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ABSTRACT. We consider a quasi-linear second order elliptic di¨erential equation on a

euclidean domain, and for a compacti®cation of the domain we de®ne the harmonic

boundary relative to the structure condition of the equation. Properties of harmonic

boundary known in the classical potential theory are extended to our nonlinear case.

We show that the comparison principle with respect to harmonic boundary holds for

our equation, and give relations between Dirichlet-regular points and the harmonic

boundary points.

Introduction

In an ideal boundary theory for Riemann surfaces, the notion of harmonic

boundary has been introduced as a potential theoretically essential part of the

given ideal boundary (cf. [CC]). Among others, the minimum principle with

respect to harmonic boundary (cf. [CC; Satz 8.4 and Folgesatz 8.1]) and the

fact that the harmonic boundary on the Royden boundary coincides with the

set of all regular points with respect to the Dirichlet problem (cf. [CC;

Folgesatz 9.2]) are typical results showing the importance of this notion. Such

results have been also considered on Riemannian manifolds (cf. e.g., [GN]) and

behavior of solutions of the equation Duÿ Pu � 0 at the harmonic boundary

have been studied (cf. [GKa] and [GN]). Further, these results are extended to

the p-Royden boundary of a Riemannian manifold W, for which the minimum

principle (or, rather the comparison principle) and the Dirichlet problem are

considered with respect to the p-Laplacian ([T1] and [T2]) or more generally,

with respect to the quasi-linear elliptic equation

ÿdivA�x;`u�x�� � 0;

where A�x; x� : W� RN ! RN satis®es structure conditions of p-th order with

1 < p <y (see [N]).
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On the other hand, the authors discussed Dirichlet problems with respect

to ideal boundaries for the equation

ÿdivA�x;`u�x�� �B�x; u�x�� � 0�E�
on a euclidean domain W, where A�x; x� satis®es weighted structure conditions

of p-th order with a weight m and B�x; t� : W� R! R is nondecreasing in t

(see [MaO] or § 1 below for more details).

In this paper, we consider the Q-compacti®cation of W for a family Q of

bounded continuous functions with ®nite �p; m�-Dirichlet integrals and the

associated harmonic boundary. We show that comparison principle with

respect to this harmonic boundary still holds for the equation (E) and that

the set of regular points for the Dirichlet problem with respect to the Q-

compacti®cation and the equation (E) coincides with the harmonic boundary,

under an additional condition on Q. To obtain these results, we ®rst discuss in

§ 2 harmonizability of bounded continuous functions with ®nite �p; m�-Dirichlet

integrals with respect to (E).

§ 1. Preliminaries

In this section, we recall de®nitions and results in [MaO] which will be

used in our later discussions. Throughout this paper, let W be a ®xed domain

in RN and we consider a quasi-linear elliptic di¨erential equation

ÿdivA�x;`u�x�� �B�x; u�x�� � 0�E�
on W. Here, A : W� RN ! RN and B : W� R! R satisfy the following

conditions for 1 < p <y and a weight w which is p-admissible in the sense of

[HKM]:

(A.1) x 7!A�x; x� is measurable on W for every x A RN and x 7!A�x; x� is

continuous for a.e. x A W;

(A.2) A�x; x� � xV a1w�x�jxjp for all x A RN and a.e. x A W with a constant

a1 > 0;

(A.3) jA�x; x�jU a2w�x�jxjpÿ1 for all x A RN and a.e. x A W with a constant

a2 > 0;

(A.4) �A�x; x1� ÿA�x; x2�� � �x1 ÿ x2� > 0 whenever x1; x2 A RN , x1 0 x2, for

a.e. x A W;

(B.1) x 7! B�x; t� is measurable on W for every t A R and t 7! B�x; t� is

continuous for a.e. x A W;

(B.2) For any open set DFW, there is a constant a3�D�V 0 such that

jB�x; t�jU a3�D�w�x��jtjpÿ1 � 1� for all t A R and a.e. x A D;

(B.3) t 7! B�x; t� is nondecreasing on R for a.e. x A W.

We remark that if A and B satisfy the above conditions, then ~A and ~B

which are de®ned by
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~A�x; x� � ÿA�x;ÿx� and ~B�x; t� � ÿB�x;ÿt�
also satisfy these conditions with the same constants a1, a2 and a3�D�.

