
Hiroshima Math. J.
30 (2000), 537±541

On orbit closure decompositions of tiling spaces by the

generalized projection method

Kazushi Komatsu

(Received April 3, 2000)

(Revised May 25, 2000)

ABSTRACT. Let T�E� be the tiling space on a p-dimensional subspace E of Rd with a

®xed lattice L by the generalized projection method. By using the dual of the lattice L

we will construst explicitly a parameter family of the orbit closure decomposition of

T�E� and characterize its dimension. As its application we obtain that the parameters

of the orbit closure decomposition of T�E� correspond to the periods of T�E?�,
provided that T�E� and T�E?� are given by the generalized projection method from an

integral lattice L.

1. Introduction

In 1981 de Bruijn introduced the multigrid and projection methods to

construct aperiodic tilings such as Penrose tilings. The multigrid method was

generalized by Kramer and Neri (1984). The projection method was gener-

alized to a higher dimensional lattice Zd by Duneau and Katz (1985). GaÈhler

and Rhyner (1986) extended the projection method to general lattices and

showed that these generalized multigrid and projection methods are equivalent.

First, we recall the de®nitions of tilings and tiling spaces by the

generalized projection method (cf. [3], [4]). Let L be a lattice in Rd with a

basis fbiji � 1; 2; . . . ; dg. Let E be a p-dimensional subspace of Rd , and E? be

its orthogonal complement with respect to the standard innner product. Let

p : Rd ! E and p? : Rd ! E? be the orthogonal projections. We put A �
fPd

i�1 ribij0UriU1g. For any x A E? we put x� p?�A� � fx�uju A p?�A�g,
which is a compact set with a nonempty interior. For p vectors bki

A
fbig such that fp�bki

�g is linearly independent we put T�k1; k2; . . . ; kp� �
fPp

i�1 ribki
j0UriU1g. Taking such bki

we de®ne Fp�L� � fv�T�k1; k2; . . . ; kp� j
v A L; ki such that fp�bki

�g is linearly independentg and T�x� � fp�S�jS H
�x� p?�A�� � E;S A Fp�L�g. Note that T�k1; k2; . . . ; kp� is a p-dimensional

parallelotope. T�x� is a tiling on a p-dimensional subspace E of Rd by the
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generalized projection method. A tiling space T�E� � fu�T�x�ju AE; x AE?g
is de®ned by a space of tilings consisting of all translates by E � Rp of the

tilings T�x� for all x A E?. In the case L � Zp the tiling space T�E� is de®ned

by any of three equivalent methods, the multigrid method, the projection

method, or the oblique tiling method of Oguey, Duneau, and Katz (1988).

Tiling spaces are topological dynamical systems with continuous Rp translation

action and with topology de®ned by a tiling metric on tilings of Rp (see for

example [12]).

In order to state theorems we remind of several de®nitions. The dual

lattice L� is de®ned by the set of vectors y A Rd such that hy; xi A Z for all

x A L, where h ; i denotes standard inner product. A lattice L is called integral

if hx; yi A Z for all x; y A L. The standard lattice is both integral and self dual.

Let Orb�T�x�� denote the orbit of T�x� in T�E� by the Rp translation

action and span�A� denote the R-linear span of a set A.

The purpose of this paper is to show the following theorem:

Theorem 1. Let T�E� be the tiling space on a p-dimensional subspace E of

Rd by the generalized projection method and p 0 : E? ! span�L� VE?� be the

orthogonal projection. De®ne p : L! span�L� VE?� by p � p 0 � �p?jL�. We

take a basis x1; . . . ; xk of any direct summand K such that L � pÿ1�f0g�lK.

Then T�E� decomposes into a k parameter family of orbit closures

Orb�T�t1x1 � � � � � tkxk�� for t1; . . . ; tk A R.

In particular, we obtain that k is equal to rank�L� VE?�.

Note that any two orbit closures are either coincident or disjoint. A. Hof

(1988) proved that E? VL� � f0g if and only if T�E� � Orb�T�0��.
Assume that L is integral. Then we see that rank�L� VE?� �

rank�LVE?� because LHL� and L�=L is ®nite. In [7] we proved that

the number of independent periods of the tiling space T�E?� is equal to

rank�LVE?�. By Theorem 1 we immediately obtain the following theorem

in the case that L is integral:

Theorem 2. Let T�E� (resp. T�E?�) be the tiling space on a p-

dimensional subspace E (resp. �d ÿ p�-dimensional subspace E?) of Rd by the

generalized projection method and assume that L is an integral lattice. Then

T�E� decomposes into a k parameter family of orbit closures, where k is equal to

the number of independent periods of the tiling space T�E?�.

According to the unpublished thesis of C. Hillman (1988) the tiling space

T�E� decomposes into a k parameter family of orbit closures, where k is equal

to the number of independent periods of the tiling space T�E?� in the case that

L � Zd .
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2. Proof of Theorem 1.

