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Abstract. Let u be a positive continuous function on �0;y� satisfying the conditions:

(i) limr!y rÿ1=2 log u�r� �y, (ii) inf rb0 u�r� � 1, (iii) limr!y rÿ1 log u�r� <y, (iv) the

function log u�x2�; xb 0, is convex. A Gel'fand triple �E�u H �L2�H �E��u is con-

structed by making use of the Legendre transform of u discussed in [4]. We prove

characterization theorems for generalized functions in �E��u and for test functions in �E�u
in terms of their S-transforms under the same assumptions on u. Moreover, we give an

intrinsic topology for the space �E�u of test functions and prove a characterization

theorem for measures. We brie¯y mention the relationship between our method and a

recent work by Gannoun et al. [10]. Finally, conditions for carrying out white noise

operator theory and Wick products are given.

1. Introduction

Let E be a real topological vector space with topology generated by a

sequence of inner product norms fj � jpgyp�0. We assume that E is a complete

metric space with respect to the metric

d�x; h� �
Xy
p�0

1

2p

jxÿ hjp
1� jxÿ hjp

; x; h A E:

In addition we assume the following conditions:

(a) There exists a constant 0 < r < 1 such that j � j0 a rj � j1 a � � � a
rpj � jp a � � � :

(b) For any pb 0, there exists qb p such that the inclusion iq; p :

Eq ,! Ep is a Hilbert-Schmidt operator. (Here Ep is the completion

of E with respect to the norm j � jp.)

Let E 0 and E 0p denote the dual spaces of E and Ep, respectively. We can

use the Riesz representation theorem to identify E0 with its dual space E 00.

Then we get the following continuous inclusions:
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E ,! Ep ,! E0 ,! E 0p ,! E 0; pb 0:

The above condition (b) says that E is a nuclear space and so EHE0 H
E 0 is a Gel'fand triple. Let m be the Gaussian measure on E 0 with the

characteristic function given by�
E 0

eihx;xidm�x� � eÿjxj
2
0=2; x A E:

The probability space �E 0; m� is often referred to as a white noise space.

For simplicity, we will use �L2� to denote the complex Hilbert space L2�m�.
By the Wiener-ItoÃ theorem, each j A �L2� can be uniquely represented by

j�x� �
Xy
n�0

In� fn��x� �
Xy
n�0

h: xnn :; fni; fn A En̂n
0 ;�1:1�

where In is the multiple Wiener integral of order n and : xnn : is the Wick

tensor of x A E 0 (see page 33 in [21].) Moreover, the �L2�-norm of j is given

by

kjk0 �
Xy
n�0

n!j fnj20
 !1=2

:�1:2�

Recently Cochran et al. [8] have introduced a Gel'fand triple asso-

ciated with the above Gel'fand triple EHE0 HE 0 and a sequence fa�n�gyn�0

of positive real numbers satisfying the conditions:

(A1) a�0� � 1 and infnb0 a�n�sn > 0 for some sb 1.

(A2) limn!y
a�n�

n!

� �1=n

� 0.

Actually, a stronger condition infnb0 a�n� > 0 in (A1) is assumed in [8].

However the above weaker condition for some sb 1 in (A1) is strong enough

to assure that the nuclear space �E�a is a subspace of �L2�, a fact to be shown

below. This weaker condition was ®rst introduced in [5].

For j A �L2� being represented by Equation (1.1) and pb 0, de®ne

kjkp;a �
Xy
n�0

n!a�n�j fnj2p
 !1=2

:�1:3�

Let �Ep�a � fj A �L2�; kjkp;a <yg. De®ne the space �E�a of test functions on

E 0 to be the projective limit of f�Ep�a; pb 0g. The dual space �E��a of �E�a is

called the space of generalized functions on E 0.
By using conditions (a) and (A1) we see thatXy

n�0

n!a�n�j fnj2p b inf
nb0

a�n�sn

� �Xy
n�0

n!j fnj20
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for p large enough such that sÿ1rÿ2p b 1. This inequality, in view of Equa-

tions (1.2) and (1.3), implies that �Ep�a H �L2� for all pb �ÿ2 log r�ÿ1 log s.

Hence �E�a H �L2� holds. By identifying �L2� with its dual space we get the

following continuous inclusions:

�E�a ,! �Ep�a ,! �L2� ,! �Ep��a ,! �E��a ; pb �ÿ2 log r�ÿ1 log s;

where �Ep��a is the dual space of �Ep�a. Moreover, �E�a is a nuclear space and

so �E�a H �L2�H �E��a is a Gel'fand triple. This triple is refered to as a CKS-

space. Note that �E��a � Upb0�Ep��a and for pb �ÿ2 log r�ÿ1 log s, �Ep��a is the

completion of �L2� with respect to the norm

kjkÿp;1=a �
Xy
n�0

n!

a�n� j fnj2ÿp

 !1=2

:�1:4�

For x belonging to the complexi®cation Ec of E, the renormalized ex-

ponential function : eh� ;xi : is de®ned by

: eh� ;xi :�
Xy
n�0

1

n!
h: �nn :; xnni � eh� ;xiÿ1=2hx;xi;

whose norm is evaluated as

k: eh� ;xi :kp;a � Ga�jxj2p�1=2; pb 0;�1:5�
where Ga is the exponential generating function of the sequence fa�n�g, i.e.,

Ga�r� �
Xy
n�0

a�n�
n!

rn:�1:6�

By condition (A2) Ga is an entire function. Hence Equation (1.5) implies that

: eh� ;xi : A �E�a for all x A Ec.

On the other hand, by Equation (1.4), we have

k: eh� ;xi :kÿp;1=a � G1=a�jxj2ÿp�1=2;�1:7�
where G1=a is the exponential generating function of the sequence f1=a�n�g, i.e.,

G1=a�r� �
Xy
n�0

1

n!a�n� r
n:�1:8�

It follows from condition (A1) that G1=a is an entire function.

For F A �E��a , its S-transform SF is de®ned to be the function

�SF��x� �fF; : eh� ;xi :g; x A Ec;

where f� ; �g is the bilinear pairing of �E��a and �E�a.
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An important problem in white noise analysis is to characterize generalized

and test functions in terms of their S-transforms. For this purpose we need

the following conditions:

(B1) lim supn!y
n!

a�n� inf r>0
Ga�r�

rn

� �1=n

<y.

(~B1) lim supn!y n!a�n� inf r>0

G1=a�r�
rn

� �1=n

<y.

(B2) The sequence g�n� � a�n�
n!

; nb 0, is log-concave, i.e.,

g�n�g�n� 2�a g�n� 1�2; Enb 0:

(~B2) The sequence
1

n!a�n�
� �

is log-concave.

It follows from Theorem 4.3 in [8] that condition (B2) implies condition

(B1). Similarly, condition (~B2) implies condition (~B1), [3]. Characterization

thorems are proved in [8] for generalized functions under (B2) and in [3] for

test functions under (~B2). In fact, those conditions can be replaced by weaker

conditions. We say that two sequences fa�n�g and fb�n�g of positive real

numbers are equivalent if there exist K1;K2; c1; c2 > 0 such that for all n,

K1cn
1 a�n�a b�n�aK2cn

2 a�n�:
Now, we state the weaker conditions for the sequence fa�n�g:
Near-�B2� The sequence fa�n�g is equivalent to a sequence fl�n�g of

positive real numbers such that fl�n�=n!g is log-concave.

