compactification of R".

The following two propositions are given in [MaO; Propositions 2.1, 2.3
and Remark 2.1].

ProposITION 1.3, If u and v are (of,RB)-superharmonic in D, then so is
min(u, v).

PROPOSITION 1.4. Let D be an open set in Q and let G € D be an (<, %)-
regular open set. For an (of,RB)-superharmonic function u on D, we define

ug =sup{he C(G):h<u on 0G and h is (</,R)-harmonic in G}.
Then

u in D\G
ug in G

P(6) = {

is (o , B)-superharmonic in D and (<f , B)-harmonic in G, and P(u,G) <u in D.
If ue H:P(Ds ), then ul; — ug € Hy''(G; ).

loc

Next we consider the following spaces:

gP(Q;u) ={f € Hll"p(.Q;,u) :\Vf| e LP(Q; ), f is bounded continuous},

ocC

9, € C(Q) st. 9, —f ae., {p,} is
uniformly bounded, Vo, — Vf in LP(Q;u) |

D425 1) = {fe D7 (1) :
We say that Q is (p, u)-hyperbolic if 1¢ 2§(Q2;u).

ProposITION 1.5. Let hy, hy e 27(Q;u) be (<f,%B)-harmonic functions
in Q. If hy—hye 2y (Q;n) and [, |B(x,h(x)) — B(x, hy(x))|dx < o, then
hy — hy = constant.  If, in addition, Q is (p,u)-hyperbolic, then hy = h;.

Proor. There exist ¢, € C;°(2) such that {¢,} is uniformly bounded and
@, — h —hy ae, Vo, —V(h —hy) in L?(Q;u) as n — oo. Since both 4; and
hy are (o7, %)-harmonic in Q, we have

J o (x,Vh) -V, dx+ J B(x,h)p,dx =0,
Q Q

J oA (x,Vhy) -Vo,dx+ J B(x,h2)p, dx = 0.
Q Q

Subtracting these two equations and letting n — oo, we have
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J Lt (%, Vi) — (3, Vo)) - (Vhy — Vhy)dx
Q

+ J [B(x,h1) — B(x,h2)](h1 — ha)dx = 0.
Q

It follows from (A.4) and (B.3) that Vi =Vh, a.e, so that iy =hy +c. If Q
is (p,u)-hyperbolic, we see that ¢ =0, namely h = h;.

In order to prove a resolutivity result, we prepared the following two
lemmas in [MaO; Lemmas 5.1, 5.2], which we will use in this paper, too.

Lemma 1.1. Let {u,} be a uniformly bounded sequence of functions in
Hy'P(Q; ) such that {Jo Vun|” du} is bounded and u, — u a.e. in Q as n — co.
If u is continuous, then ue Z5(Q;p).

LemMmA 1.2. Let fe2P(Q;u) and suppose that there is a bounded
supersolution g of (E) in Q such that g > f in Q and suppose

(L.1) L%(x,f)_dx< 0.

Then there exists an (</ , B)-superharmonic function u in Q such that u > f in Q
and u — f € D (Q2; 1.

§2. (<7, %)-harmonizable functions

Let f be a real function in 2 and, let
wr =4 (o/, AB)-superharmonic in Q and
I " u>f outside a compact set in Q
and
72 (7, %)-subharmonic in Q and
7717 v<f outside a compact set in Q [
THEOREM 2.1. If both “Zl; and ;" are nonempty, then
- —(A, B) . " A, % %
he=nh"" =infu; and  h;=h"" =sup ¥
are (<, %)-harmonic in Q and hy < hy.

Proor. The comparison principle (Theorem 1.1) implies /, <hs. The
rest of the assertion follows from Propositions 1.3, 1.4 and 1.1 in the same way
as in [HKM; Theorem 9.2].

We say that f'is (7, #)-harmonizable if both %; and ¥;" are nonempty
and h, = hy. In this case we write /iy = h/(f’“/‘””) for b, = hy.

The following proposition is clear.
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ProposITION 2.1.  If f and g are (o, B)-harmonizable and f < g outside a
compact set, then hy < h,.

We recall the following conditions, which have been given in [MaO] for
the discussion of resolutivity (see Theorem 2.3).
(C;) There exist a bounded supersolution of (E) in © and a bounded
subsolution of (E) in Q.
(B.5) |, |#(x,t)|dx < oo for any teR.