For the nonnegative measure m : dm�x� � w�x�dx and an open subset D

of W, we consider the weighted Sobolev spaces H 1; p�D; m�, H
1; p
0 �D; m� and

H
1; p
loc �D; m� (see [HKM] for details). u A H

1; p
loc �D; m� is said to be a (weak)

solution of (E) in D if�
D

A�x;`u� � `j dx�
�

D

B�x; u�j dx � 0

for all j A Cy
0 �D�. u A H

1; p
loc �D; m� is said to be a supersolution (resp. sub-

solution) of (E) in D if�
D

A�x;`u� � `j dx�
�

D

B�x; u�j dxV 0 �resp:U0�

for all nonnegative j A Cy
0 �D�.

A continuous solution of (E) in an open set DHW is called �A;B�-
harmonic in D. Note that if h is �A;B�-harmonic in D, then ÿh is � ~A; ~B�-
harmonic in D.

Proposition 1.1. (Harnack principle) [MaO; Theorem 1.6] If fhng is a

nondecreasing or nonincreasing sequence of �A;B�-harmonic functions in a

domain D and if fhn�x0�g is bounded for some x0 A D, then h :� limn!y hn is

�A;B�-harmonic in D.

We say that an open set D in W is �A;B�-regular, if DFW and for any

y A H
1; p
loc �W; m� which is continuous at each point of qD, there exists a unique

h A C�D�VH 1; p�D; m� such that h � y on qD and h is �A;B�-harmonic in D.

Proposition 1.2. [MaO; Corollary 1.2] For any compact set K and an

open set D such that K HDHW, there exists an �A;B�-regular open set G such

that K HG HD.

A function u : D! RU fyg is said to be �A;B�-superharmonic in D if it

is lower semicontinuous, ®nite on a dense set in D and, for each open set

G FD and for h A C�G� which is �A;B�-harmonic in G, uV h on qG implies

uV h in G. �A;B�-subharmonic functions are similarly de®ned. A function v

is �A;B�-subharmonic in D if and only if ÿv is � ~A; ~B�-superharmonic in D.

Theorem 1.1. (Comparison principle) [MaO; Theorem 2.1] Let u be

�A;B�-superharmonic in D and let v be �A;B�-subharmonic in D. If

lim inf
x!x

fu�x� ÿ v�x�gV 0
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for all x A qaD, then uV v in D, where qaD is the boundary of D in the one point

compacti®cation of RN .

The following two propositions are given in [MaO; Propositions 2.1, 2.3

and Remark 2.1].

Proposition 1.3. If u and v are �A;B�-superharmonic in D, then so is

min�u; v�.

Proposition 1.4. Let D be an open set in W and let G FD be an �A;B�-
regular open set. For an �A;B�-superharmonic function u on D, we de®ne

uG � supfh A C�G� : hU u on qG and h is �A;B�-harmonic in Gg:
Then

P�u;G� :� u in DnG
uG in G

�
is �A;B�-superharmonic in D and �A;B�-harmonic in G, and P�u;G�U u in D.

If u A H
1; p
loc �D; m�, then ujG ÿ uG A H

1; p
0 �G; m�.

Next we consider the following spaces:

Dp�W; m� :� f f A H
1; p
loc �W; m� : j`f j A Lp�W; m�; f is bounded continuousg;

Dp
0 �W; m� :� f A Dp�W; m� :

bjn A Cy
0 �W� s:t: jn ! f a:e:; fjng is

uniformly bounded; `jn ! `f in Lp�W; m�

( )
:

We say that W is �p; m�-hyperbolic if 1 B Dp
0 �W; m�.

Proposition 1.5. Let h1; h2 A Dp�W; m� be �A;B�-harmonic functions

in W. If h1 ÿ h2 A Dp
0 �W; m� and

�
W jB�x; h1�x�� ÿB�x; h2�x��jdx <y, then

h1 ÿ h2 1 constant. If, in addition, W is �p; m�-hyperbolic, then h1 � h2.

