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ABsTrRACT. Let G be a finte group. We give a short exact sequence for calculating the
group &(X) of based G-homotopy classes of based G-self-homotopy equivalences of a
G-CW complex X under certain conditions.

0. Introduction

For a based G-space X, the set 65(X) of based G-equivariant homotopy
classes of based G-equivariant self-homotopy equivalences of X forms a group
under composition of maps. In this paper, we study &g(X) for a G-CW
complex X under certain conditions. Throughout the paper, G is a finite
group and H a subgroup of G, all G-CW complexes are G-connected and have
G-fixed base points, and all G-maps and G-homotopies (denoted by ~) preserve
the base points *. For a G-map f: A — B between G-CW complexes, we
consider the reduced cone CA=A xI/(Ax {1})U({x} xI), the reduced
suspension SA = CA/A x {0} and the reduced mapping cone Cy = BU; CA4
obtained from the topological sum of B and CA by identifying each (a,0) € C4
with f(a) € B, where G acts trivially on I =[0,1]. Then a G-coaction of
SA on Cr defines a map A in §1, whose restriction to Imi, yields the
homomorphism A :i.([S4, B];) — é¢(Cy), where i: B— Cy is the inclusion
(Lemma 1.3). This homomorphism will be used in §3. In §2 &s(Cr) for
A=G/H" A S", the n-fold reduced suspension of G/HT, is studied. Here
G/H denotes the left coset space of G by H with action given by
g-(¢'H) = (g9’ )H for ge G and ¢'H € G/H, and G/H" the topological sum
of G/H and a single point *, the base point of G/H'. A homomorphism
¢ XY :66(Cr) = 6c(A) x 8c(B) is obtained when dimB<n—1 and n=2.
The image and the kernel of this homomorphism are studied in §2 and §3,
respectively. Then, a short exact sequence for calculating &6(Cy) is obtained
in Theorem 3.5. The non-equivariant case is due to Barcus and Barratt [1,
Theorem (6.1)]. In §4 we show that if n =2 then 66(G/H" A S") is anti-
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isomorphic to the group U(Z(N(H)/H)) of units of the integral group ring
Z(N(H)/H) of N(H)/H, where N(H) denotes the normalizer of H in G
(Theorem 4.1). In §5 using the above anti-isomorphism and short exact
sequence, we study &z,(Cr) for each Zy-map f: Z3 A S — Z7 A S" with
n=k+32=4 (Theorem 5.11) and further calculate &z,(Cr) in the case of
k=1 (Proposition 5.16). In §6 we also study &z,(Cy) for each Zg-map
fiZEASE - ZT A S" with n=k+32=4 (Theorem 6.6) and calculate
67,(Cr) in the case of k=1 (Proposition 6.10). We use the following
notation: [X, Y], denotes the set of based G-homotopy classes of based
G-maps of X into Y. X denotes the H-stationary subspace {x e X |gx = x
for every ge H}. (Zq)k denotes the direct product of k-copies of Z,. The
same symbol will be used for a G-map and its G-homotopy class. A G-CW
complex X is called G-connected (resp. G-1-connected) if the fixed point set X 7
is connected (resp. simply connected) for every subgroup H of G.

1. Preliminalies

For a G-map f: 4 — B between G-CW complexes we consider the se-
quence of the induced cofibering

AL gl 2 osa,
where i and p are G-maps with respect to the natural G-actions. The coaction
(1.1) [:Cr— Crv S4,

defined by collapsing the subspace A x {1/2} of C; = BU; CA to the base
point *, is a G-map and defines a map

(1.2) 2184, Gl — [Cr, Grlg

by A(a) =</(1 v a)l for ae[SA4,Cy];, where 7 denotes the folding map.
Then we have the following, which will be used in §3.

LemMa 1.3, A(a+p) = Ma)A(B) for ae[SA,Cyl, if B belongs to the
image of i : [SA, Bl; — [SA4, Cfl;.

Proor. If f=ip’ for some B’ € [SA, B|;, then A(x)B = B by the definition
of 1. For the natural G-comultiplication /" on SA4, (I v 1)/ = (1 v I')]. These
equalities, A(a)f =p and (I v )l = (1 v I')], yield

) A(p) = v (Me) v A@)B)] = 7 (4() v p)I
=v(lv)1vavp)(lvI=ia+}p). q.e.d.
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2. Homomorphism ¢ x y and its image

In this section we assume that 4 = G/HT A S" with n =2 and B is a
G-CW complex; we consider the mapping cone

Cf:BUf (G/H+ A enJrl)

of a G-map f: 4 — B. Note that G/H" A §" =\/(g;H/H" A S"), the one
point union of n-spheres with action given by ¢ - (¢;H/H") = (g9g9;)H/H™.