Near-�~B2� The sequence fa�n�g is equivalent to a sequence fl�n�g of

positive real numbers such that
1

n!l�n�
� �

is log-concave.

As shown in Lemma 2.1 below, near-(B2) and near-(~B2) are equivalent

to the conditions (B1) and (~B1), respectively. Then, we have the following

theorems.

Theorem 1.1. If F � SF for F A �E��a , then F satis®es the conditions:

(1) For any x; h A Ec, the function F �zx� h� is an entire function of z A C.

(2) There exist constants K ; a; pb 0 such that

jF�x�jaKGa�ajxj2p�1=2; x A Ec:

Conversely, assume that condition near-(B2) holds and let F : Ec ! C be a func-

tion satisfying conditions (1) and (2). Then F � SF for a unique generalized

function F A �E��a .

Theorem 1.2. If F � Sj for j A �E�a, then F satis®es the conditions:

Nobuhiro Asai, Izumi Kubo and Hui-Hsiung Kuo302



(1) For any x; h A Ec, the function F �zx� h� is an entire function of z A C.

(2) For any a; pb 0, there exists a constant K b 0 such that

jF �x�jaKG1=a�ajxj2ÿp�1=2; x A Ec:

Conversely, assume that condition near-(~B2) holds and let F : Ec ! C be a

function satisfying conditions (1) and (2). Then F � Sj for a unique test func-

tion j A �E�a.

Now, for a general sequence fa�n�g, we cannot expect to ®nd the sums

Ga in Equation (1.6) and G1=a in Equation (1.8) as elementary functions.

Therefore, it is desirable to ®nd elementary functions to replace Ga and G1=a

in Theorems 1.1 and 1.2. This leads to the concept of equivalence in the next

de®nition.

Definition 1.3. Two positive functions f and g on �0;y� are called

equivalent if there exist constants c1; c2; a1; a2 > 0 such that

c1 f �a1r�a g�r�a c2 f �a2r�; Er A �0;y�:

In order to ®nd elementary functions that are equivalent to Ga and G1=a

in Theorems 1.1 and 1.2, we have developed in [4] the crucial mathematical

machinery.

Example 1.1. When a�n� � 1 for all n, condition (B2) is obviously

satis®ed and Ga�r� � G1=a�r� � er. In the case of Hida-Kubo-Takenaka,

Theorem 1.1 is due to Pottho¨ and Streit [29], while Theorem 1.2 is due to

Kuo et al. [24].

Example 1.2. When a�n� � �n!�b; 0a b < 1, condition (B2) is easily seen

to be satis®ed. The functions Ga and G1=a are given respectively by

G�b��r� �
Xy
n�0

1

�n!�1ÿb
rn; G�ÿb��r� �

Xy
n�0

1

�n!�1�b
rn:�1:9�

However we see that G�b� and G�ÿb� are equivalent to the functions

gb�r� � exp��1ÿ b�r1=�1ÿb��; gÿb�r� � exp��1� b�r1=�1�b��;�1:10�

respectively. Theorems 1.1 and 1.2 with the growth functions gb and gÿb,

respectively, are due to Kondratiev and Streit [12] [13] (see also [21].)

Example 1.3. When a�n� � bk�n� (the Bell numbers of order k,) con-

dition (B1) is shown to be satis®ed in [8]. However actually condition (B2)

is satis®ed [2]. In this case, Ga�r� � expk�x�=expk�0� (expk�x� is the k-th iter-
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ated exponential function) and Theorem 1.1 is due to Cochran et al. [8].

On the other hand G1=a is not an elementary function. However it is

equivalent to the function

wk�r� � exp 2

�����������������������
r logkÿ1

��
r
pq� �

;�1:11�

where the function logj is de®ned inductively by

log1�r� � log�maxfr; eg�; logj�r� � log1�logjÿ1�r��; j b 2:

The ®rst purpose of the present paper is to construct a CKS-space �E�u H
�L2�H �E��u with a given growth function u and to obtain the general char-

acterization theorems by applying the results in [4]. The second purpose is

to give the intrinsic topology for �E�u and to show properties of the space

relating to the features of u. The basic idea is to start with a growth function

u and then apply the Legendre transform to get a Gel'fand triple �E�u H
�L2�H �E��u .

We remark that Gannoun et al. [10] studied a similar Gel'fand triple

consisting of spaces of entire functions governed by a convex function y and its

dual. Their inclusions and duality are rather abstract. We will give com-

ments about relationships between u and y in section 4.

Further we will discuss the characterization of measures in �E��u by an

integrability condition in section 4. (See also [6]). Ouerdiane and Rezgui [28]

showed the Bochner-Minlos theorem, which tells an integrability condition of

measures in terms of growth order of characteristic functions.

2. Legendre and dual Legendre transforms

First we mention the following concepts which will be frequently used. A

positive function f on �0;y� is called

(1) log-concave if the function log f is concave on �0;y�;
(2) log-convex if the function log f is convex on �0;y�;
(3) (log, exp)-convex if the function log f �ex� is convex on R;

(4) (log, xk)-convex if the function log f �xk� is convex on �0;y�. Here

k > 0.

It is easy to check that if f is log-concave, then the sequence f f �n�gyn�0

is log-concave. If f is increasing and (log; xk)-convex for some k > 0, then f

is (log, exp)-convex (see Proposition 2.3(3) in [3].) Further, if fb�n�=n!gyn�0

is log-concave and b�0� � 1, then for any n;mb 0,

b�n�m�a n�m

n

� �
b�n�b�m�a 2n�mb�n�b�m�:�2:1�
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Let C�; log denote the collection of all positive continuous functions u on

�0;y� satisfying the condition:

lim
r!y

log u�r�
log r

�y:

The Legendre transform lu of u A C�; log is de®ned to be the function

lu�t� � inf
r>0

u�r�
rt

; t A �0;y�:

Let C�;1=2 denote the collection of all positive continuous functions u

on �0;y� satisfying the condition:

lim
r!y

log u�r���
r
p �y:

The dual Legendre transform u� of u A C�;1=2 is de®ned to be the function

u��r� � sup
sb0

e2
���
rs
p

u�s� ; r A �0;y�:

Assume that u A C�; log and limn!y lu�n�1=n � 0. We de®ne the L-function Lu

of u by

Lu�r� �
Xy
n�0

lu�n�rn:�2:2�

Now, let u A C�;1=2 and assume that limn!y�lu�n��n!�2�ÿ1=n � 0. We

de®ne the L]-function of u by

L]
u�r� �

Xy
n�0

1

lu�n��n!�2 rn:�2:3�

For discussions in the rest of the paper, we will need the following facts

from papers [4] [5].

Fact 2.1. The inclusion C�;1=2 HC�; log holds. If u is increasing and �log; x2�-
convex, then u is (log, exp)-convex.

Fact 2.2. Let u A C�; log. Then the Legendre transform lu is log-concave.

(Hence lu is continuous on �0;y� and the sequence flu�n�gyn�0 is log-concave.)

Fact 2.3. Let u A C�; log be (log, exp)-convex. Then

(1) lu�t� is decreasing for large t,
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(2) limt!y lu�t�1=t � 0,

(3) u�r� � suptb 0 lu�t�rt for all rb 0.

Fact 2.4. Let u A C�; log. We have the assertions:

(1) u is (log, xk)-convex if and only if lu�t�tkt is log-convex.