We de®ne F : Rd=L!T�E� by F ��x�� � T�x� for x A Rd . Note that F is

well-de®ned by the construction of T�x�. Since T�x� u� � u� T�x�, we have

F ��x� u�� � u� T�x� for any x A Rd and u A E � Rp, where the tiling u� T�x�
is translation of the tiling T�x� by u A E � Rp. F is called a factor mapping

(see for example [12]). Tiling spaces are compact due to [11, p. 357, Lemma

2]. So F satis®es that F�A� � F �A� for any subset AHRd=L. Thus a

parameter family of the orbit closure decomposition of T�E� is obtained from

a parameter family of the orbit closure decomposition of Rd=L by F .

By a similar argument to [13, p. 52, Theorem 2.3] we can construct

linear subspaces V ;W HE? such that E? � V lW , p?�L�VV is dense in V ,

p?�L�VW is a lattice in W and p?�L� � p?�L�VV � p?�L�VW . In par-

ticular, V is given by V �7
r>0 span�Ur�0�V p?�L��, where span�A� denotes

the R-linear span of a set A and Ur�v� denotes the open ball of radius r and

center v. Let Orb��x�� denote the orbit of �x� in Rd=L by the Rp translation

action. We take a basis x1; . . . ; xk of p?�L�VW . We have that the orbit

closures of Rd=L are the cosets of the closed connected subgroup Orb��0��.
By the properties of V and W we get that Rd=L decomposes into a k

parameter family of the orbit closures Orb��t1x1 � � � � � tkxk�� for t1; . . . ; tk A R.

Therefore T�E� also decomposes into a k parameter family of orbit closures

Orb�T�t1x1 � � � � � tkxk�� for t1; . . . ; tk A R.

We can easily see that k � rank�L� VE?�. In fact, we take a basis c1; . . . ;

ck A p?�L�VW and a basis ck�1; . . . ; cdÿp A V . By the de®nition of L� we

get that hx; yi A Z for any x A p?�L� if and only if y A L� VE? � L� V
�V? VE?� for y A E?. Since p?�L�VV is dense in V , we obtain that L� V
E? is orthogonal to V . Hence, rank�L� V �V? VE?��U dim V? � k. For

any i with 1U i U k we can take ai A E? such that ai is orthogonal to fcj j
1U j U d ÿ p; j 0 ig. Since x;

1

hai; cii
ai

� �
A Z for any x A p?�L�, we see that

1

hai; cii
ai A E? VL�. Now the

1

hai; cii
ai are linearly independent in E? VL�.

Therefore we get k � rank�L� VE?�.
We will construct explicitly the linear subspaces V ;W HE? mentioned

above from the dual of the lattice L. Let p 0 : E? ! span�L� VE?� be the

orthogonal projection and de®ne p : L! span�L� VE?� by p � p 0 � �p?jL�.
We take a direct summand K such that L � pÿ1�f0g�lK . By the de®ni-

tion of p we have that span�p?� pÿ1�f0g��� is orthogonal to span�L� VE?�.
Because V H span�p?� pÿ1�f0g��� and k � rank�L� VE?�, we see that

span�p?�pÿ1�f0g��� is equal to V given above. Then p?�L�VV is dense in

V . We put W � span�p?�K��.
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First, we will show that p�K� is discrete in span�L� VE?�, which is

enough to prove that p?�L�VW is a lattice in W . Suppose that fuig is a

sequence of elements of K such that fp�ui�g converges in L� VE?. We may

assume that f p�ui�g converges to 0. Write p?�ui� � vi � wi with vi A V , wi A W

for each i. By the hypothesis we see that fwig converges to 0. Since p?�K�
is dense in V we can choose yi A K such that jwi ÿ p?�yi�j < 1=�2i�. Then

jp?�ui ÿ yi�j � jp?�ui� ÿ p?�yi�j � jvi � wi ÿ p?�yi�jU jvij � jwi ÿ p?�yi�j. So

p?�ui ÿ yi� converges to 0. Thus for su½ciently large i, we have p?�ui ÿ yi� A
V and ui ÿ yi A pÿ1�f0g�. Then ui A pÿ1�f0g�VK � 0 and p�ui� � 0. This

implies that p�K� is discrete in span�L� VE?�.
The rest of the proof is devoted to show that the two subspaces V ;

W HE? satisfy the following properties: E? � V lW , p?�L�VW is a lattice

in W and p?�L� � p?�L�VV � p?�L�VW . Since p�K� spans span�L� VE?�
and p�K� is discrete, p�K� is a lattice of rank p�K� � dim E? ÿ dim V .

Because the restriction pjK is injective, we obtain k � rank K � rank p�K� �
�d ÿ p� ÿ dim V . Since dim W U k � �d ÿ p� ÿ dim V and E? �W � V we

have dim W � �d ÿ p� ÿ dim V and E? �W lV . Since p�K� is discrete and

p 0 is continuous, p?�K� is discrete. Because p?�K� has the same rank as K ,

we can see that K is isomorphic to p?�K� and p?�K� is a lattice in W .

Since p?�L� � p?�K� � p?�pÿ1�f0g��, we obtain p?�K� � p?�L�VW and

p?� pÿ1�f0g�� � p?�L�VV . q.e.d.
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