Lemma 2.1. If dimB<n—1, then i, :[B,B|;— [B,Cs]lg and p*:
[S4,SA); — [Cr,SA] are bijective.

Proor. Let L be a subgroup of G. Since the fixed point set CfL =
BLU; ((G/H)S)T A emth), (CF, B") is n-connected (cf. [8, II, (3.9) Theorem]).
Hence i, :[B,B]; — [B,Cs]; is bijective by [2, II, (5.3) Corollary]. Also
SA=G/H" A S™! implies that [SB,SA|;=[B,SA]l;=0 by [2, 1I, (5.2)
Lemma)]. Therefore, the Puppe sequence (cf. [2, III, (2.2)])

5B, 5A); L (54, 84], 2 [Cp, SA] —— [B, SA] g —
shows that p* is bijective. q.e.d.

Since the suspension S : [4, 4] ; — [S4, S4] is bijective (see §4), the above
lemma allows us to define a map

(22) @ X lﬂ : [Cf’ Cf]G — [A,A]G X [B, B]G

%

by ¢=85"'"p*"'p, and ¥ =i 'i* under the assumption of Lemma 2.1.
Namely, S¢(h) and y(h) are the elements uniquely determined by the G-
homotopy commutative diagram

i

B ¢ 21— s4

(2.3) lwﬂ Jh lsmh)

B —~ ¢ -2 sa

Therefore ¢ x  is a homomorphism of monoids, and hence a homomorphism
(24) @ X lﬁ : gg(Cf) — gg(A) X éaG(B)

of groups can be defined as the restriction of the map ¢ x Y in (2.2) to &6(Cr)
when dimB <n—1. From now on, we study the image of this homo-
morphism ¢ x . Let ESA = (SA4)’, the space of free paths (not necessary
equivariant) in S4, and PSA = {0 € ESA|o(l) = x}, the space of paths in S4,
where G acts on ESA and PSA by (g-0)(t) =g-0o(t) for ge G and o € ESA
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(or PSA), and let
Qsa L F, 4 Cr (q¢(x,0) = x)

be the path fibering induced from the fibering Q2S4 — PSA — SA by
p: Cy — SA, where G acts diagonally on F, = {(x,0) € C; x PS4 |p(x) = 5(0)}.
Then a G-lifting 1: B— F, of i : B— Cy can be defined by 1(b) = (5,0,) € F),
where 0, denotes the constant path, 0.(7) =, € 1.

Lemma 2.5. (i) IfdimB <n—1, then q. : [B,Fy|; — [B, Cyls is bijective.
(ii) If B is G-l-connected, then 1, : (A, Bl; — [A,F,); is bijective.

ProoF. (i) Let L be a subgroup of G. Since SAL = ((G/H)")" a
S 7, (2SAY) =0 for all i <n—1. Therefore, the homotopy sequence

— m(@S4") Lo m(Fh) 2 my(CF) S i (2545 —

of the fibering QSA* — F} — C} shows that q.:m(Fp) — mi(Cf) is iso-
morphic for all i <n— 1 and epimorphic for i =n. Hence, if dmB <n—1,
then ¢. :[B,Fy); — [B,Cs]; is bijective in the same way as in [2, II, (5.4)
Theorem)].

(ii) Since 4 =G/H" A S", it suffices to show that . : 7,(B") — m,(F/)
is isomorphic by [4, Lemma 2.1’]. Let E, = {(x,0) € C; x ESA|p(x) = a(0)},
where G acts diagonally on E,. Then the fibering

F, S E, 5S4  (r(x,0) =0a(1))

induces the isomorphism r. : 7 (E)", F}') — n;(S4™) for all i. Also, since
cff =B" Ur ((G/H)™)™ A emt!), Blakers-Massey Theorem implies that
pe i mi(CH B") — m;(SA™) is isomorphic for all i<n+1 (cf. [8, VII,
(7.12) Theorem]). The inclusion e: Cy — E, defined by e(x) = (x,0,,)) is a
G-homotopy equivalence satisfying p =re. Therefore, in particular,
(e,1), =rp.: nn+1(qu,BH) — T (B F) anq e, : n,(C)fl) — ni.(Elf’) for
i=n and n+ 1 are isomorphic. Thus, the equality ei = wz gives rise to the
commutative diagram