(2) If u is (log, xk)-convex, then for any integers n;mb 0,

lu�n�lu�m�a lu�0�2k�n�m�lu�n�m�:

Fact 2.5. (1) Let u A C�; log be (log, exp)-convex. Then its L-function Lu is

also (log, exp)-convex and for any a > 1,

Lu�r�a ea

log a
u�ar�; Erb 0:

(2) Let u A C�; log be increasing and (log, xk)-convex. Then there exists a

constant C, independent of k, such that

u�r�aCLu�2kr�; Erb 0:

Fact 2.6. Let u A C�;1=2. Then its dual Legendre transform u� belongs to

C�;1=2 and is an increasing (log, x2)-convex function on �0;y�.
Fact 2.7. If u A C�;1=2 is (log, x2)-convex, then the Legendre transform lu� of

u� is given by

lu � �t� � e2t

lu�t�t2t
; t A �0;y�:

Fact 2.8. Let u A C�;1=2 be (log, x2)-convex. If u is increasing on the interval

�r0;y�, then we have �u����r� � u�r� for all rb r0. In particular, if u is

increasing on �0;y�, then �u��� � u on �0;y�.
Fact 2.9. Let u A C�;1=2 be (log, x2)-convex. Then the functions u�;Lu � , and

L]
u are all equivalent.

Lemma 2.1. The conditions (B1) and (~B1) are equivalent to near-(B2) and

near-(~B2), respectively.

Proof. It is enough to show the equivalence of (B1) and near-(B2). Put

u�r� � Ga�r�. It is easy to see that u A C�; log and a�n�=n!a lu�n�. By Fact

2.2, lu�n� is log-concave. Since inf r>0 Ga�r�=rn � lu�n�, the condition (B1)

is equivalent to that there exists a positive constant C such that lu�n�a
C na�n�=n!. Hence fa�n�=n!g is equivalent to the log-concave sequence flu�n�g,
if (B1) holds.
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Conversely, suppose that there exists a positive sequence fb�n�g and

positive constants K1;K2; c1; c2 such that fb�n�=n!g is log-concave and

K1cn
1

b�n�
n!

a
a�n�

n!
aK2cn

2

b�n�
n!

:

Then we have

K1Gb�c1r�aGa�r�aK2Gb�c2r�:
Therefore,

lim sup
n!y

n!

a�n� inf
r>0

Ga�r�
rn

� �1=n

a lim sup
n!y

n!

K1cn
1 b�n� inf

r>0

K2Gb�c2r�
rn

� �1=n

� c2

c1
lim sup

n!y

n!

b�n� inf
r>0

Gb�r�
rn

� �1=n

<y;

since the condition (B2) for fb�n�g implies (B1) for fb�n�g (see [8]). r

For more precise discussion, We will need the following conditions on

u A C�;1=2:

(U0) inf rb0 u�r� � 1.

(U1) u is increasing and u�0� � 1.

(U2) limr!y rÿ1 log u�r� <y.

(U3) u is (log; x2)-convex.

Recall that the A-conditions are needed in order to set up the Gel'fand

triple �E�a H �L2�H �E��a and to make sure that the renormalized exponential

functions : eh� ;xi :; x A Ec, are test functions in �E�a. Moreover, note that the B-

conditions are used for the characterization theorems [3] [8]. Keeping these in

mind, we consider the relationship between the U-conditions and AB-conditions

for the rest of this section.

For a given u A C�; log, de®ne a sequence fau�n�g by

au�n� � 1

n!lu�n� :�2:4�

Lemma 2.2. If u A C�; log satis®es conditions (U0) and (U2), then au

satis®es the condition (A1).

Proof. By the de®nition of Legendre transform, lu�0� � 1. Since u sat-

is®es condition (U2), there exist constants c1; c2 > 0 such that u�r�a c1ec2r for

all rb 0. Therefore,

lu�n� � inf
r>0

u�r�
rn

a inf
r>0

c1ec2r

rn
� c1cn

2

e

n

� �n

a c1e
�c2

���
2
p �n
n!

by the Stirling formula n!a e
���
n
p �n=e�n. Therefore au�n��c2

���
2
p �n b �c1e�ÿ1. r
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Further, we can show the condition (A2) by the following lemma.

Lemma 2.3. Let u A C�;1=2 satisfy condition (U3) and au be in (2.4).

Then au satis®es the condition (A2). In addition, G1=au
de®ned in (1.8) and L]

u

de®ned in (2.3) are the same entire function, i.e. G1=au
�r� �L]

u�r�.
Proof. The equality is obvious. By the condition u A C�;1=2 and by Fact

2.6 the dual transform u� belongs to C�;1=2 and is an increasing (log; x2)-

convex function. By Fact 2.1, u� belongs to C�; log and is (log, exp)-convex.

Therefore lu� satis®es (2) in Fact 2.3. Then we see

lim
n!y

1

lu�n��n!�2
 !1=n

� lim
n!y

lu � �n�n2n

�n!�2e2n

 !1=n

� lim
n!y

lu � �n�1=n � 0

by Fact 2.7 and the Stirling formula. Hence the condition (A2) holds. r

Lemma 2.4. If u A C�; log satis®es condition (U3), then the sequence

fau�n�g satis®es condition near-(B2).

Remark. Even if we assume that u A C�;1=2 with condition (U3), we

cannot conclude that fau�n�g satis®es condition (B2). On the other hand, if

we assume that u A C�; log is log-convex, then fau�n�g does satisfy condition

(B2). For the proof, see Lemma 3.3 in [5].

Proof. We can apply Fact 2.4 (1) to see that flu�n�n2ng is log-convex.

However lu�n� � �au�n�n!�ÿ1. Hence the sequence f�au�n�n!�ÿ1n2ng is log-

convex and so the sequence fau�n�n!=n2ng is log-concave.

Let l�n� � au�n��n!�2=n2n. We have just shown that fl�n�=n!g is log-

concave. On the other hand, it follows from the Stirling formula that

fau�n�g and fl�n�g are equivalent. Hence fa�n�g satis®es condition near-

(B2). r

Lemma 2.5. Let u A C�; log. Then the sequence fau�n�g satis®es condition

(~B2).

Proof. By Fact 2.2, flu�n�g is log-concave. However lu�n� � �n!au�n��ÿ1

and so the sequence f�n!au�n��ÿ1g is log-concave. This means that the sequence

fau�n�g satis®es condition (~B2). r

Putting the above four lemmas together, we get the next theorem for the

Gel'fand triple �E�u H �L2�H �E��u associated with a growth function u.

Theorem 2.6. Suppose u A C�;1=2 satis®es conditions (U0) (U2) (U3).

Then the sequence au�n� � �lu�n�n!�ÿ1; nb 0, satis®es conditions (A1), (A2),

near-(B2), and (~B2).
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3. Characterization theorems

In the following we construct a Gel'fand triple �E�u H �L2�H �E��u associated

with u A C�;1=2 satisfying conditions (U0) (U2) (U3) and discuss character-

ization theorems for test and generalized functions under the same condition.

Note that condition (U0) is merely a normalization condition and is

equivalent to lu�0� � 1, which guarantees the condition a�0� � 1 in (A1).

Obviously, (U1) is stronger than condition (U0). However we have the

following lemma:

Lemma 3.1. For u A C�;1=2, there exist a minimum point r of u and a

maximum point r of u on �0; r�, i.e. u�r� � inf rb0 u�r� and u�r� � sup0arar u�r�.
Let

v�r� � u�r� for 0a ra r

u�r� for ra r.