Proof. There exist jn A Cy
0 �W� such that fjng is uniformly bounded and

jn ! h1 ÿ h2 a.e., `jn ! `�h1 ÿ h2� in Lp�W; m� as n!y. Since both h1 and

h2 are �A;B�-harmonic in W, we have�
W

A�x;`h1� � `jn dx�
�

W

B�x; h1�jn dx � 0;

�
W

A�x;`h2� � `jn dx�
�

W

B�x; h2�jn dx � 0:

Subtracting these two equations and letting n!y, we have
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�
W

�A�x;`h1� ÿA�x;`h2�� � �`h1 ÿ `h2�dx

�
�

W

�B�x; h1� ÿB�x; h2���h1 ÿ h2�dx � 0:

It follows from (A.4) and (B.3) that `h1 � `h2 a.e., so that h1 � h2 � c. If W

is �p; m�-hyperbolic, we see that c � 0, namely h1 � h2.

In order to prove a resolutivity result, we prepared the following two

lemmas in [MaO; Lemmas 5.1, 5.2], which we will use in this paper, too.

Lemma 1.1. Let fung be a uniformly bounded sequence of functions in

H
1; p
0 �W; m� such that f�W j`unjp dmg is bounded and un ! u a.e. in W as n!y.

If u is continuous, then u A Dp
0 �W; m�.

Lemma 1.2. Let f A Dp�W; m� and suppose that there is a bounded

supersolution g of (E) in W such that gV f in W and suppose�
W

B�x; f �ÿ dx <y:�1:1�

Then there exists an �A;B�-superharmonic function u in W such that uV f in W

and uÿ f A Dp
0 �W; m�.

§ 2. �A;B�-harmonizable functions

Let f be a real function in W and, let

U�f � u :
�A;B�-superharmonic in W and
uV f outside a compact set in W

� �
and

L�
f � v :

�A;B�-subharmonic in W and
vU f outside a compact set in W

� �
:

Theorem 2.1. If both U�f and L�
f are nonempty, then

hf � h
�A;B�
f :� inf U�f and hf � h

�A;B�
f :� supL�

f

are �A;B�-harmonic in W and hf U hf .

Proof. The comparison principle (Theorem 1.1) implies hf U hf . The

rest of the assertion follows from Propositions 1.3, 1.4 and 1.1 in the same way

as in [HKM; Theorem 9.2].

We say that f is �A;B�-harmonizable if both U�f and L�
f are nonempty

and hf � hf . In this case we write hf � h
�A;B�
f for hf � hf .

The following proposition is clear.
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Proposition 2.1. If f and g are �A;B�-harmonizable and f U g outside a

compact set, then hf U hg.

We recall the following conditions, which have been given in [MaO] for

the discussion of resolutivity (see Theorem 2.3).

(C1) There exist a bounded supersolution of (E) in W and a bounded

subsolution of (E) in W.

(B.5)
�

W jB�x; t�jdx <y for any t A R.

Theorem 2.2. Suppose that W is �p; m�-hyperbolic and suppose that con-

ditions (C1) and (B.5) are satis®ed. If f A Dp�W; m�, then f is �A;B�-
harmonizable and hf ÿ f A Dp

0 �W; m�.
Proof. Let f A Dp�W; m� and let v1 (resp. v2) be a bounded supersolution

(resp. subsolution) of (E) in W. By the boundedness of f and v1, there is a

constant c1 V 0 such that v1 � c1 V f in W. Then g1 :� v1 � c1 is a super-

solution of (E) and g1 V f . Also, by condition (B.5), (1.1) is satis®ed. Hence,

by Lemma 1.2, there is an �A;B�-superharmonic function u in W such that

uV f and uÿ f A D
p
0 �W; m�. Let fDng be an exhaustion of W by �A;B�-

regular open sets and let un � P�u;Dn� in the notation in Proposition 1.4.

Then since Dn FW and un � u in WnDn, un A U�f . By the boundedness of f

and v2, there is a constant c2 such that g2 :� v2 ÿ c2 U f in W. We may

assume that g2 is �A;B�-subharmonic in W ([MaO; Corollary 4.1]). Hence

L�
f 0j, so that hf exists and un V hf for each n. On the other hand, we

obtain from the comparison principle that uV un V un�1. Thus, by Propo-

sition 1.1, u :� limn!y un is �A;B�-harmonic in W and uV uV hf .