) Iy
— Tt (CH) — mua (CH, By —— m,(BH) —— m,(CH) — 0

exlz (e,l)*J; l*l e%l;

J .
— Tyt (Eff) — mu(EFLFH) — m(FH) = m(EF) — 0

whose top and bottom rows are the homotopy sequences of the pairs (Cr, BY)

and (EJ', FJ"), respectively. This diagram shows that v, : 7,(B") — m,(F") is

isomorphic by the five lemma. g.e.d.
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Let ¢ x  be the homomorphism in (2.4). Then we show the following in
the same way as in the non-equivariant case due to Rutter [6, Theorem 4.6].

LemMma 2.6. If B is G-l-connected and dim B < n — 1, then the image of
o Xy is equal to

M = {(hl,/’lz) € éac;(A) X («sag(B) |h2f :f//ll in [A,B}G}

Proor. Let (h,h;) be any element of M. Then, each G-homotopy
hyf ~ fhy allows us to construct a G-map h: C;y — Cr such that i ~ ih, and
Ship ~ ph, that is, y(h) = hy and S¢(h) = Sh; in (2.3). Therefore, to prove
M < Im(p x ), it suffices to show that the above element / is a G-homotopy
equivalence. For each subgroup L of G, h; and A, induce the isomorphisms
hy.: H(AY Z) — H(A%,Z) and hy, : H(BY Z) — H{(BY;Z) for all i
respectively. Therefore, /4 induces the isomorphism /7, : H,-(CfL;Z ) —
Hi(Cj[L;Z) for all i by the five lemma, and hence it induces the isomor-
phism h*:ni(Cf) —>7z,~(CfL) for all i by Whitehead Theorem. By [2, II,
(5.5) Corollary], this shows that /4 is a G-homotopy equivalence. Thus,
M < Im(p x ). Next, let & be any element of é5(Cy). Then, p.h = p*Se(h)
by the definition of ¢, and each G-homotopy ph ~ Se(h)p allows us to
construct a G-map / : F, — F, such that the diagram

es4 L F, 1. ¢ 2. s4

(2.7) lQS;a(h) l/? lh sz(m

os4a - F, 2 ¢ 2L s4

is G-homotopy commutative. Let :: B — F, be the G-lifting of i : B— Cy in
Lemma 2.5. Then, the equality ¢: = i and the commutativity of the diagrams
(2.3) and (2.7) yield

quy(h) = iy(h) ~ hi = hqi ~ qh,

and hence nj(h) ~ /i by Lemma 2.5 (i). Furthermore, let 7: 4 — QSA be a
G-map defined by 7(a)(¢) = (a,1 —¢) for ae A and tel. Then, QSp(h)r =
tp(h). Let 7,: A — PSA be a G-homotopy defined by 7,(a)(t) = p(a,s(1 — 1))
for aeA and s,tel, and let hy: A — F, be a G-homotopy defined by
hy(a) = ((a,s),7s(a)). Then this G-homotopy A, shows that if ~jz. Now,
these G-homotopies and the equality, nj(h) ~ hu, if ~ jr and QSg(h)t = tp(h),
and the commutativity of the diagram (2.7) yield

WR ~ Inf ~ hje = j@Sp(h)t = jep(h) ~ if p(h).
Hence, y/(h)f ~fp(h) by Lemma 2.5 (ii). Thus, Im(p X ) = M. q.e.d.
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3. Kernel of ¢ x ) and a short exact sequence

In this section we assume that A’ = G/H* A S"~! with n =2 and B’ is a
G-CW complex; we also assume that f’': 4’ — B’ is any G-map and that
f=S8f":4=8S4"— B=SB'. Then we have

Lemma 3.1. If B is G-l-comnected, then there is an exact sequence of
groups
[S4, Blg = [S4, Gflg - [S4, S4].

PROOF. An  isomorphism 7, (C/!, B") = Tt ((G/H)T)T A S
obtained by Blakers-Massey Theorem yields an exact sequence

Tt (BM) 5 71 (GF) 5 s (G H)™Y m 5™1),
which implies this lemma by [4, Lemma 2.1]. g.e.d.