�
Then v belongs to C�;1=2 and is equivalent to u, in fact

v�r�a u�r�a u�r�
u�r� v�r�:

Moreover

lv�t� � lu�t� for tb 0 and Lv�r� �Lu�r� for rb 0:

If u satis®es (U0) and (U3), then v satis®es (U1) and (U3) with v�0� � u�r� � 1

and u�r� � u�0�.
Proof. Since rÿt is decreasing on �0; r� for a ®xed tb 0 and u�r� takes the

minimum value at r ,

inf
0<rar

u�r�rÿt � u�r�rÿt � v�r�rÿt � inf
0<rar

v�r�rÿt:

This implies lv�t� � lu�t� for tb 0. Other statements are obvious from

above. r

If u satis®es (U0) and (U3), then by Fact 2.1, this v is �log; exp�-convex

and hence by Fact 2.5 v is equivalent to Lv. This means that u is equivalent

to Lu by the above lemma.

Now we will construct a Gel'fand triple �E�u H �L2�H �E��u associated with

a ®xed function u A C�;1=2 satisfying conditions (U0) (U2) (U3). First we will

relate the Gel'fand triple �E�u H �L2�H �E��u to a CKS-space. By (U3) and

Fact 2.1, we have a log-convex function flu�t�g. De®ne log-concave sequence

au like (2.4) by

au�n� � 1

n!lu�n� :�3:1�
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Thus, by Lemmas 2.2 and 2.3 we can construct a Gel'fand triple �E�ua
H

�L2�H �E��ua
, which is denoted by �E�u H �L2�H �E��u . Norms for p > 0 are

also denoted as

kjkp;u � kjkp;au
�

Xy
n�0

1

lu�n� j fnj2p
 !1=2

�3:2�

for j �Py
n�0 h: �nn :; fni A �E�u and

kFkÿp; �u� � kFkÿp;1=au� �
Xy
n�0

lu�n��n!�2j fnj2ÿp

 !1=2

�3:3�

for F �Py
n�0 h: �nn :; fni A �E��u . Subspaces are denoted as

�Ep�u � �Ep�a and �Ep��u � �Ep��a for p > 0:

Applying Theorem 1.1, we can show the following theorem:

Theorem 3.2. Suppose u A C�;1=2 satis®es conditions (U0) (U2) (U3).

Then

(i) There exist positive constants c and a such that for F A �E��u

j�SF��x�ja kFkÿp; �u�
���
c
p

u��ajxj2p�1=2; x A Ec:�3:4�

(ii) A complex-valued function F on Ec is the S-transform of a generalized

function F A �E��u if and only if it satis®es the conditions:

(1) For any x; h A Ec, the function F �zx� h� is an entire function of z A C.

(2) There exist constants K ; a; pb 0 such that

jF�x�jaKu��ajxj2p�1=2; x A Ec:

(iii) In the above case (2), for any q > p such that ae2kiq; pk2
HS < 1, we have the

inequality:

kFkÿq; �u�aK�1ÿ ae2kiq; pk2
HS�ÿ1=2:�3:5�

Remark. The growth condition (2) is equivalent to the condition:

There exist constants K ; pb 0 such that

jF�x�jaKu��jxj2p�1=2; x A Ec:

Proof. By Equation (1.5) and Lemma 2.3, we have

k: eh� ;xi :kp;u �L]
u�jxj2p�1=2 pb 0:
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Since G1=au
�r� �L]

u �r� is equivalent to u� by Lemma 2.3 and Fact 2.9

jSF�x�j � jhF; : eh� ;xi :ija kFkÿp; �u�L
]
u�jxj2p�1=2 a kFkÿp; �u�

���
c
p

u��ajxj2p�1=2

with suitable c; a > 0. Thus we see (i). By Lemma 2.4, fa�n�g satis®es

condition near-(B2). By Fact 2.9, (ii) follows from Theorem 1.1.

We can prove the estimation of the norm (3.5) with the same idea as

in the proof of Theorem 8.2 in [21]. F and F � SF are expanded as F �Py
n�0 h: �nn :; fni and F�x� � Py

n�0

h fn; x
nni, respectively. For any x1; . . . ; xn A

Ec, applying the Cauchy formula to F �z1x1 � � � � � znxn�, we have

jh fn; x1 n̂ � � � n̂ xnija
K

n!
an=2nn u��r�

rn

� �1=2

jx1jp � � � jxnjp:

Take the in®mum over r > 0 and use the de®nition of the Legendre transform

to conclude that

j fnj2ÿq a
K 2

�n!�2 ann2nlu � �n�kiq; pj2n
HS :�3:6�

Then by Equations (3.3) and (3.6),

kFk2
ÿq; �u� �

Xy
n�0

lu�n��n!�2j fnj2ÿq aK 2
Xy
n�0

lu�n�ann2nlu� �n�kiq; pk2n
HS :

However by Fact 2.7, we have lu � �n� � lu�n�ÿ1nÿ2ne2n. Therefore,

kFk2
ÿq; �u�aK 2

Xy
n�0

ane2nkiq; pk2n
HS aK 2�1ÿ ae2kiq; pk2

HS�ÿ1

by the assumption ae2kiq; pk2
HS < 1. (Of course, this estimation implies (ii),

directly.) r

Proposition 3.3. (i) For F �Py
n�0 h: �nn :; fni and pb 0, we de®ne a

new norm

kFkÿp;u � �
Xy
n�0

1

lu ��n�
j fnj2ÿp

 !1=2

:�3:7�

For any pb 0 and qb p� log 2

2 log�rÿ1�, we have

eÿ1kFkÿq; �u�a kFkÿp;u � a kFkÿp; �u�; EF A �Ep��u :�3:8�
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In particular, if SF�x� satis®es the conditions (1) and (2) in Theorem 3.2, we

have

kFkÿq;u � aK�1ÿ ae2kiq; pk2
HS�ÿ1=2:

(ii) For a test function j �Py
n�0 h: �nn :; fni and pb 0, a new norm corre-

sponding to the norm k � kÿp;u � in Equation (3.7) is given by

kjkp; �u �� �
Xy
n�0

lu ��n��n!�2j fnj2p
 !1=2

:�3:9�

We have the corresponding inequalities, i.e., for any pb 0 and qb p�
log 2

2 log�rÿ1�,

kjkp;u a kjkp; �u ��a ekjkq;u; Ej A �Eq�u:

Proof. First we point out the following inequalities from page 357 in [21]

eÿ12ÿn=2n!a
n

e

� �n

a n!:�3:10�

By Fact 2.7 and the second inequality in Equation (3.10),

kFk2
ÿp;u � �

Xy
n�0

lu�n� n

e

� �2n

j fnj2ÿp a
Xy
n�0

lu�n��n!�2j fnj2ÿp � kFk2
ÿp; �u�:

This gives the second inequality in Equation (3.8). On the other hand, we can

use the ®rst inequality in Equation (3.10) to get

kFk2
ÿp;u � b eÿ2

Xy
n�0

lu�n�2ÿn�n!�2j fnj2ÿp:

Note that j f jÿp b rpÿqj f jÿq for any qb p and f A E 0p . Therefore,

kFk2
ÿp;u� b eÿ2

Xy
n�0

lu�n��n!�2�2ÿ1rÿ2�qÿp��nj fnj2ÿq:

When 2r2�qÿp�a 1, i.e., qb p� log 2

2 log�rÿ1�, the above inequality yields that

kFk2
ÿp;u � b eÿ2

Xy
n�0

lu�n��n!�2j fnj2ÿq � eÿ2kFk2
ÿq; �u�:

This proves the ®rst inequality in Equation (3.8). The assertions for test

functions are proved similarly. r

Next we consider the characterization of test functions.
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Theorem 3.4. Suppose u A C�;1=2 satis®es conditions (U0) (U2) (U3).