Since un is �A;B�-harmonic in W, un � u in WnDn and un ÿ u A
H

1; p
0 �Dn; m�, we have�

W

A�x;`un� � �`un ÿ `u�dx�
�

W

B�x; un��un ÿ u�dx � 0;

so that, by (A.2) and (A.3), we have

a1

�
W

j`unjp dmU a2

�
W

j`unjpÿ1j`ujdm�
�

W

jB�x; un�j�uÿ un�dx�2:1�

U a2

�
W

j`unjp dm

� �� pÿ1�=p �
W

j`ujp dm

� �1=p

�
�

W

jB�x; un�j�uÿ un�dx;

where in the last inequality we have used HoÈlder's inequality. The com-

parison principle implies that g2 U un. Since un U u and u is bounded,
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we see that fuÿ ung is uniformly bounded. Hence, by condition (B.5),

f�W B�x; un��uÿ un�dxg is bounded. Also u A Dp�W; m� implies
�

W j`ujp dm <y.

It follows from (2.1) that f�W j`unjp dmg is bounded. Hence, since uÿ un A
H

1; p
0 �W; m�, fuÿ ung is uniformly bounded and un ! u, Lemma 1.1 yields

uÿ u A D
p
0 �W; m�, so that uÿ f A D

p
0 �W; m�.

Similarly, applying the above arguments to � ~A; ~B� and ÿf , we can ®nd a

bounded �A;B�-harmonic function u in W such that uU hf and f ÿ u A
Dp

0 �W; m�. Therefore, the linearity of Dp
0 �W; m� implies uÿ u A Dp

0 �W; m�. It

follows from Proposition 1.5 that u � u, and hence hf � hf .

Given a compacti®cation W� of W and a bounded function c on

q�W � W�nW, let

Uc � u :
�A;B�-superharmonic in W and
lim infx!x u�x�Vc�x� for all x A q�W

� �
and

Lc � v :
�A;B�-subharmonic in W and
lim supx!x v�x�Uc�x� for all x A q�W

� �
:

If both Uc and Lc are nonempty, then

H�c; W�� � H
�A;B��c; W�� :� inf Uc

and

H�c; W�� � H�A;B��c; W�� :� supLc

are �A;B�-harmonic in W and H�c; W��UH�c; W�� ([MaO; Theorm 3.1]).

We say that c is �A;B�-resolutive if both Uc and Lc are nonempty and

H�c; W�� � H�c; W��. In this case we write H�c; W�� � H�A;B��c; W�� for

H�c; W�� � H�c; W��. W� is called an (A;B)-resolutive compacti®cation, if all

c A C�q�W� are �A;B�-resolutive.

Proposition 2.2. Let f A C�W�� and let c :� f jq �W. c is �A;B�-
resolutive if and only if f jW is �A;B�-harmonizable, and then H�c; W�� � hf .

Proof. If u A U�f , then u A Uc. Hence H�c; W��U u, so that

H�c; W��U hf . Similarly, we have hf UH�c; W��. Therefore, c is �A;B�-
resolutive if f is �A;B�-harmonizable, and H�c; W�� � hf .

To show the converse, we suppose u A Uc. Then, because u� e A U�f
for any e > 0, hf U u� e, so that hf UH�c; W�� � e. Since e is arbitrary,

hf UH�c; W��. Similarly, we have hf VH�c; W��. Therefore, f is �A;B�-
harmonizable if c is �A;B�-resolutive.

The following resolutivity result, which is the main theorem in [MaO], can

be also shown by using Theorem 2.2 and Proposition 2.2.
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Theorem 2.1. [MaO; Theorem 3.2] Suppose that W is �p; m�-hyperbolic

and suppose that conditions �C1� and (B.5) are satis®ed. If QHDp�W; m�,
then the Q-compacti®cation W�Q of W (see [CC]) is an �A;B�-resolutive

compacti®cation.

§ 3. Properties of harmonic boundary

Let W� be a compacti®cation of W and q�W � W�nW. Setting

D�p;m� :� x A q�W : lim inf
x!x

j f �x�j � 0 for any f A Dp
0 �W; m�

� �
;

we call D�p;m� the �p; m�-harmonic boundary of W�. It is a compact subset of

q�W.