THEOREM 2.2. Suppose that Q is (p,u)-hyperbolic and suppose that con-
ditions (C)) and (B.5) are satisfied. If fe27(Q;u), then [ is (o,%B)-
harmonizable and hy — f € 5 (Q; ).

PrOOE. Let f € 27(Q;u) and let v; (resp. v2) be a bounded supersolution
(resp. subsolution) of (E) in 2. By the boundedness of f and v, there is a
constant ¢; >0 such that vy +c¢; >f in Q. Then g :=v; +¢; is a super-
solution of (E) and g, > f. Also, by condition (B.5), (1.1) is satisfied. Hence,
by Lemma 1.2, there is an (.7, %)-superharmonic function u in € such that
u>f and u—fe2{(Q;n). Let {D,} be an exhaustion of Q by (<, %)-
regular open sets and let u, = P(u,D,) in the notation in Proposition 1.4.
Then since D, €Q2 and u, =u in Q\D,, u, € %f* . By the boundedness of f
and vy, there is a constant ¢, such that g, :=v; —c; <f in . We may
assume that g, is (7, %)-subharmonic in Q ([MaO; Corollary 4.1]). Hence
L7 #0, so that hs exists and u, > hy for each n. On the other hand, we
obtain from the comparison principle that u > u, > u,,;. Thus, by Propo-
sition 1.1, @ := lim,,, u, is («/,%)-harmonic in Q and u > > /_1/-.

Since u, is («/,%)-harmonic in Q, w,=u in Q\D, and u,—ue
Hy'?(Dy; ), we have

J A (x,Vuy) - (Vu, — Vu)dx + J B(x,uy)(uy, —u)dx =0,
Q Q

so that, by (A.2) and (A.3), we have

(2.1) o J \Vu,|” du < ocZJ Vit [P Vil d + J | B(x, uy)| (1 — uy,)dx
Q Q Q

(p=1)/p 1/p
<o (J |Vu,,|pd,u> (J |Vu|pd,u)
Q Q

+ JQ | B (x, u,) | (4 — uy)dx,

where in the last inequality we have used Holder’s inequality. The com-
parison principle implies that ¢, <u,. Since u, <u and u is bounded,
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we see that {u —u,} is uniformly bounded. Hence, by condition (B.5),
{Jo #(x,un)(u — u,)dx} is bounded. Also u € Z7(Q; u) implies [, |Vu|” du < .
It follows from (2.1) that {[, |Vu,|” du} is bounded. Hence, since u —u, €
Hol"’ (2;u), {u—wu,} is uniformly bounded and u, — u, Lemma 1.1 yields
u—ie25(Q;u), so that i —f e 25(Q; p).

Similarly, applying the above arguments to (.«/, %) and —f, we can find a
bounded (7, #)-harmonic function u in Q such that u <h, and f—ue
2§ (Q; ). Therefore, the linearity of 2§ (Q;u) implies & —ue 2 (Q;pu). It
follows from Proposition 1.5 that # = u, and hence Ef =hy.

Given a compactification Q* of € and a bounded function Y on
0" = 0Q"\Q, let

P (Z, #)-superharmonic in 2 and
TN liminf_z u(x) > Y(&) for all Eed*Q

and
7 (o7, #)-subharmonic in Q and
Y71 lim sup, . v(x) < y(&) for all £ed™Q [°
If both %, and %, are nonempty, then
Hy;07) = H" " (y; ") :=inf 2,
and

H(; Q") = H P (y; Q%) :=sup %,

are (.7, %)-harmonic in Q and H(y; Q") < H(y;2%) ((MaO; Theorm 3.1)).
We say that  is (o7, B)-resolutive if both %, and %, are nonempty and
H(y; Q") = H(y;Q%). In this case we write H(y;Q%) = H“#)(y; Q") for
H(y; Q%) = H(y; Q%). Q is called an (o7, %)-resolutive compactification, if all
W e C(0"Q) are (/,%)-resolutive.

PrOPOSITION 2.2. Let feC(Q") and let :=f|yqo. Y is (A, %)-
resolutive if and only if f|, is (o/,B)-harmonizable, and then H(y; Q") = hy.

Proor. If wue;, then wue,. Hence H(Y;Q")<u, so that
H(y; Q%) < hy. Similarly, we have h, < H(y;Q"). Therefore,  is (7, %)-
resolutive if f is (./, %)-harmonizable, and H(y; Q") = hy.