Then

(i) There exists a positive constant a such that for j A �E�u,

jSj�x�ja kjku; pLu�jxj2p�a kjku; p

�����������
2e

log 2

s
u�ajxj2p�:

(ii) A complex-valued function F on Ec is the S-transform of a test function

j A �E�u if and only if it satis®es the conditions:

(1) For any x; h A Ec, the function F �zx� h� is an entire function of z A C.

(2) For any a; pb 0, there exists K b 0 such that

jF �x�jaKu�ajxj2ÿp�1=2; x A Ec:�3:11�

(iii) In the case (2), let q A �0; p� be a number such that ae2kip;qk2
HS < 1.

Then

kjkq;u aK�1ÿ ae2kip;qk2
HS�ÿ1=2:�3:12�

Remark. The growth condition (2) is equivalent to the condition: For

any pb 0 there exists a constant K b 0 such that

jF �x�jaKu�jxj2ÿp�1=2; x A Ec:

Proof. Let v be as in Lemma 3.1. It is easy to see that G1=au
�r� �

Lu�r� �Lv�r� and hence

k: eh� ;xi :kp; �u� �Lu�jxj2ÿp�1=2 pb 0

by Equation (1.7). Therefore

jSj�x�j � jhF; : eh� ;xi :ija kjkp;u Lu�jxj2ÿp�1=2:

By using Fact 2.5 (1) for v with a � 2, we have

Lu�r� �Lv�r�a 2e

log 2
v�2r�a 2e

log 2
u�2r�:

Thus we see (i).

By using Fact 2.5 (2) for v with k � 2, we have

u�r�a u�0�v�r�aCu�0�Lv�22r� � Cu�0�Lu�22r�:

We have already seen Lu�r�a 2e

log 2
u�2r� in the proof of (i). Thus u and
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Lu � G1=au
are equivalent. Due to Lemma 2.5, fau�n�g satis®es the condition

(~B2). By Theorem 1.2, we can prove (ii).

The proof of (iii) is similar to that of Theorem 3.2 (iii). The key of the

proof is the estimation

j fnjp a inf
r>0

u�an2r2�1=2

rn
� an=2nnlu�n�1=2 a �a1=2e�nn!lu�n�1=2

for F �x� � Py
n�0

h fn; x
nni. This implies (iii). r

Theorems 3.2 and 3.4 can be applied to the following examples.

Example 3.1. Consider

u�r� � u��r� � er:

Then it is obvious to check that consditions (U0) (U2) (U3) are satis®ed.

Example 3.2. For 0a b < 1, let u be the function de®ned by

u�r� � exp��1� b�r1=�1�b��:
It is easy to check that u belongs to C�;1=2 and satis®es conditions (U0)

(U2) (U3). By Example 4.3 in [4], the dual Legendre transform u� of u is

given by

u��r� � exp��1ÿ b�r1=�1ÿb��:
Hence Theorems 3.2 and 3.4 can be applied to the Gel'fand triple �E�u H
�L2�H �E��u for the pair of functions u� and u.

Example 3.3. Consider the function v�r� � exp�er ÿ 1�. Obviously, v A
C�;1=2. Let u � v� be the dual Legendre transform of v. Then u�0� �
supsb0 v�s�ÿ1 � 1 and by Fact 2.6 u belongs to C�;1=2 and is an increasing

(log; x2)-convex function on �0;y�. Hence u A C�;1=2 satis®es conditions

(U1) and (U3). It is shown in Example 4.4 in [4] that u is equivalent to the

function

w�r� � exp 2

�����������������
r log

��
r
pq� �

:�3:13�

Obviously, w satis®es condition (U2) and so u also satis®es condition (U2).

On the other hand, we have u� � �v��� � v by Fact 2.8. Hence Theorems 3.2

and 3.4 can be applied to the Gel'fand triple �E�u H �L2�H �E��u for the fol-

lowing pair of functions:

u��r� � exp�er ÿ 1�; u�r� � �u���:
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Observe that there is no exact form for the function u. Thus for Theorems

3.4 we should use the equivalent function w in Equation (3.13) as the growth

function.

In general, let expk�r� � exp�exp�� � � �exp�r���� be the k-th iterated expo-

nential function and consider the function

vk�r� � expk�r�
expk�0�

:

The dual Legendre transform uk � v�k belongs to C�;1=2 and satis®es conditions

(U1) (U2) (U3). The function uk is equivalent to the function wk given in

Equation (1.11) i.e.,

wk�r� � exp 2

����������������������
r logkÿ1

��
r
pq� �

:�3:14�

We have u�k � vk and Theorems 3.2, and 3.4 can be applied to the Gel'fand

triple �E�uk
H �L2�H �E��uk

for the following pair of functions:

u�k�r� �
expk�r�
expk�0�

; uk�r� � �u�k��:

Again there is no exact form for the function uk. Thus for Theorems 3.4

we should use the equivalent function wk in Equation (3.14) as the growth

function.

4. Intrinsic topology and Hida measures

In the space �E�u of test functions there are two families of norms, namely,

fk � kp;u; pb 0g de®ned in Equation (3.2) and fk � kp; �u ��; pb 0g de®ned in

Equation (3.9). As we pointed out in the Remark of Lemma 3.3, these two

families are equivalent. Observe that both kjkp;u and kjkp; �u�� are de®ned in

terms of the Wiener-ItoÃ expansion of j.

In this section we will introduce another equivalent family of norms on

�E�u, i.e., fk � kAp; u
; pb 0g. This family of norms is intrinsic in the sense that

kjkAp; u
is de®ned directly in terms of the analyticity and growth condition of j.

First the analyticity, each test function j in �E�u has a unique analytic

extension (see O6.3 of the book [21]) given by

j�x� �f : eh� ;xi :;Yjg; x A E 0c ;�4:1�
where Y is the unique linear operator taking eh� ;xi into : eh� ;xi : for all x A
Ec. This operator turns out to be the same as Gi;1 de®ned in Equation (5.3) in

section 5. By Theorem 5.6 this operator is continuous from �E�u into itself.
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Now, let pb 0 be any ®xed number. Choose p1 > p such that

2r2�p1ÿp�a 1. Then use Equations (4.1) and (3.11) to get

jj�x�ja kYjkp1;u
k: eh� ;xi :kÿp1; �u�a kYjkp1;u

�����������
2e

log 2

s
u�2jxj2ÿp1

�1=2:

Note that 2jxj2ÿp1
a 2r2�p1ÿp�jxj2ÿp a jxj2ÿp by the above choice of p1. Since u

is an increasing function, we see that

jj�x�ja kYjkp1;u

�����������
2e

log 2

s
u�jxj2ÿp�1=2:

However Y is a continuous linear operator from �E�u into itself. Hence

there exist positive constants q and Kp;q such that kYjkp1;u
aKp;qkjkq;u.

Therefore,

jj�x�jaCp;qkjkq;uu�jxj2ÿp�1=2; x A E 0p; c;�4:2�

where Cp;q � Kp;q

�����������������
2e=log 2

p
. This is the growth condition for test functions.

Being motivated by Equation (4.2), we de®ne

kjkAp; u
� sup

x AE 0p; c

jj�x�ju�jxj2ÿp�ÿ1=2:�4:3�

Obviously, k � kAp; u
is a norm on �E�u for each pb 0. The next theorem gen-

eralizes the results of Kuo [21] and Lee [25].

