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ABSTRACT. Let G be a ®nte group. We give a short exact sequence for calculating the

group EG�X� of based G-homotopy classes of based G-self-homotopy equivalences of a

G-CW complex X under certain conditions.

0. Introduction

For a based G-space X, the set EG�X � of based G-equivariant homotopy

classes of based G-equivariant self-homotopy equivalences of X forms a group

under composition of maps. In this paper, we study EG�X� for a G-CW

complex X under certain conditions. Throughout the paper, G is a ®nite

group and H a subgroup of G, all G-CW complexes are G-connected and have

G-®xed base points, and all G-maps and G-homotopies (denoted by F) preserve

the base points �. For a G-map f : A! B between G-CW complexes, we

consider the reduced cone CA � A� I=�A� f1g�U �f�g � I�, the reduced

suspension SA � CA=A� f0g and the reduced mapping cone Cf � BUf CA

obtained from the topological sum of B and CA by identifying each �a; 0� A CA

with f �a� A B, where G acts trivially on I � �0; 1�. Then a G-coaction of

SA on Cf de®nes a map l in § 1, whose restriction to Im i� yields the

homomorphism l : i���SA;B�G� ! EG�Cf �, where i : B! Cf is the inclusion

(Lemma 1.3). This homomorphism will be used in § 3. In § 2 EG�Cf � for

A � G=H�5S n, the n-fold reduced suspension of G=H�, is studied. Here

G=H denotes the left coset space of G by H with action given by

g � �g 0H� � �gg 0�H for g A G and g 0H A G=H, and G=H� the topological sum

of G=H and a single point �, the base point of G=H�. A homomorphism

j� c : EG�Cf � ! EG�A� � EG�B� is obtained when dim BY nÿ 1 and nZ 2.

The image and the kernel of this homomorphism are studied in § 2 and § 3,

respectively. Then, a short exact sequence for calculating EG�Cf � is obtained

in Theorem 3.5. The non-equivariant case is due to Barcus and Barratt [1,

Theorem (6.1)]. In § 4 we show that if nZ 2 then EG�G=H�5S n� is anti-
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isomorphic to the group U�Z�N�H�=H�� of units of the integral group ring

Z�N�H�=H� of N�H�=H, where N�H� denotes the normalizer of H in G

(Theorem 4.1). In § 5 using the above anti-isomorphism and short exact

sequence, we study EZ2
�Cf � for each Z2-map f : Z�2 5S n�k ! Z�2 5S n with

nZ k � 3Z 4 (Theorem 5.11) and further calculate EZ2
�Cf � in the case of

k � 1 (Proposition 5.16). In § 6 we also study EZ6
�Cf � for each Z6-map

f : Z�6 5S n�k ! Z�2 5S n with nZ k � 3Z 4 (Theorem 6.6) and calculate

EZ6
�Cf � in the case of k � 1 (Proposition 6.10). We use the following

notation: �X ;Y �G denotes the set of based G-homotopy classes of based

G-maps of X into Y. X H denotes the H-stationary subspace fx A X j gx � x

for every g A Hg. �Zq�k denotes the direct product of k-copies of Zq. The

same symbol will be used for a G-map and its G-homotopy class. A G-CW

complex X is called G-connected (resp. G-1-connected) if the ®xed point set X H

is connected (resp. simply connected) for every subgroup H of G.

1. Preliminalies

For a G-map f : A! B between G-CW complexes we consider the se-

quence of the induced co®bering

A!f B!i Cf !p SA;

where i and p are G-maps with respect to the natural G-actions. The coaction

l : Cf ! Cf 4SA;�1:1�

de®ned by collapsing the subspace A� f1=2g of Cf � BUf CA to the base

point �, is a G-map and de®nes a map

l : �SA;Cf �G ! �Cf ;Cf �G�1:2�

by l�a� � 5�14 a�l for a A �SA;Cf �G, where 5 denotes the folding map.

Then we have the following, which will be used in § 3.

Lemma 1.3. l�a� b� � l�a�l�b� for a A �SA;Cf �G if b belongs to the

image of i� : �SA;B�G ! �SA;Cf �G.