Let 2 be the map in (1.2) and ¢ x {y the homomorphism in (2.4). Then
we have

Lemma 3.2. (1) Ala) =1+oap for ae[S4,Crlg.
(i) If B is G-l-connected and dim B < n — 1, then the kernel of ¢ x  is
isomorphic to

K= l*[SA7B]G/(Sf)*[SBv Cf}G'

Proor. (i) Since C; ~ SC; by the assumption f = Sf’, C; has the
natural G-comultiplication /': Cy — Cr v Cr, and [~ (1 v p)l' for the G-
coaction / in (1.1). Therefore, by the definition of A in (1.2),

M) =1 va)(lvpl =1+op.

(i) The equality of (i) and the definitions of ¢ and y in (2.2) give rise to the
commutative diagram

(sn- yi i*
[SB,Crlg —— [S4,Crlg —— [, Gl —— [B,Crlg

(3.3) /Hp*l > p»l \ I;

(S4, Bl [S4,84], —— [Cr,S4], (B, Bl

Since the row sequence in (3.3) is an exact sequence of groups if we replace 4
by p*, we have

(3-4) Yol (1) = 14+97(0) = 1+ p7[S4, Glg = A([S4, Crlg)-
Also, (3.4), (3.3) and Lemma 3.1 yield
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Ker(p x ) = (Sp)~' (1) N A([S4, CGrle)
— J(i.[S4, Bly).

Moreover, by (3.3) and Lemma 3.1 we have (Sf)*[SB, Cy]; < i.[S4, B]; and by
Lemma 1.3 and (i) of this lemma we have a group isomorphism

Mi.[SA, Bl ) = i,[SA, B/ (Sf)*[SB, /. qed.

Now Lemmas 2.6 and 3.2 give the following theorem, which is due to Barcus
and Barratt in the non-equivariant case [l, Theorem (6.1)] (cf. [5, Theorem
2.12)).

THEOREM 3.5. Let A'=G/H* A S"!' with n=2 and B' a G-CW
complex, and let f': A" — B' be a G-map. If B= SB' is G-1-connected and
dimB <n—1, then for the mapping cone C;= BU;(G/H" A ") of the
G-map f=S8f":4=SA"— B=SB' with the natural G-action, there is an
exact sequence of groups

0— K~ &6(C) 2 M —— 1
with
K = iS4, Blo/(S)[SB.C/lg  and
M = {(ln, hy) € E(A) x E6(B) | hof = fhi in [4,B]g).

4. Anti-isomorphism: 6G(G/H™ A S") ~ U(Z(N(H)/H)) (n=2)

Let G be a finite group and H a subgroup of G. Note that (G/H )H =
N(H)/H, where N(H) denotes the normalizer of H in G. Then we have

THEOREM 4.1. If n = 2, then the group G(G/H" A S") is anti-isomorphic
to the group U(Z(N(H)/H)) of units of the integral group ring Z(N(H)/H) of
N(H)/H.

Proor. To prove this theorem, it suffices to show that there is a ring anti-
isomorphism [G/H™ A S",G/H* A S"|; = Z(N(H)/H). Let {g;H} be the
left decomposition of N(H) with respect to H, and let the homotopy class of
the composite of a map m: S" = H/Ht A S" — S" =g;H/H" A S" of degree
m and the inclusion of ¢g;H/H™ A S" into N(H)/H" A S" be identified
with mg;H € Z(N(H)/H). Then by [4, Corollary 2.2], the restriction to
S"=H/H" A S" and this identification yield the following isomorphism @ of
additive groups.

®:[G/H" A S".G/H" A 8", = n,(N(H)/H" A S") =~ Z(N(H)/H).
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Let u and v be any two elements of the set (G/H™ A S",G/H" A S"]; and
jJ:NH)/H" A S" — G/H" A S" the inclusion. Since v is equivariant,
o|(g:H/H" A S") =g:H -v|(H/HT A S").
If u|(H/H" A S") =moH +mygiH +---+mgiH em,(NH)/H* A S"), then
D(vu) = vj(moH +myg1H + - - - + mygi H)
= (o|(H/H" A S"))mo + -+ (u|(geH/HT A S"))m
=mo(H - o|(H/H" A S"))+ - +my(giH - v|(H/H" A S™))
=moH - ®(v) + - + mpgr H - @(v)
= &(u) - D(v).
Thus @ is an anti-isomorphism of rings. g.e.d.