To show the converse, we suppose u € %,. Then, because u+se%f*
for any ¢ >0, iy <u+e so that hy < H(y;Q2%)+e Since ¢ is arbitrary,
hy < H(y; 2%). Similarly, we have h, > H(;Q*). Therefore, f is (/,%)-
harmonizable if ¢ is (o7, %)-resolutive.

The following resolutivity result, which is the main theorem in [MaO], can
be also shown by using Theorem 2.2 and Proposition 2.2.
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THEOREM 2.1. [MaO; Theorem 3.2] Suppose that Q is (p,u)-hyperbolic
and suppose that conditions (Cy) and (B.5) are satisfied. If Q < 27(Q;u),
then the Q-compactification Q4 of Q (see [CC]) is an (</,%)-resolutive
compactification.

§3. Properties of harmonic boundary

Let Q* be a compactification of Q and 0"Q = Q"\Q. Setting
Amm:{éeWQ:Mnmﬂf@ﬂ()bramqfe@ﬂQMO}
x—¢&

we call A7#) the (p, 1)-harmonic boundary of Q. 1Tt is a compact subset of
0" Q.

PROPOSITION 3.1. AP £ ¢ if and only if Q is (p, 1)-hyperbolic.

Proor. If Q is not (p, u)-hyperbolic, 1 € Z%(2;u), and hence 47+ = .

To show the converse, we suppose A7 =¢@. Tt follows from the def-
inition of AP that, for each &ed*Q, there is fe € Z5(Q2; 1) such that
liminf,_¢|f:(x)] > 0. Since Z{(2;u) is closed under max-operation, we may
assume that f: >0. Thus since 0"Q is compact, we can choose Sepse e
such that

» Sk
liminf {2, (x) + -+ + f;,(x)} 2 2 >0
X—C -

for any € 0"Q. Then we can find g e C;°(2) such that

fo= QI+t f) Fo =
on Q. The linearity of 2}(Q2;u) implies f, € 25(2;u). Hence there exist
gn € C (L) such that {g,} is uniformly bounded and g, — fo a.e., Vg, — V f,
in L?(Q;u) as n— . Set ¢,:=min{g,,1}. Thus {p,} is uniformly
bounded and ¢,—1 ae., Vgp,—0 in L’(Q;u) as n— oo. Since
0, € Hy'"(Q; 1), it follows that 1 € Z5(Q; x), so that € is not (p, x)-hyperbolic.

Let Q be a family of bounded continuous functions on 2. Denote by
A(Qp’”) the (p, w)-harmonic boundary of Q,. Also denote by [Q] the smallest
linear space containing QU C;°(2) and constant functions, and closed under
max- and min-operations and the uniform convergence. Note that .Q[*Q] = Q)
and [Q] = C(Qp)lq. If Z((Q2;p) < [Q], then we can write the definition of
Ag’” ) as

A(Q‘"’”) = {fe&é[) : 1132](x) =0 for any fe@{)’(.Q;,u)},

where 0,Q = Q,\Q.
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THEOREM 3.1. (Comparison principle with respect to (p,x)-harmonic
boundary) Suppose that Q is (p,u)-hyperbolic and suppose that conditions (C)
and (B.5) are satisfied. Let Q < 97(Q;u). If u is an (o, B)-superharmonic
Sfunction in Q which is bounded below and v is an (</ , B)-subharmonic function in
Q which is bounded above, and

limsup v(x) < liminf u(x)
xX—¢ x—¢&

for any feA(Q""”), then v <u in Q.

Proor. Set #(¢) = liminf,—¢ u(x) and 9(¢) = limsup,_; v(x) for ¢ € 0,Q.
Then # (resp. D) is lower (resp. upper) semicontinuous and bounded below
(resp. above) on d,Q and # >0 on A(Qp’”). Let ¢ > 0. Then we can choose
pe C(0pQ) such that 1 —e < <@ +¢ on A(Qp’”). Since 27(Q;u) is a linear
space containing constant functions and closed under max- and min-operations,
(01N 2?P(2;u) is dense in [Q] with respect to the uniform convergence by the
Stone-Weierstrass theorem. Hence, there is f'€ C(2,) N Z”(Q;4) such that

v-2e<f<u+2e
on A(Qp’”). Put

A:={C€0pQ:u(l)+2e<f(E) or 5(&) —2e=/1(E)}-
Since A is a compact subset of EQQ\A(Q”’”), as in the proof of Proposition 3.1
we can find g € 2} (2; ) such that g > 0 on  and liminf, ¢ g(x) >J > 0 for