Proof. If b � ib 0 for some b 0 A �SA;B�G, then l�a�b � b by the de®nition

of l. For the natural G-comultiplication l 0 on SA, �l 4 1�l � �14 l 0�l. These

equalities, l�a�b � b and �l 4 1�l � �14 l 0�l, yield

l�a�l�b� � 5�l�a�4 l�a�b�l � 5�l�a�4 b�l
� 5�145��14 a4 b��14 l 0�l � l�a� b�: q.e.d.
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2. Homomorphism j� c and its image

In this section we assume that A � G=H�5S n with nZ 2 and B is a

G-CW complex; we consider the mapping cone

Cf � BUf �G=H�5 en�1�
of a G-map f : A! B. Note that G=H�5S n �4

i
�giH=H�5S n�, the one

point union of n-spheres with action given by g � �giH=H�� � �ggi�H=H�.

Lemma 2.1. If dim BY nÿ 1, then i� : �B;B�G ! �B;Cf �G and p� :

�SA;SA�G ! �Cf ;SA�G are bijective.

Proof. Let L be a subgroup of G. Since the ®xed point set C L
f �

BL Uf ���G=H�L��5 en�1�, �C L
f ;B

L� is n-connected (cf. [8, II, (3.9) Theorem]).

Hence i� : �B;B�G ! �B;Cf �G is bijective by [2, II, (5.3) Corollary]. Also

SA � G=H�5S n�1 implies that �SB;SA�G � �B;SA�G � 0 by [2, II, (5.2)

Lemma]. Therefore, the Puppe sequence (cf. [2, III, (2.2)])

��! �SB;SA�G ��!�Sf �� �SA;SA�G ��!p� �Cf ;SA�G ��!i � �B;SA�G ��!
shows that p� is bijective. q.e.d.

Since the suspension S : �A;A�G ! �SA;SA�G is bijective (see § 4), the above

lemma allows us to de®ne a map

j� c : �Cf ;Cf �G ! �A;A�G � �B;B�G�2:2�
by j � Sÿ1p�ÿ1p� and c � iÿ1

� i� under the assumption of Lemma 2.1.

Namely, Sj�h� and c�h� are the elements uniquely determined by the G-

homotopy commutative diagram

B ���!i Cf ���!p SA???yc�h�
???yh

???ySj�h�

B ���!i Cf ���!p SA:

�2:3�

Therefore j� c is a homomorphism of monoids, and hence a homomorphism

j� c : EG�Cf � ! EG�A� � EG�B��2:4�

of groups can be de®ned as the restriction of the map j� c in (2.2) to EG�Cf �
when dim BY nÿ 1. From now on, we study the image of this homo-

morphism j� c. Let ESA � �SA�I , the space of free paths (not necessary

equivariant) in SA, and PSA � fs A ESA j s�1� � �g, the space of paths in SA,

where G acts on ESA and PSA by �g � s��t� � g � s�t� for g A G and s A ESA
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(or PSA), and let

WSA!j Fp !q Cf �q�x; s� � x�
be the path ®bering induced from the ®bering WSA! PSA! SA by

p : Cf ! SA, where G acts diagonally on Fp � f�x; s� A Cf � PSA j p�x� � s�0�g.
Then a G-lifting i : B! F p of i : B! Cf can be de®ned by i�b� � �b; 0�� A Fp,

where 0� denotes the constant path, 0��t� � �; t A I .

Lemma 2.5. (i) If dim BY nÿ 1, then q� : �B;Fp�G ! �B;Cf �G is bijective.

(ii) If B is G-1-connected, then i� : �A;B�G ! �A;Fp�G is bijective.

Proof. (i) Let L be a subgroup of G. Since SAL � ��G=H�L��5
S n�1, pi�WSAL� � 0 for all i Y nÿ 1. Therefore, the homotopy sequence

�! pi�WSAL� �!j� pi�F L
p � �!q� pi�C L

f � �!d piÿ1�WSAL� �!
of the ®bering WSAL ! F L

p ! C L
f shows that q� : pi�F L

P � ! pi�C L
f � is iso-

morphic for all i Y nÿ 1 and epimorphic for i � n. Hence, if dim BY nÿ 1,

then q� : �B;Fp�G ! �B;Cf �G is bijective in the same way as in [2, II, (5.4)

Theorem].