For a finite abelian group G, let ny denote the number of its elements of
order 2 and c¢ the number of its cyclic subgroups (including {e}). Then we
have the following theorem due to Higman (cf. [3, Theorem 4.1]).

THEOREM 4.2 (Higman). Let G be a finite abelian group. Then
U(ZG) = +G x F,
where F is a free abelian group of rank (|G| +mny+1)/2 —c.
Now Theorems 4.1 and 4.2 immediately give the following.

THEOREM 4.3. Let G be a finite abelian group and H a subgroup of G. If
n=2, then

EG(G/HY A S"Y = Zy x G/H x (Z)*, k= (G/H|+nm+1)/2—c,

where Zy = {1,—1}, ny denotes the number of elements of order 2 and ¢ denotes
the number of cyclic subgroups of G/H.

Let E, be the g x ¢ identity matrix and F, the ¢ x ¢ matrix defined by

” ()

If G/H is isomorphic to the cyclic group Z, of order ¢, then G(G/H" A S")
has the torsion subgroup Z, x Z, generated by —FE, and F,.

COROLLARY 4.5. In the above theorem, if G/H is isomorphic to the cyclic
group Z,, then

EG(G/HY A S = Zyx Z,x (Z)*,  k=1q/2]+1—d(g),
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where d(q) is the number of divisors of q and the torsion subgroup Z> x Z, is
generated by —E, and F,, and, in particular,

Z,x Z,, if q=2,3,4,6

Ec(G/HT A 8" >
o(G/H™ A 57) {szqu(Z)k, if qis a prime =35,

where k= (¢ —3)/2.

5. 64,(Cy) for [ Z7 AS"F — ZT AS" nzZk+324)

In this section 4 = Z3 A S"* and B=Z; A S" with n =k +3 = 4; for
each Z,-map f : 4 — B we consider its mapping cone

(5.1) Cr=(Z3 A S")Ur(Z3 A ™).

Since (4, B, = pik(Z3 A S") = 74 (S") @ 7k (S™) by [4, Lemma 2.17],
the Z)-homotopy class f € [4,B], can be written as f = Sf’ for some
flelzi A st z5 A 8™, and

(5.2) f:(j:; ﬁ) fiem (ST, i=1,2.

We first calculate the group K in Theorem 3.5. By an argument similar to the
proof of Lemma 2.1 we have

(5.3) i.:[SB, Bl — [SB, Cy,, is epimorphic.
Let 7, denote the generator of 7, (S") = Z,. Then by [7, Proposition 3.1]
(5.4) 1SS = fiflus for any f; e m 1 (S") nZk+3=4).

Since  [SB, Blz, = m,11(S") @ m,1(S") = Za2{n,} ® Z2{n,} and similarly
(S4, 4] 7, = Zo{n11} @ Zo{1, 11} (5.4) yields

(5.5) (S/)'[SB, Blg, = .54, Alg,.

Now, (5.3) and (5.5) yield

(5.6) (S/)°[SB, Crlz, = () "i[SB, Bl 7, = i. [.[SA4, 4] 7, = 0.

As in the proof of Lemma 3.1 we have an exact sequence of groups
(54, 4], 1[4, B],, - [S4, C/l ..

Therefore, (5.6) yields

(5.7) K =i.[SA,B],, = [S4, Bl,,/f.[S4, Al g,

= Tk 1(S") @ i1 (S™) A Sim, Son), (foms 1)
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where # =17,., and {x,y} denotes the subgroup generated by x and y. We
next calculate the subgroup M of &z,(A) x &z,(B) in Theorem 3.5. Let
E = E; be the 2 x 2 identity matrix and F = F, the 2 x 2 matrix of order 2
defined in (4.4), and let

a=(—E,—E), b= (F,F), c=(E,-E), and d=(E,F).
Then, by Corollary 4.5
(5.8) &7,(A) x &z,(B) = (Z,)* generated by a,b,¢ and d,

and for the presentation of Z,-homotopy class f in (5.2) we have

f(=E)=(-E) and fF = Ff  always hold,

f=(=E)f if and only if 2f;=0 for i=1 and 2,
59) f=Ff if and only if f, = f3,

f=(=Ff if and only if f; =—/.

Now by Theorem 3.5, (5.8) and (5.9) we have

4 otherwise.