Proposition 3.1. D�p;m�0j if and only if W is �p; m�-hyperbolic.

Proof. If W is not �p; m�-hyperbolic, 1 A D
p
0 �W; m�, and hence D�p;m� � j.

To show the converse, we suppose D� p;m� � j. It follows from the def-

inition of D�p;m� that, for each x A q�W, there is fx A D
p
0 �W; m� such that

lim infx!xj fx�x�j > 0. Since Dp
0 �W; m� is closed under max-operation, we may

assume that fx V 0. Thus since q�W is compact, we can choose fx1
; . . . ; fxk

such that

lim inf
x!x

f fx1
�x� � � � � � fxk

�x�g � a > 0

for any x A q�W. Then we can ®nd g A Cy
0 �W� such that

f0 :� �2=a�� fx1
� � � � � fxk

� � gV 1

on W. The linearity of Dp
0 �W; m� implies f0 A Dp

0 �W; m�. Hence there exist

gn A Cy
0 �W� such that fgng is uniformly bounded and gn ! f0 a.e., `gn ! ` f0

in Lp�W; m� as n!y. Set jn :� minfgn; 1g. Thus fjng is uniformly

bounded and jn ! 1 a.e., `jn ! 0 in Lp�W; m� as n!y. Since

jn A H
1; p
0 �W; m�, it follows that 1 A Dp

0 �W; m�, so that W is not �p; m�-hyperbolic.

Let Q be a family of bounded continuous functions on W. Denote by

D
�p;m�
Q the �p; m�-harmonic boundary of W�Q. Also denote by [Q] the smallest

linear space containing QUCy
0 �W� and constant functions, and closed under

max- and min-operations and the uniform convergence. Note that W��Q� � W�Q
and �Q� � C�W�Q�jW. If D

p
0 �W; m�H �Q�, then we can write the de®nition of

D
�p;m�
Q as

D
�p;m�
Q � x A q�QW : lim

x!x
f �x� � 0 for any f A Dp

0 �W; m�
� �

;

where q�QW � W�QnW.
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Theorem 3.1. (Comparison principle with respect to �p; m�-harmonic

boundary) Suppose that W is �p; m�-hyperbolic and suppose that conditions �C1�
and (B.5) are satis®ed. Let QHDp�W; m�. If u is an �A;B�-superharmonic

function in W which is bounded below and v is an �A;B�-subharmonic function in

W which is bounded above, and

lim sup
x!x

v�x�U lim inf
x!x

u�x�

for any x A D
�p;m�
Q , then vU u in W.

Proof. Set ~u�x� � lim infx!x u�x� and ~v�x� � lim supx!x v�x� for x A q�QW.

Then ~u (resp. ~v) is lower (resp. upper) semicontinuous and bounded below

(resp. above) on q�QW and ~uV~v on D
� p;m�
Q . Let e > 0. Then we can choose

j A C�q�QW� such that ~vÿ eU jU ~u� e on D
�p;m�
Q . Since Dp�W; m� is a linear

space containing constant functions and closed under max- and min-operations,

�Q�VDp�W; m� is dense in �Q� with respect to the uniform convergence by the

Stone-Weierstrass theorem. Hence, there is f A C�W�Q�VDp�W; m� such that

~vÿ 2e < f < ~u� 2e

on D
�p;m�
Q . Put

L :� fx A q�QW : ~u�x� � 2eU f �x� or ~v�x� ÿ 2eV f �x�g:
Since L is a compact subset of q�QWnD�p;m�Q , as in the proof of Proposition 3.1