(ii) Since A � G=H�5S n, it su½ces to show that i� : pn�BH� ! pn�F H
p �

is isomorphic by [4, Lemma 2.1 0]. Let Ep � f�x; s� A Cf � ESA j p�x� � s�0�g,
where G acts diagonally on Ep. Then the ®bering

Fp !u Ep !r SA �r�x; s� � s�1��

induces the isomorphism r� : pi�E H
p ;F

H
p � ! pi�SAH� for all i. Also, since

C H
f � BH Uf ��G=H�H��5 en�1�, Blakers-Massey Theorem implies that

p� : pi�C H
f ;B

H� ! pi�SAH� is isomorphic for all i Y n� 1 (cf. [8, VII,

(7.12) Theorem]). The inclusion e : Cf ! Ep de®ned by e�x� � �x; 0p�x�� is a

G-homotopy equivalence satisfying p � re. Therefore, in particular,

�e; i�� � rÿ1
� p� : pn�1�C H

f ;B
H� ! pn�1�E H

p ;F
H

p � and e� : pi�C H
f � ! pi�E H

p � for

i � n and n� 1 are isomorphic. Thus, the equality ei � ui gives rise to the

commutative diagram

��! pn�1�C H
f � ��! pn�1�C H

f ;B
H� ��!d pn�BH� ��!i� pn�C H

f � ��! 0

e�

???yG �e; i��

???yG i�

???y e�

???yG

��! pn�1�E H
p � ��! pn�1�E H

p ;F
H

p � ��!d pn�F H
p � ��!u� pn�E H

p � ��! 0

whose top and bottom rows are the homotopy sequences of the pairs �Cf ;B
H�

and �E H
p ;F

H
p �, respectively. This diagram shows that i� : pn�BH� ! pn�F H

p � is

isomorphic by the ®ve lemma. q.e.d.
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Let j� c be the homomorphism in (2.4). Then we show the following in

the same way as in the non-equivariant case due to Rutter [6, Theorem 4.6].

Lemma 2.6. If B is G-1-connected and dim BY nÿ 1, then the image of

j� c is equal to

M � f�h1; h2� A EG�A� � EG�B� j h2 f � f h1 in �A;B�Gg:
Proof. Let �h1; h2� be any element of M. Then, each G-homotopy

h2 f F f h1 allows us to construct a G-map h : Cf ! Cf such that hiF ih2 and

Sh1pF ph, that is, c�h� � h2 and Sj�h� � Sh1 in (2.3). Therefore, to prove

M H Im�j� c�, it su½ces to show that the above element h is a G-homotopy

equivalence. For each subgroup L of G, h1 and h2 induce the isomorphisms

h1� : Hi�AL; Z� ! Hi�AL; Z� and h2� : Hi�BL; Z� ! Hi�BL; Z� for all i,

respectively. Therefore, h induces the isomorphism h� : Hi�C L
f ; Z� !

Hi�C L
f ; Z� for all i by the ®ve lemma, and hence it induces the isomor-

phism h� : pi�C L
f � ! pi�C L

f � for all i by Whitehead Theorem. By [2, II,

(5.5) Corollary], this shows that h is a G-homotopy equivalence. Thus,

M H Im�j� c�. Next, let h be any element of EG�Cf �. Then, p�h � p�Sj�h�
by the de®nition of j, and each G-homotopy phFSj�h�p allows us to

construct a G-map h : Fp ! Fp such that the diagram

WSA ���!j Fp ���!q Cf ���!p SA???yWSj�h�
???yh

???yh

???ySj�h�

WSA ���!j Fp ���!q Cf ���!p SA

�2:7�

is G-homotopy commutative. Let i : B! Fp be the G-lifting of i : B! Cf in

Lemma 2.5. Then, the equality qi � i and the commutativity of the diagrams

(2.3) and (2.7) yield

qic�h� � ic�h�F hi � hqiF qhi;

and hence ic�h�F hi by Lemma 2.5 (i). Furthermore, let t : A! WSA be a

G-map de®ned by t�a��t� � �a; 1ÿ t� for a A A and t A I . Then, WSj�h�t �
tj�h�. Let ts : A! PSA be a G-homotopy de®ned by ts�a��t� � p�a; s�1ÿ t��
for a A A and s; t A I , and let hs : A! Fp be a G-homotopy de®ned by

hs�a� � ��a; s�; ts�a��. Then this G-homotopy hs shows that if F jt. Now,

these G-homotopies and the equality, ic�h�F hi, if F jt and WSj�h�t � tj�h�,
and the commutativity of the diagram (2.7) yield

ic�h�f F hif F hjtF jWSj�h�t � jtj�h�F if j�h�:
Hence, c�h�f F f j�h� by Lemma 2.5 (ii). Thus, Im�j� c�HM. q.e.d.