(Z,)>  if fy#fo, fi # —/f> and 2f; #0 for i=1 or 2,
(Z,)>  if fi# f, and 2/, =0 for i=1 and 2,
(510) M =< (Z,) if fi=/f, and f; # — />,
(Z2)' if fi# f and fi = —f,
(Z>)

Z,
Consequently by Theorem 3.5 we have

THEOREM 5.11. If n =k +3 = 4, then for each Zy-map [ : Z3 A S —
Z3 A S", its Zy-homotopy class [ € [Z3 A S"™™,ZT A S"], can be written as
(5.2), and for its mapping cone Cy there is an exact sequence of groups

0—-K—687(C)—M—1
where K and M are the groups in (5.7) and (5.10) respectively.

Using this theorem, we further calculate the group &z,(Cr) for k=1.
Since the group 7,41 (S") in (5.2) is isomorphic to Z, generated by #,, for each
Zy-map f: A — B its Zy,-homotopy class f €[4, B],, can be written as

1
f=(s;7 77>7 n=1, s,t=0,1.
tm sy

Also, since the group 7,.2(S") in (5.7) is isomorphic to Z, generated by #,4,. 1,
the group K in (5.7) is trivial when s # ¢, and hence by Theorem 5.11 and
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(5.10)
(5.12) 60, (Cr) = (Zy)  if s#1.

We now assume that s =¢=0. Then the group K is isomorphic to Z, ® Z,,
and hence Theorem 5.11 and (5.10) yield the exact sequence of groups

(5.13) 0— Z,® Z, —— 6,(Cr) 24 (22)*—1,

where (5.8) shows that the right-hand group (Z,)* is generated by a, b, ¢ and d.
Furthermore, since Cr ~ (Z3 A S") v (Z; A S""2) by (5.1), the right inverse
o:(Zy)" — 67,(Cy) of the homomorphism ¢ x { can be given by

o(a) = —Ey, J(b)(g g) a(c)<0E g) a(d)<€ g)

Therefore, (5.13) is a split extension, and hence &z,(Cy) is isomorphic to
the semi-direct product (Z> @ Z,) x (Z,)*. Furthermore, for 2 =,1, 41 We

define
;,]2 0 0 ’72
P= -
(0 772>’ ¢ <'72 0)’
E P E 0
P“_(o E> Q“_(o E>

Then, P, and Q4 generate A(Z, @ Z,) by the definition of A, and hence &z, (Cr)
is generated by o(a),a(b),a(c),o(d),Ps and Q4. Thus, we have

(5.14)

(5.15) E2,(Cr) = Dy x (Z2)?  if s=1=0,

where the direct factor D4 is the dihedral group of order 8, and (Z,)® is
generated by o(a),a(b) and a(c). If s =t =1, then the group K is isomorphic
to Z, by (5.7) and the group M is isomorphic to (Z)* by (5.10). Therefore,
by (5.12), (5.15) and Theorem 5.11 we have

PROPOSITION 5.16. If n=4, then for each Zy-map f:Z5 A S —
Z; A S", its Zy-homotopy class [ € [Z3 n S"T, ZT A S"], can be written as

S t
f=<W7 ’7), n="1n,, s,t=0,1,
m sn

and for its mapping cone Cy, we have

(Z,)° if s#1

ng(Cf‘):{Dz‘X(Zz)B lf s=1=0.
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If s=1t=1, then there is an exact sequence of groups

0— Zy — 62,(Cp) — (Zo)* — L.

6. 62,(Cy) for [ Zi AS"F  Z7 AS" nZk+3=4)

We take 4 =Z; A S"* and B=Z; A S" with n =k +3 =4, where
Z,=Z¢/Z5. Since [A,B}Z6 =~ 7,14 (S") @ 7k (S™), each Zg-homotopy class
f €A, B], can be written as f = Sf’ for some /' € [Z{ A "1 Z7 A ™,

and

- (h LA H h S
6.1 = - A
N7 (fzflfzflfzfl
Let K be the group in Theorem 3.5. Then, as in §5 we have
(6.2) K =m11(S") @ Tkt (S™) /AU 1Wnies Solnsse)s (FoMlies Slnsse) }-

We calculate the subgroup M of &z,(A) x éz,(B) in Theorem 3.5. Let E, be
the ¢ x ¢ identity matrix and F, the ¢ x ¢ matrix of order ¢ defined in (4.4),
and let