Theorem 4.1. Suppose u A C�;1=2 satis®es conditions (U0) (U2) (U3).

Then the families of norms fk � kAp; u
; pb 0g and fk � kp;u; pb 0g are equivalent,

i.e., they generate the same topology on �E�u.

Remark. This theorem has been announced in [6], but (U1) condition

was assumed there instead of (U0). It can be used to give an alternative

construction of test functions.

For pb 0, let Ap;u consist of all functions j on E 0c satisfying the

conditions:

(a) j is an analytic function on E 0p; c.

(b) There exists a constant C b 0 such that

jj�x�jaCu�jxj2ÿp�1=2; Ex A E 0p; c:
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For each j A Ap;u, de®ne kjkAp; u
by Equation (4.3). Then Ap;u is

a Banach space with norm k � kAp; u
. Let Au be the projective limit of

fAp;u; pb 0g. We can use the above theorem to conclude that Au � �E�u as

vector spaces with the same topology. Here the equality Au � �E�u requires

the analytic extension of a test function j A �E�u in Equation (4.1).

Proof. Let pb 0 be any given number. We have already shown that

there exist constants q > p and Cp;q b 0 such that Equation (4.2) holds. It

follows that

kjkAp; u
� sup

x AE 0p; c

jj�x�ju�jxj2ÿp�ÿ1=2 aCp;qkjkq;u:

Hence for any pb 0, there exist constants q > p and Cp;q b 0 such that

kjkAp; u
aCp;qkjkq;u; Ej A �E�u:�4:4�

To show the converse, ®rst note that by condition (U2) there exist

constants c1; c2 > 0 such that u�r�a c1ec2r; rb 0. Next note that by

Fernique's theorem (see [9] [20] or page 328 in [21]) we have�
E 0

e2c2jxj2ÿl dm�x� <y for all large l:

Now, let pb 0 be any given number. Choose q > p large enough such

that

4e2kiq; pk2
HS < 1;

�
E 0

e2c2jxj2ÿq dm�x� <y:�4:5�

With this choice of q we will show below that

kjkp;u aLp;qkjkAq; u
; Ej A �E�u;�4:6�

where Lp;q is the constant given by

Lp;q � �����
c1
p �1ÿ 4e2kiq; pk2

HS�ÿ1=2

�
E 0

e2c2jxj2ÿq dm�x�:�4:7�

Observe that the theorem follows from Equations (4.4) and (4.6).

To prove Equation (4.6), let j A �E�u and F � Sj. Then F can be written

as an integral (see page 36 in [21])

F�x� �
�
E 0

j�x� x�dm�x�; x A Ec:
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Hence for the above choice of q, we have

jF�x�ja
�
E 0
jj�x� x�jdm�x�

a

�
E 0
�jj�x� x�ju�jx� xj2ÿq�ÿ1=2�u�jx� xj2ÿq�1=2dm�x�

a kjkAq; u

�
E 0

u�jx� xj2ÿq�1=2
dm�x�:

However by condition (U0), ub 1 on �0;y�. Hence u�r�1=2 a u�r� for all

rb 0. Therefore,

jF�x�ja kjkAq; u

�
E 0

u�jx� xj2ÿq�dm�x�:�4:8�

By condition (U3), u is (log; x2)-convex. Thus in particular, we have

u��12 r1 � 1
2 r2�2�a u�r2

1�1=2u�r2
2�1=2; Er1; r2 b 0:

Put r1 � 2jxjÿq and r2 � 2jxjÿq to get

u�jx� xj2ÿq�a u��12 2jxjÿq � 1
2 2jxjÿq�2�

a u�4jxj2ÿq�1=2u�4jxj2ÿq�1=2:

Then integrate over E 0 to obtain the inequality:�
E 0

u�jx� xj2ÿq�dm�x�a u�4jxj2ÿq�1=2

�
E 0

u�4jxj2ÿq�1=2dm�x�:�4:9�

Put Equation (4.9) into Equation (4.8) to get

jF�x�ja kjkAq; u
u�4jxj2ÿq�1=2

�
E 0

u�4jxj2ÿq�1=2dm�x�:�4:10�

Now, by the inequality u�r�a c1ec2r, we have�
E 0

u�4jxj2ÿq�1=2
dm�x�a �����

c1
p �

E 0
e2c2jxj2ÿq dm�x�;�4:11�

which is ®nite by the choice of q in Equation (4.5).

By Equations (4.10) and (4.11), we see that

jF �x�ja kjkAq; u

�����
c1
p �

E 0
e2c2jxj2ÿq dm�x�

� �
u�4jxj2ÿq�1=2; x A Ec:
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With this inequality and the choice of q in Equation (4.5) we can apply

Theorem 3.4 to show that for any j A �E�u,

kjkp;u aLp;qkjkAq; u
;

where Lp;q is given by Equation (4.7). Thus the inequality in Equation (4.6)

holds and so the proof is completed. r

Next, we consider the characterization of Hida measures. We need to

prepare two lemmas.

Lemma 4.2. Suppose u A C�; log is (log, xk)-convex. Then

Lu�r�2 a lu�0�Lu�2k�1r�; Er A �0;y�:�4:12�

Remark. Note that Lu�r�b lu�0� for all rb 0. Hence we have

inequalities

lu�0�Lu�r�aLu�r�2 a lu�0�Lu�2k�1r�; Er A �0;y�:

Thus Lu and L2
u are equivalent for any (log; xk)-convex function u A C�; log.

It follows that u and u2 are equivalent for such a function u.

Proof. Apply Fact 2.4 (2) to get

Lu�r�2 �
Xy
j�0

Xy
m�0

lu� j�lu�m�r j�m

a lu�0�
Xy
j�0

Xy
m�0

2k� j�m�lu� j �m�r j�m

� lu�0�
Xy
j�0

Xy
n�j

2knlu�n�rn:

Then change the order of summation and use the inequality n� 1a 2n to

get

Lu�r�2 a lu�0�
Xy
n�0

�n� 1�2knlu�n�rn

a lu�0�
Xy
n�0

2�k�1�nlu�n�rn

� lu�0�Lu�2k�1r�: r
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Lemma 4.3. Suppose u A C�; log is increasing and (log, xk)-convex. Then

for any a > 1, we have

Lu�r�a
����������������������
lu�0� ea

log a

r
u�a2k�1r�1=2:�4:13�

Proof. Recall a fact mentioned in the beginning of section 2 that if u is

increasing and (log; xk)-convex, then u is (log, exp)-convex. Hence this lemma

follows from Lemma 4.2 and Fact 2.5 (1). r

A measure n on E 0 is called a Hida measure associated with u if �E�u H
L1�n� and the linear functional j 7! �E 0 j�x�dn�x� is continuous on �E�u. In this

case, n induces a generalized function, denoted by ~n, in �E��u such that

f~n; jg �
�
E 0

j�x�dn�x�; j A �E�u:�4:14�

The next theorem generalizes the results of Kuo [21] and Lee [25].

Theorem 4.4. Suppose u A C�;1=2 satis®es conditions (U0) (U2) (U3).

Then a measure n on E 0 is a Hida measure with ~n A �E��u if and only if n is

supported by E 0p for some pb 0 and�
E 0p

u�jxj2ÿp�1=2dn�x� <y:�4:15�

Remark. This theorem has also been announced in [6], but the con-

ditions (U1) (U2) (U3) were assumed.