On equivariant self-homotopy equivalences 547



3. Kernel of j� c and a short exact sequence

In this section we assume that A 0 � G=H�5S nÿ1 with nZ 2 and B 0 is a

G-CW complex; we also assume that f 0 : A 0 ! B 0 is any G-map and that

f � Sf 0 : A � SA 0 ! B � SB 0. Then we have

Lemma 3.1. If B is G-1-connected, then there is an exact sequence of

groups

�SA;B�G �!i� �SA;Cf �G �!p� �SA;SA�G:
Proof. An isomorphism pn�1�C H

f ;B
H�G pn�1���G=H�H��5S n�1�

obtained by Blakers-Massey Theorem yields an exact sequence

pn�1�BH� �!i� pn�1�C H
f � �!p� pn�1���G=H�H��5S n�1�;

which implies this lemma by [4, Lemma 2.1 0]. q.e.d.

Let l be the map in (1.2) and j� c the homomorphism in (2.4). Then

we have

Lemma 3.2. (i) l�a� � 1� ap for a A �SA;Cf �G.

(ii) If B is G-1-connected and dim BY nÿ 1, then the kernel of j� c is

isomorphic to

K � i��SA;B�G=�Sf ���SB;Cf �G:
Proof. (i) Since Cf FSCf 0 by the assumption f � Sf 0, Cf has the

natural G-comultiplication l 0 : Cf ! Cf 4Cf , and l F �14 p�l 0 for the G-

coaction l in (1.1). Therefore, by the de®nition of l in (1.2),

l�a� � 5�14 a��14 p�l 0 � 1� ap:

(ii) The equality of (i) and the de®nitions of j and c in (2.2) give rise to the

commutative diagram

�SB;Cf �G ���!�Sf �� �SA;Cf �G ���!l �Cf ;Cf �G ���!i � �B;Cf �G
i� 1�p�

???y Sj
p�

???y c
i�

x???G

�SA;B�G �SA;SA�G ���!p �

G
�Cf ;SA�G �B;B�G:

�3:3� ��������
��! ����������!

����������!
Since the row sequence in (3.3) is an exact sequence of groups if we replace l

by p�, we have

cÿ1�1� � 1� cÿ1�0� � 1� p��SA;Cf �G � l��SA;Cf �G�:�3:4�
Also, (3.4), (3.3) and Lemma 3.1 yield
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Ker�j� c�G �Sj�ÿ1�1�V l��SA;Cf �G�
� l�i��SA;B�G�:

Moreover, by (3.3) and Lemma 3.1 we have �Sf ���SB;Cf �G H i��SA;B�G and by

Lemma 1.3 and (i) of this lemma we have a group isomorphism

l�i��SA;B�G�G i��SA;B�G=�Sf ���SB;Cf �G: q.e.d.

Now Lemmas 2.6 and 3.2 give the following theorem, which is due to Barcus

and Barratt in the non-equivariant case [1, Theorem (6.1)] (cf. [5, Theorem

2.12]).

Theorem 3.5. Let A 0 � G=H�5S nÿ1 with nZ 2 and B 0 a G-CW

complex, and let f 0 : A 0 ! B 0 be a G-map. If B � SB 0 is G-1-connected and

dim BY nÿ 1, then for the mapping cone Cf � BUf �G=H�5 en�1� of the

G-map f � Sf 0 : A � SA 0 ! B � SB 0 with the natural G-action, there is an

exact sequence of groups

0 ��! K ��!l EG�Cf � ��!j�c
M ��! 1

with

K � i��SA;B�G=�Sf ���SB;Cf �G and

M � f�h1; h2� A EG�A� � EG�B� j h2 f � f h1 in �A;B�Gg:

4. Anti-isomorphism: EG�G=H�5S n�GU�Z�N�H�=H�� �nZ 2�
Let G be a ®nite group and H a subgroup of G. Note that �G=H�H �

N�H�=H, where N�H� denotes the normalizer of H in G. Then we have

Theorem 4.1. If nZ 2, then the group EG�G=H�5S n� is anti-isomorphic

to the group U�Z�N�H�=H�� of units of the integral group ring Z�N�H�=H� of

N�H�=H.