we can ®nd g A D
p
0 �W; m� such that gV 0 on W and lim infx!x g�x�V d > 0 for

any x A L. Since f is bounded and ~u is bounded below, there exists c1 > 0 such

that ~u�x� � c1 lim infx!x g�x�V f �x� for any x A L. Thus

lim inf
x!x

fu�x� � c1g�x�g � 3eV f �x� � e

for any x A q�QW. Hence u� 3e A U�fÿc1g, so that hfÿc1g U u� 3e. Also

hfÿc1g ÿ � f ÿ c1g� A Dp
0 �W; m� by Theorem 2.2. Similarly there exists c2 > 0

such that vÿ 3eU hf�c2g and hf�c2g ÿ � f � c2g� A Dp
0 �W; m�. The linearity of

Dp
0 �W; m� and g A Dp

0 �W; m� yield hfÿc1g ÿ hf�c2g A Dp
0 �W; m�. By �C1�, we see

that hfÿc1g, hf�c2g are bounded. Hence, by (B.5), we can apply Proposition 1.5

and obtain hfÿc1g � hf�c2g. Thus we have

vÿ 3eU hf�c2g � hfÿc1g U u� 3e

in W. Since e > 0 is arbitrary, vU u in W.

In case W� is an �A;B�-resolutive compacti®cation, a point x A q�W is said

to be �A;B�-regular if

lim
x!x

H�c; W�� � c�x�

for any c A C�q�W�.
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Theorem 3.2. Suppose that W is �p; m�-hyperbolic and suppose that con-

ditions (C1) and (B.5) are satis®ed. Let QHDp�W; m�. Then any �A;B�-
regular point x A q�QW belongs to D

� p;m�
Q .

Proof. Let x B D
�p;m�
Q . Then there is g A Dp

0 �W; m� such that gV 0 on W

and lim infx!x g�x� > 0. We can ®nd f A C�W�Q� such that 0U f U g on W

and f �x� > 0. Let c � f jq �QW. By Proposition 2.2, the comparison principle

(Theorem 1.1) and Proposition 2.1,

h0 � H�0; W�Q�UH�c; W�Q� � hf U hg;

where the subscript 0 in h0 signi®es the constant function 0 in W. Since

g A Dp
0 �W; m�, hg ÿ h0 A Dp

0 �W; m� by Theorem 2.2. Thus by Proposition 1.5,

hg � h0. Hence the above inequalities imply H�0; W�Q� � H�c; W�Q�. Thus, if

x is �A;B�-regular, then

0 < c�x� � lim
x!x

H�c; W�Q��x� � lim
x!x

H�0; W�Q��x� � 0;

which is impossible. Thus we obtain the conclusion of the theorem.

The converse of the above theorem is valid under an additional condition.

Theorem 3.3. Suppose that W is �p; m�-hyperbolic and suppose that con-

ditions �C1� and (B.5) are satis®ed. If QHDp�W; m� satis®es Dp
0 �W; m�H �Q�,

then any x A D
�p;m�
Q is an �A;B�-regular point.

Proof. Let x A D
�p;m�
Q and c A C�q�QW�. By the Stone-Weierstrass theo-

rem, for any e > 0 there is f A C�W�Q�VDp�W; m� such that f ÿ eUcU f � e on

q�QW (cf. the proof of Theorem 3.1). By Lemma 1.2 there exists an �A;B�-
superharmonic function u in W such that uV f in W and uÿ f A D

p
0 �W; m�.

Then u� e A Uc, so that H�c; W�Q�U u� e in W. Since x A D
�p;m�
Q and

D
p
0 �W; m�H �Q�, we have limx!x u�x� � f �x�. Thus we obtain

lim sup
x!x

H�c; W�Q��x�U f �x� � eUc�x� � 2e:�3:1�

Similarily we have

c�x� ÿ 2eU lim inf
x!x

H�c; W�Q��x�:�3:2�

Since e is arbitrary, (3.1) and (3.2) yield the regularity of x A q�QW.

Remark 3.1. Condition Dp
0 �W; m�H �Q� cannot be suppressed in Theorem

3.3 even in the linear case. For example, let A � fx A RN : 1 < jxj < 2g,
x0 A A and W � Anfx0g. Let f A Cy�W� be equal to 1 near fjxj � 1gU fx0g
and equal to 0 near fjxj � 2g. For Q � f f g, W�Q � WU fx1; x2g, where x1
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corresponds to fjxj � 1gU fx0g and x2 corresponds to fjxj � 2g. Then

D
�2;dx�
Q � fx1; x2g, while x1 is not regular with respect to the Laplacian, i.e., not

�A;B�-regular for A�x; h� � h and B�x; t� � 0.
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