Proof. To prove the su½ciency, suppose n is supported by E 0p for some

pb 0 and Equation (4.15) holds. Then for any j A �E�u,�
E 0
jj�x�jdn�x� �

�
E 0p

jj�x�jdn�x��4:16�

�
�
E 0p

�jj�x�ju�jxj2ÿp�ÿ1=2�u�jxj2ÿp�1=2dn�x�

a kjkAp; u

�
E 0p

u�jxj2ÿp�1=2dn�x�:

By Theorem 4.1, fk � kAp; u
; pb 0g and fk � kp;u; pb 0g are equivalent.

Hence Equation (4.16) implies that �E�u HL1�n� and the linear functional

j 7!
�
E 0

j�x�dn�x�; j A �E�u;

is continuous on �E�u. Thus n is a Hida measure with ~n in �E��u .
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To prove the necessity, suppose n is a Hida measure inducing a generalized

function ~n A �E��u . Then for all j A �E�u,

f~n; jg �
�
E 0

j�x�dn�x�:�4:17�

Since fk � kAp; u
; pb 0g and fk � kp;u; pb 0g are equivalent, the linear functional

j 7!f~n; jg is continuous with respect to fk � kAp; u
; pb 0g. Hence there exist

constants K ; qb 0 such that for all j A �E�u,

jf~n; jgjaKkjkAq; u
:�4:18�

Note that by continuity, Equations (4.17) and (4.18) also hold for all j A Aq;u,

which is de®ned in the Remark of Theorem 4.1.

Now, with this q, we de®ne a function g on E 0q; c by

g�x� �Lu�2ÿ4hx; xiÿq�; x A E 0q; c;

where h�; �iÿq is the bilinear pairing on E 0q; c. Obviously, g is analytic on E 0q; c.
On the other hand, apply Lemma 4.3 with a � k � 2 to get

jg�x�jaLu�2ÿ4jxj2ÿq�a
�����������

2e

log 2

s
u�jxj2ÿq�1=2; Ex A E 0q; c:

This shows that g A Aq;u and we have

kgkAq; u
a

�����������
2e

log 2

s
:

Then apply Equation (4.18) to the function g,

jf~n; ggjaKkgkAq; u
aK

�����������
2e

log 2

s
:

Therefore, from Equation (4.17) with j � g we conclude that�
E 0

g�x�dn�x�
���� ����aK

�����������
2e

log 2

s
:�4:19�

Note that g�x� �Lu�2ÿ4jxj2ÿq� for x A E 0. Hence Equation (4.19) implies

that �
E 0
Lu�2ÿ4jxj2ÿq�dn�x� <y:
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However u�r�aCLu�4r� from Fact 2.5 (2) with k � 2. Therefore,�
E 0

u�2ÿ6jxj2ÿq�dn�x� <y:

Now, choose p > q large enough such that r2�pÿq�a 2ÿ6. Then jxj2ÿp a

2ÿ6jxj2ÿq. Recall that u is increasing. Hence�
E 0

u�jxj2ÿp�dn�x� <y:

Note that u�r�b 1 and so u�r�1=2 a u�r�. Thus we conclude that�
E 0

u�jxj2ÿp�1=2dn�x� <y:

This inequality implies that n is supported by E 0p and Equation (4.15)

holds. r

Before closing this section, let us explain the relationship with [10]. The

basic equalities are

u�r� � e2y� ��rp �; u��r� � e2y �� ��rp �
where y��s� � supt>0fstÿ y�t�g is adopted in [10]. In the following table we

give the correspondence between our U-conditions and y-conditions.

u y

(U0) inf
rb0

u�r� � 1 inf
rb0

y�r� � 0

(U1) u is increasing and u�0� � 1 y is increasing and y�0� � 0

(U2) lim
r!y

log u�r�
r

<y lim
r!y

y�r�
r2

<y

(U3) u is (log; x2)-convex y is convex

Our intrinsic topology is the same as their topology. However, we are inter-

ested in the equivalences between the intrinsic topologies and the Hilbertian

topologies de®ned in section 3.

5. Comparison with the CKS-space and continuous operators

In this section we will discuss the continuity of various operators and Wick

products. This matter is not addresed in [10].
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Let us consider again a CKS-space �E�a H �L2�H �E��a associated with a

sequence fa�n�g of positive real numbers. Due to the discussion in sections 3

and 4, we conclude that for a CKS-space it is reasonable to assume the four

essential conditions: (A1), (A2), near-(B2), near-(~B2).

On the other hand, in [16] the following three conditions are imposed in

order to prove the continuity of various linear operators acting on the spaces

�E�a and �E��a :

(C1) There exists a constant c1 such that for all nam,

a�n�a cm
1 a�m�:

(C2) There exists a constant c2 such that for all n and m,

a�n�m�a cn�m
2 a�n�a�m�:

(C3) There exists a constant c3 such that for all n and m,

a�n�a�m�a cn�m
3 a�n�m�:

It is shown in [16] that (C3) implies (C1). In the next two theorems we will

show that conditions near-(B2) and near-(~B2) imply conditions (C2) and (C3),

respectively.

Theorem 5.1. If a sequence fa�n�g of positive real numbers satis®es con-

dition near-(B2) and a�0�b 1, then it satis®es condition (C2).

Proof. Since fa�n�g satis®es condition near-(B2), it is equivalent to a

sequence fl�n�g of positive real numbers such that fl�n�=n!g is log-concave.

Apply Equation (2.1) to the sequence b�n� � l�n�=l�0�. Then we get

l�n�m�a l�0�ÿ12n�ml�n�l�m�; En;mb 0:�5:1�

On the other hand, recall that fa�n�g and fl�n�g are equivalent. Hence there

exist constants K1;K2; c1; c2 > 0 such that

K1cn
1 l�n�a a�n�aK2cn

2 l�n�:�5:2�

From Equations (5.1) and (5.2) we can easily derive that

a�n�m�a l�0�ÿ1
Kÿ2

1 K2�2cÿ1
1 c2�n�m

a�n�a�m�; En;mb 0:

Let c � maxf1; l�0�ÿ1Kÿ2
1 K2; 2cÿ1

1 c2g. Then the last inequality implies that
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a�n�m�a c2�n�m�a�n�a�m�; En�mb 1:

However by assumption a�0�b 1 and so this inequality also holds for n �
m � 0. Thus the sequence fa�n�g satis®es condition (C2). r

Theorem 5.2. If a sequence fa�n�g of positive real numbers satis®es

condition near-(~B2) and 0 < a�0�a 1, then it satis®es condition (C3).

Proof. Since fa�n�g satis®es condition near-(~B2), it is equivalent to a

sequence fl�n�g of positive real numbers such that
1

n!l�n�
� �

is log-concave.

Apply Equation (2.1) to the sequence b�n� � l�0�=l�n�. Then we get

l�n�l�m�a l�0�2n�ml�n�m�; En;mb 0:

We can repeat similar arguments as in the proof of Theorem 5.1 to show that

the sequence fa�n�g satis®es condition (C3). r

For the rest of this section we assume that u A C�;1=2 satis®es conditions

(U0) (U2) (U3). We will state several theorems concerning various continuous

linear operators acting on �E�u and �E��u . These theorems follow from section

3 of the paper [16] as a consequence of the above Theorem 2.6. However, we

point out that they can be proved independently without using the corre-

sponding results in the paper [16].

The next theorem corresponds to Theorem 3.1 in [16].