Proof. To prove this theorem, it su½ces to show that there is a ring anti-

isomorphism �G=H�5S n;G=H�5S n�G GZ�N�H�=H�. Let fgiHg be the

left decomposition of N�H� with respect to H, and let the homotopy class of

the composite of a map m : S n � H=H�5S n ! S n � giH=H�5S n of degree

m and the inclusion of giH=H�5S n into N�H�=H�5S n be identi®ed

with mgiH A Z�N�H�=H�. Then by [4, Corollary 2.2], the restriction to

S n � H=H�5S n and this identi®cation yield the following isomorphism F of

additive groups.

F : �G=H�5S n;G=H�5S n�G G pn�N�H�=H�5S n�GZ�N�H�=H�:
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Let u and v be any two elements of the set �G=H�5S n;G=H�5S n�G and

j : N�H�=H�5S n ! G=H�5S n the inclusion. Since v is equivariant,

vj�giH=H�5S n� � giH � vj�H=H�5S n�:
If uj�H=H�5S n� � m0H �m1g1H � � � � �mkgkH A pn�N�H�=H�5S n�, then

F�vu� � vj�m0H �m1g1H � � � � �mkgkH�
� �vj�H=H�5S n��m0 � � � � � �vj�gkH=H�5S n��mk

� m0�H � vj�H=H�5S n�� � � � � �mk�gkH � vj�H=H�5S n��
� m0H �F�v� � � � � �mkgkH �F�v�
� F�u� �F�v�:

Thus F is an anti-isomorphism of rings. q.e.d.

For a ®nite abelian group G, let n2 denote the number of its elements of

order 2 and c the number of its cyclic subgroups (including feg). Then we

have the following theorem due to Higman (cf. [3, Theorem 4.1]).

Theorem 4.2 (Higman). Let G be a ®nite abelian group. Then

U�ZG� �GG � F ;

where F is a free abelian group of rank �jGj � n2 � 1�=2ÿ c.

Now Theorems 4.1 and 4.2 immediately give the following.

Theorem 4.3. Let G be a ®nite abelian group and H a subgroup of G. If

nZ 2, then

EG�G=H�5S n�GZ2 � G=H � �Z�k; k � �jG=Hj � n2 � 1�=2ÿ c;

where Z2 � f1;ÿ1g, n2 denotes the number of elements of order 2 and c denotes

the number of cyclic subgroups of G=H.

Let Eq be the q� q identity matrix and Fq the q� q matrix de®ned by

Fq �
0 1

Eqÿ1 0

� �
:�4:4�

If G=H is isomorphic to the cyclic group Zq of order q, then EG�G=H�5S n�
has the torsion subgroup Z2 � Zq generated by ÿEq and Fq.

Corollary 4.5. In the above theorem, if G=H is isomorphic to the cyclic

group Zq, then

EG�G=H�5S n�GZ2 � Zq � �Z�k; k � �q=2� � 1ÿ d�q�;
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where d�q� is the number of divisors of q and the torsion subgroup Z2 � Zq is

generated by ÿEq and Fq, and, in particular,

EG�G=H�5S n�G Z2 � Zq; if q � 2; 3; 4; 6

Z2 � Zq � �Z�k; if q is a primeZ5;

�
where k � �qÿ 3�=2:

5. EZ2
�Cf � for f : Z�2 5S n�k ! Z�2 5S n �nZ k � 3Z 4�

In this section A � Z�2 5S n�k and B � Z�2 5S n with nZ k � 3Z 4; for

each Z2-map f : A! B we consider its mapping cone

Cf � �Z�2 5S n�Uf �Z�2 5 en�k�1�:�5:1�
Since �A;B�Z2

G pn�k�Z�2 5S n�G pn�k�S n�l pn�k�S n� by [4, Lemma 2.1 0],
the Z2-homotopy class f A �A;B�Z2

can be written as f � Sf 0 for some

f 0 A �Z�2 5S n�kÿ1;Z�2 5S nÿ1�Z2
and

f � f1 f2

f2 f1

� �
; fi A pn�k�S n�; i � 1; 2:�5:2�

We ®rst calculate the group K in Theorem 3.5. By an argument similar to the

proof of Lemma 2.1 we have

i� : �SB;B�Z2
! �SB;Cf �Z2

is epimorphic:�5:3�
Let hn denote the generator of pn�1�S n� � Z2. Then by [7, Proposition 3.1]

hnS fi � fihn�k for any fi A pn�k�S n� �nZ k � 3Z 4�:�5:4�
Since �SB;B�Z2

G pn�1�S n�l pn�1�S n� � Z2fhnglZ2fhng and similarly

�SA;A�Z2
GZ2fhn�kglZ2fhn�kg, (5.4) yields

�Sf ���SB;B�Z2
� f��SA;A�Z2

:�5:5�
Now, (5.3) and (5.5) yield

�Sf ���SB;Cf �Z2
� �Sf ��i��SB;B�Z2

� i� f��SA;A�Z2
� 0:�5:6�

As in the proof of Lemma 3.1 we have an exact sequence of groups

�SA;A�Z2
�!f� �SA;B�Z2

�!i� �SA;Cf �Z2
:

Therefore, (5.6) yields

K � i��SA;B�Z2
G �SA;B�Z2

= f��SA;A�Z2
�5:7�

G pn�k�1�S n�l pn�k�1�S n�=f� f1h; f2h�; � f2h; f1h�g;
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where h � hn�k and fx; yg denotes the subgroup generated by x and y. We

next calculate the subgroup M of EZ2
�A� � EZ2

�B� in Theorem 3.5. Let

E � E2 be the 2� 2 identity matrix and F � F2 the 2� 2 matrix of order 2

de®ned in (4.4), and let

a � �ÿE;ÿE�; b � �F ;F �; c � �E;ÿE�; and d � �E;F �:
Then, by Corollary 4.5

EZ2
�A� � EZ2

�B�G �Z2�4 generated by a; b; c and d;�5:8�
and for the presentation of Z2-homotopy class f in (5.2) we have

f �ÿE� � �ÿE�f and fF � Ff always hold;

f � �ÿE�f if and only if 2fi � 0 for i � 1 and 2;

f � Ff if and only if f1 � f2;

f � �ÿF�f if and only if f1 � ÿ f2:

�5:9�

Now by Theorem 3.5, (5.8) and (5.9) we have

M G

�Z2�2 if f1 0 f2; f1 0 ÿ f2 and 2fi 0 0 for i � 1 or 2;

�Z2�3 if f1 0 f2 and 2fi � 0 for i � 1 and 2;

�Z2�3 if f1 � f2 and f1 0ÿ f2;

�Z2�3 if f1 0 f2 and f1 � ÿ f2;

�Z2�4 otherwise:

8>>>>>><>>>>>>:
�5:10�

Consequently by Theorem 3.5 we have

Theorem 5.11. If nZ k � 3Z 4, then for each Z2-map f : Z�2 5S n�k !
Z�2 5S n, its Z2-homotopy class f A �Z�2 5S n�k;Z�2 5S n�Z2

can be written as

(5.2), and for its mapping cone Cf there is an exact sequence of groups

0! K ! EZ2
�Cf � !M ! 1

where K and M are the groups in (5.7) and (5.10) respectively.

Using this theorem, we further calculate the group EZ2
�Cf � for k � 1.

Since the group pn�1�S n� in (5.2) is isomorphic to Z2 generated by hn, for each

Z2-map f : A! B its Z2-homotopy class f A �A;B�Z2
can be written as

f � sh th

th sh

� �
; h � hn; s; t � 0; 1:

Also, since the group pn�2�S n� in (5.7) is isomorphic to Z2 generated by hnhn�1,

the group K in (5.7) is trivial when s0 t, and hence by Theorem 5.11 and
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(5.10)

EZ2
�Cf �G �Z2�3 if s0 t:�5:12�

We now assume that s � t � 0. Then the group K is isomorphic to Z2 lZ2,

and hence Theorem 5.11 and (5.10) yield the exact sequence of groups

0 ��! Z2 lZ2 ��!l EZ2
�Cf � ��!j�c �Z2�4��!1;�5:13�

where (5.8) shows that the right-hand group �Z2�4 is generated by a; b; c and d.