)7 f}enn%(S”), 12152

a = (F6, Fz), b= (—E6, —Ez), c = (E67 —Ez) and d= (E6,F2).
Then by Corollary 4.5
(6.3) Ez.(A) X E7,(B) = Ze x (Z>)" generated by a,b,c and d,

and
f(=Es) = (—Ey)f and fF; = F,f always hold,

f=(-E)f if and only if 2f;=0 for i=1 and 2,
f=5Kf if and only if f; = /5,
f=(-FB) if and only if f,=-f,
for fin (6.1). Now by Theorem 3.5, (6.3) and (6.4) we have
(6.5)

Zyx (Z2)*  if fi#fo, fy# —/f, and 2f, #0 for i=1 or 2,
Zyx (Zy)  if fiy# f, and 2/, =0 for i=1 and 2,
M= Zyx(Z,)' if fi=/f, and f, # —f5,
Zyx (Z,)° it fi #f, and fi = —f,
Z3 x (Z,)* otherwise.

Consequently by Theorem 3.5 we have
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THEOREM 6.6. If n =k +3 =4, then for each Zg-map f: Z{ A S"F —
Z; A S", its Zg-homotopy class [ € [Z{ n S"™™, ZT A 8", can be written as
(6.1), and for its mapping cone Cy there is an exact sequence of groups

0—K—&z(C)—>M—1
where K and M are the groups in (6.2) and (6.5) respectively.

We further calculate the group &%,(Cr) for k=1. Since the group
7,1(S™) in (6.1) is isomorphic to Z, generated by #,, we have f| = sy, f, = 1,
n=mn, with 5;,1=0,1 in (6.1). Also, since the group 7,;2(S") in (6.2) is
isomorphic to Z, generated by 7,7, , the group K in (6.2) is trivial when s # ¢,
and hence by Theorem 6.6 and (6.5)

(6.7) 62.(Cr) = Zy x (Z2)®  if s#1.

We now assume that s =¢=0. Then the group K is isomorphic to Z, @ Z,,
and hence Theorem 6.6 and (6.5) yield the exact sequence of groups

A X
(6.8) 0—>Zz®22%éaz(,(cf)¢—w>z6 x (Z2)) — 1,

where (6.3) shows that the right-hand group Zs x (22)3 is generated by a,b, ¢
and d. Furthermore, since Cy =~ (Z5 A S") v (Z{ A S§"*?), the right inverse
o:Zg X (22)3 — 67,(Cr) of the homomorphism ¢ x y can be given by

7 K0 B — _E
U(a)* 0 F ’ G()**Sv

(B 0 (0
=1, ) ad)=1{, g )’

where F, is the matrix in (4.4). Therefore, the sequence (6.8) is a split
extension, and hence &z,(Cr) = (Z, @ Z>) X (Zs x (Z,)%). Let Py and Qg
be 8 x 8 matrices defined by

Pi,=(P P P), O12=(Q0 0 0),

E, P, E, 01>
P8 = ; Q8 = 3
0 E6 0 E6

where P and Q are the 2 x 2 matrices in (5.14). Then, Pg and Qg generate
MNZy@® Z,) by the definition of A, and hence &z,(Cr) is generated by
o(a),a(b),o(c),a(d), Py and Qg. Thus, we have

(69) (5026(6}‘) >~ Dy X Zg X (22)2 if s=1¢= 0,
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where the direct factor Zg x (Z,)” is generated by o(a),o(b) and o(c). If
s =t =1, then the group K is isomorphic to Z, by (6.2) and the group M is
isomorphic to Z3 x (Z,)* by (6.5). Therefore, by (6.7), (6.9) and Theorem 6.6
we have

PROPOSITION 6.10. If n=4, then for each Ze-map f:Zi A S —

Z; A S", its Zg-homotopy class f € [Z{ n "™, ZT A S"], can be written as

syotmosyotmosy oty
f=<

- 5,1=0,1,
m sy oSy s77>’ =t ’

and for its mapping cone Cr we have

Z; x (Z,)° if s#t

Ez,(Cr) =
Z6( f) D4><Z3><(Zz)3 lf s=1t=0.

If s=t=1, then there is an exact sequence of groups

(1]
(2]
(3]
[4]
[5]
(6]
[7]
[8]

0— Zy) — 62,(Cr) — Z3s x (Z,)* — 1.
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