any ¢ € A. Since fis bounded and # is bounded below, there exists ¢; > 0 such
that #(¢) + ¢y liminf_¢ g(x) > f(&) for any e 4. Thus

lir&igpf{u(x) +eagx)}+3e=f(¢E)+e

for any (e€d,Q. Hence u+3ee; ., so that hy.,<u+3e Also
hy—eg — (f — c19) € 25(2; 1) by Theorem 2.2. Similarly there exists ¢, > 0
such that v —3e < hy.,y and hyic,y — (f + c29) € Z5(2; ). The linearity of
DY(Q;p) and ge 25 (Q;p) yield hy_cyg — hyieg € Z5(Q;1). By (Cy), we see
that hy_. 4, hric,q are bounded. Hence, by (B.5), we can apply Proposition 1.5
and obtain hy_. 4 = hrye,y. Thus we have

0_36Shf+czg:hf—clg <u+3e

in 2. Since ¢ > 0 is arbitrary, v <u in Q.

In case Q" is an (7, 4)-resolutive compactification, a point & € 9*Q is said
to be (o, B)-regular if

lim H(y; Q%) = y(&)

x—&

for any y € C(0"Q).
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THEOREM 3.2. Suppose that Q is (p,u)-hyperbolic and suppose that con-
ditions (C) and (B.5) are satisfied. Let Q < 27(Q;u). Then any (</,%)-
regular point & € 859 belongs to A(Qp’”).

Proor. Let &¢ Ag””). Then there is g € 25(22; 1) such that g >0 on Q
and liminf, ¢ g(x) > 0. We can find f € C(Qp) such that 0 <f <g on Q
and (&) >0. Let y =f 050 By Proposition 2.2, the comparison principle
(Theorem 1.1) and Proposition 2.1,

hy = H(0;24) < H(;Qp) = hy < hy,

where the subscript 0 in /g signifies the constant function 0 in Q. Since
g€ DY (Q; 1), hy—hoe 2§(2; 1) by Theorem 2.2. Thus by Proposition 1.5,
hy = hy. Hence the above inequalities imply H(0;Q,) = H(y;2,). Thus, if
¢ is (o, A)-regular, then

0 < Y(&) = lim H(y:2p)(x) = lim H(0:25)(x) =0,
which is impossible. Thus we obtain the conclusion of the theorem.

The converse of the above theorem is valid under an additional condition.

THEOREM 3.3. Suppose that Q is (p,u)-hyperbolic and suppose that con-
ditions (Cy) and (B.5) are satisfied. If Q = Z7(Q;u) satisfies 25 (2;p) < [0,

then any ¢ € A(Q‘”’”) is an (of,B)-regular point.

Proor. Let e A(Q‘"’” ) and Y e C(0pQ2). By the Stone-Weierstrass theo-
rem, for any & > 0 there is /'€ C(Q,) N Z”(Q; 1) such that f —e <y <f +¢on
0pQ (cf. the proof of Theorem 3.1). By Lemma 1.2 there exists an (<7, %)-
superharmonic function u in Q such that u >/ in Q and u—f € 25(Q;p).
Then u+eey, so that H(y;Qp) <u+e in Q. Since (e Ag’”) and
D5(2; 1) < [Q], we have lim,_;u(x) =f(£). Thus we obtain

(3.1) limsup H(y; 24)(x) < f(&) +e<y(&) + 2

x—¢&
Similarily we have

(3.2) V(&) = 26 < liminf H(:25)(x).

Since ¢ is arbitrary, (3.1) and (3.2) yield the regularity of ¢ € 0,Q.

REMARK 3.1.  Condition 2 (Q;u) = [Q] cannot be suppressed in Theorem
3.3 even in the linear case. For example, let 4 ={xeR" :1 < |x| <2},
xo€A and Q = A\{xp}. Let f e C*(Q2) be equal to 1 near {|x| =1}U{xo}
and equal to 0 near {|x| =2}. For Q={f}, Q) =QU{, &}, where &
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corresponds to {|x|=1}U{xy} and & corresponds to {|x|=2}. Then
A(Qz’dx) = {&,&,}, while & is not regular with respect to the Laplacian, i.e., not
(o, B)-regular for o/(x,n) =n and %(x,t) =0.
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