Furthermore, since Cf F �Z�2 5S n�4 �Z�2 5S n�2� by (5.1), the right inverse

s : �Z2�4 ! EZ2
�Cf � of the homomorphism j� c can be given by

s�a� � ÿE4; s�b� � F 0

0 F

� �
; s�c� � ÿE 0

0 E

� �
; s�d� � F 0

0 E

� �
:

Therefore, (5.13) is a split extension, and hence EZ2
�Cf � is isomorphic to

the semi-direct product �Z2 lZ2�c �Z2�4. Furthermore, for h2 � hnhn�1 we

de®ne

P � h2 0

0 h2

 !
; Q � 0 h2

h2 0

 !
;

P4 �
E P

0 E

 !
; Q4 �

E Q

0 E

 !
:

�5:14�

Then, P4 and Q4 generate l�Z2 lZ2� by the de®nition of l, and hence EZ2
�Cf �

is generated by s�a�; s�b�; s�c�; s�d�;P4 and Q4. Thus, we have

EZ2
�Cf �GD4 � �Z2�3 if s � t � 0;�5:15�

where the direct factor D4 is the dihedral group of order 8, and �Z2�3 is

generated by s�a�; s�b� and s�c�. If s � t � 1, then the group K is isomorphic

to Z2 by (5.7) and the group M is isomorphic to �Z2�4 by (5.10). Therefore,

by (5.12), (5.15) and Theorem 5.11 we have

Proposition 5.16. If nZ 4, then for each Z2-map f : Z�2 5S n�1 !
Z�2 5S n, its Z2-homotopy class f A �Z�2 5S n�1;Z�2 5S n�Z2

can be written as

f � sh th

th sh

� �
; h � hn; s; t � 0; 1;

and for its mapping cone Cf , we have

EZ2
�Cf � � �Z2�3 if s0 t

D4 � �Z2�3 if s � t � 0:

(

On equivariant self-homotopy equivalences 553



If s � t � 1, then there is an exact sequence of groups

0! Z2 ! EZ2
�Cf � ! �Z2�4 ! 1:

6. EZ6
�Cf � for f : Z�6 5S n�k ! Z�2 5S n �nZ k � 3Z 4�

We take A � Z�6 5S n�k and B � Z�2 5S n with nZ k � 3Z 4, where

Z2 � Z6=Z3. Since �A;B�Z6
G pn�k�S n�l pn�k�S n�, each Z6-homotopy class

f A �A;B�Z6
can be written as f � Sf 0 for some f 0 A �Z�6 5S n�kÿ1;Z�2 5S nÿ1�Z6

and

f � f1 f2 f1 f2 f1 f2

f2 f1 f2 f1 f2 f1

� �
; fi A pn�k�S n�; i � 1; 2:�6:1�

Let K be the group in Theorem 3.5. Then, as in § 5 we have

K G pn�k�1�S n�l pn�k�1�S n�=f� f1hn�k; f2hn�k�; � f2hn�k; f1hn�k�g:�6:2�
We calculate the subgroup M of EZ6

�A� � EZ6
�B� in Theorem 3.5. Let Eq be

the q� q identity matrix and Fq the q� q matrix of order q de®ned in (4.4),

and let

a � �F6;F2�; b � �ÿE6;ÿE2�; c � �E6;ÿE2� and d � �E6;F2�:
Then by Corollary 4.5

EZ6
�A� � EZ6

�B�GZ6 � �Z2�3 generated by a; b; c and d;�6:3�
and

f �ÿE6� � �ÿE2�f and f F6 � F2 f always hold;

f � �ÿE2�f if and only if 2 fi � 0 for i � 1 and 2;

f � F2 f if and only if f1 � f2;

f � �ÿF2�f if and only if f1 � ÿ f2

�6:4�

for f in (6.1). Now by Theorem 3.5, (6.3) and (6.4) we have

�6:5�

M G

Z3 � �Z2�2 if f1 0 f2; f1 0ÿ f2 and 2fi 0 0 for i � 1 or 2;