Theorem 5.3. For any y A E 0, the di¨erential operator Dy is a continuous

linear operator from �E�u into itself.

The next theorem corresponds to Theorem 3.2 in [16].

Theorem 5.4. For any y A E 0, the translation operator Ty is a continuous

linear operator from �E�u into itself.

The next theorem corresponds to a fact on page 323 in [16].

Theorem 5.5. For any z A C, the scaling operator Sz is a continuous linear

operator from �E�u into itself.

For a; b A C, de®ne the Fourier-Gauss transform Ga;bj of j A �E�u by

Ga;bj�x� �
�
E 0

j�ay� bx�dm�y�:�5:3�

Theorem 5.6. For any a; b A C, the Fourier-Gauss transform operator

Ga;b is a continuous linear operator from �E�u into itself.
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For those operators in Theorems 5.3 to 5.6, their adjoints are continuous

linear operators from �E��u into itself. All properties regarding to these oper-

ators in the book [21] are all valid with suitable modi®cation. In particular,

the integral kernel operators in Chapter 10 and white noise integration in

Chapter 13 can be extended to the Gel'fand triple �E�u H �L2�H �E��u .

Theorem 5.7. The space �E��u is closed under the Wick product and the

mapping �F;C� 7! F �C is jointly continuous from �E��u � �E��u into �E��u with

respect to the inductive limit convex topology.

Proof. By Fact 2.6, u� belongs to C�;1=2 and is increasing and (log; x2)-

convex. Hence we may apply the Remark of Lemma 4.2 to u� to see that

u� and �u��2 are equivalent. Hence by Theorem 3.2 we can see that the space

S�E��u is closed under multiplication and hence �E��u is closed under Wick

product by de®nition. Similarly to Theorem 3.5 in [16], we can show the

inequality

kF �Ckÿq; �u�a ckFkÿp; �u�kCkÿp; �u�; EF;C A �Ep��u

for any p, c > 1 and q > p� g�c� with a suitable constant g�c�. The joint

continuity can be proved by applying Lemma A in Appendix to X 0 � �E��u . r

The next theorem is for the Wick product of test functions. It corre-

sponds to Theorem 3.4 in [16].

Theorem 5.8. The space �E�u is closed under the Wick product and the

mapping �j;c� 7! j � c is continuous from �E�u � �E�u into �E�u.

For the pointwise multiplication of test functions we have the next theorem

which corresponds to a fact on page 326 in [16].

Theorem 5.9. The space �E�u is closed under pointwise multiplication and

the mapping �j;c� 7! jc is continuous from �E�u � �E�u into �E�u.

Appendix

To prove the following Lemma A we borrow the idea in parts from the

proof of Lemma 2.1 in [19]. Let us give a short remark. It is shown in [19]

that the mapping x 7! xnn from a dual space E� of E to the symmetric tensor

product space �Enn��symm is continuous with respect to the inductive limit

convex topology. The nuclearity of E plays an essential role to prove this

fact. On the other hand, as illustrated in Lemma A, the nuclearity of E is not

an intrinsic assumption to verify the continuity of the mapping given by the

Wick product from a direct product space �E��u � �E��u to �E��u .
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Lemma A. Let X be a complete s-normed space with norms k � k1 a

k � k2 a � � � a k � kp a � � �, and let X 0 be its dual and k � kÿp the dual norm of

k � kp. Suppose that X 0 is an algebra with multiplication xy A X 0 of x; y A X 0

and that for any pb 1 there exist an integer g�p�b p and a positive constant

C�p� such that

kxykÿg�p�aC�p�kxkÿpkykÿp

holds for any x; y A X 0 with kxkÿp; kykÿp <y. Then the mapping �x; y� 7! xy

is jointly continuous from X 0 � X 0 into X 0 with respect to the inductive limit

convex topology.

Proof. Recall that fundamental neighborhoods of x can be given in the

form

V�x; q; fepgpb q� � conv 6
pbq

fz; kzkÿp < epg
 !

� x;

for a given qb 1 and a positive sequence fepgpbq (cf. [19]). Here ``conv''

means the convex hull, just the collection of all ®nite convex sums. For

V�0; q; fepgpbq�, put

dp � min 1;
eg�p�
C�p�

� �
for pb q:

For x; y A V�0; q; fdpgpbq�, there exist fapgN
pbq; fbpgN 0

pbq and fxpgN
pbq; fypgN 0

pbq

such that

x �
XN

p�q

apxp; y �
XN 0
p�q

bp yp and kxpkÿp < dp; kypkÿp < dp;

XN 0
p�q

ap � 1;
XN 0
p�q

bp � 1; ap b 0; bp b 0:

Then put l0 � minfg�p� : pb qg and put

zl � 1

l�l�
X

g�k��l

X
p4p 0�k

apbp 0xpyp 0 ; l�l� �
X

g�k��l

X
p4p 0�k

apbp 0 :

for lb l0. Now estimate norms of z 0ls. Since kxpkÿk a kxpkÿp < dp and

kyp 0 kÿk a kyp 0 kÿp 0 < dp 0 for k b p4p 0, we have
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kzlkÿl a
1

l�l�
X

g�k��l

X
p4p 0�k

apbp 0 kxp yp 0 kÿl

a
1

l�l�
X

g�k��l

X
p4p 0�k

apbp 0C�k�kxpkÿkkyp 0 kÿk

a
1

l�l�
X

g�k��l

X
p4p 0�k

apbp 0C�k�kxpkÿpkyp 0 kÿp 0

a
1

l�l�
X

g�k��l

X
p4p 0�k

apbp 0C�k�dk

a el:

Since

xy �
X
lbl0

l�l�zl;
X
lbl0

l�l� � 1; l0 b q;

we obtain xy A V�0; q; fegpbq�. Hence the product is jointly continuous at

0.

Next we show the joint continuity at �x0; y0�. Suppose that kx0kÿp0
;

ky0kÿp 0
0
<y. For any given V�0; q; fepgpbq�, put q0 � maxfq; p0; p 00g and

dp � min 1;
eg�p�

3C�p��1� kx0kÿp � ky0kÿp�

( )
for pb q0

and take their neighborhoods as V�x0; q0; fdpgpbq0
� and V�y0; q0; fdpgpbq0

�
and let x and y be in these neighborhoods, respectively. Then we have

x � x0 �
XN

p�q0

apxp; y � y0 �
XN 0
p�q0

bpyp

as above. Then we see

xyÿ x0 y0 � �xÿ x0��yÿ y0� � �xÿ x0�y0 � �yÿ y0�x0:

The ®rst term of the right hand side belongs to V�0; q; f1
3 epgpbq�. Observe

the second term. Put l0 � minfg�k�; k b q0g and

z 0l �
1

l 0�l�
X

g�k��l;kbq0

akxk y0; l 0�l� �
X

g�k��l;kbq0

ak:

Then
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kz 0lkÿl a
1

l 0�l�
X

g�k��l;kbq0

akkxk y0kÿl

a
1

l 0�l�
X

g�k��l;kbq0

akC�k�kxkkÿkky0kÿk

a
1

l 0�l�
X

g�k��l;kbq0

akC�k�dkky0kÿk <
1

3
el

This implies that �xÿ x0�y0 A V�0; q; f1
3 epgpbq�. In the same way, we see

�yÿ y0�x0 A V�0; q; f1
3 epgpbq�. Thus xyÿx0 y0 A V�0; q; fepgpbq� and the proof

is completed. r
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