Z3 � �Z2�3 if f1 0 f2 and 2fi � 0 for i � 1 and 2;

Z3 � �Z2�3 if f1 � f2 and f1 0ÿ f2;

Z3 � �Z2�3 if f1 0 f2 and f1 � ÿ f2;

Z3 � �Z2�4 otherwise:

8>>>>>><>>>>>>:
Consequently by Theorem 3.5 we have
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Theorem 6.6. If nZ k � 3Z 4, then for each Z6-map f : Z�6 5S n�k !
Z�2 5S n, its Z6-homotopy class f A �Z�6 5S n�k;Z�2 5S n�Z6

can be written as

(6.1), and for its mapping cone Cf there is an exact sequence of groups

0! K ! EZ6
�Cf � !M ! 1

where K and M are the groups in (6.2) and (6.5) respectively.

We further calculate the group EZ6
�Cf � for k � 1. Since the group

pn�1�S n� in (6.1) is isomorphic to Z2 generated by hn, we have f1 � sh, f2 � th,

h � hn with s; t � 0; 1 in (6.1). Also, since the group pn�2�S n� in (6.2) is

isomorphic to Z2 generated by hnhn�1, the group K in (6.2) is trivial when s0 t,

and hence by Theorem 6.6 and (6.5)

EZ6
�Cf �GZ3 � �Z2�3 if s0 t:�6:7�

We now assume that s � t � 0. Then the group K is isomorphic to Z2 lZ2,

and hence Theorem 6.6 and (6.5) yield the exact sequence of groups

0 ��! Z2 lZ2 ��!l EZ6
�Cf � ��!j�c

Z6 � �Z2�3 ��! 1;�6:8�
where (6.3) shows that the right-hand group Z6 � �Z2�3 is generated by a; b; c

and d. Furthermore, since Cf F �Z�2 5S n�4 �Z�6 5S n�2�, the right inverse

s : Z6 � �Z2�3 ! EZ2
�Cf � of the homomorphism j� c can be given by

s�a� � F2 0

0 F6

 !
; s�b� � ÿE8;

s�c� � ÿE2 0

0 E6

 !
; s�d� � F2 0

0 E6

 !
;

where Fq is the matrix in (4.4). Therefore, the sequence (6.8) is a split

extension, and hence EZ6
�Cf �G �Z2 lZ2�c �Z6 � �Z2�3�. Let P8 and Q8

be 8� 8 matrices de®ned by

P1 2 � �P P P�; Q1 2 � �Q Q Q�;

P8 �
E2 P1 2

0 E6

 !
; Q8 �

E2 Q1 2

0 E6

 !
;

where P and Q are the 2� 2 matrices in (5.14). Then, P8 and Q8 generate

l�Z2 lZ2� by the de®nition of l, and hence EZ6
�Cf � is generated by

s�a�; s�b�; s�c�; s�d�;P8 and Q8. Thus, we have

EZ6
�Cf �GD4 � Z6 � �Z2�2 if s � t � 0;�6:9�
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where the direct factor Z6 � �Z2�2 is generated by s�a�; s�b� and s�c�. If

s � t � 1, then the group K is isomorphic to Z2 by (6.2) and the group M is

isomorphic to Z3 � �Z2�4 by (6.5). Therefore, by (6.7), (6.9) and Theorem 6.6

we have

Proposition 6.10. If nZ 4, then for each Z6-map f : Z�6 5S n�1 !
Z�2 5S n, its Z6-homotopy class f A �Z�6 5S n�1;Z�2 5S n�Z6

can be written as

f � sh th sh th sh th

th sh th sh th sh

� �
; h � hn; s; t � 0; 1;

and for its mapping cone Cf we have

EZ6
�Cf � � Z3 � �Z2�3 if s0 t

D4 � Z3 � �Z2�3 if s � t � 0.

(

If s � t � 1, then there is an exact sequence of groups

0! Z2 ! EZ6
�Cf � ! Z3 � �Z2�4 ! 1:
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