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A Liouville theorem for polyharmonic functions
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Abstract. We give a short, elementary proof of a theorem which shows that if u is a

polyharmonic function on Rd and the growth of uþ is suitably restricted, then u must be

a polynomial.

1. Introduction

A typical point of Rd , where d b 2, is denoted by x ¼ ðx1; . . . ; xdÞ. We

write D for the Laplace operator
Pd

j¼1 q
2=qx2

j and define D1 ¼ D and

Dpþ1 ¼ DDp when p A N. A function u : Rd ! R is called polyharmonic of

order p if u A C2pðRdÞ and Dpu1 0 on Rd . We denote the vector space of all

such functions by Hp. Thus, in particular, H1 is the space of all harmonic

functions on Rd . The positive part of a function u : Rd ! R is denoted by uþ;

that is, uþðxÞ ¼ maxfuðxÞ; 0g for each x in Rd .

A classical Liouville theorem for harmonic functions may be stated as

follows: if u A H1 and uþ is bounded on Rd , then u is constant. A gener-

alization, due to Kuran [4, Theorem 2], shows that if u A Hp and uþ is

bounded on Rd , then u is a polynomial of degree at most 2p � 2. Several

authors have given further generalizations. To describe their results, we in-

troduce some more notation. The open ball and the sphere of radius r centred

at the origin 0 of Rd are denoted by BðrÞ and SðrÞ. We denote d-dimensional

Lebesgue measure by l and ðd � 1Þ-dimensional surface measure by s. Some

known results are summarized in the following theorem.

Theorem A. Let u A Hp, where p A N, and let s be a number such that

s > 2p � 2. The following statements are equivalent:

(1) u is a polynomial of degree less than s;

(2) limr!þy r�s�dþ1
Ð
SðrÞ u

þ ds ¼ 0;

(3) lim inf r!þy r�s�d
Ð
BðrÞ u

þ dl ¼ 0;

(4) lim inf r!þyðr�s maxfuþðxÞ : x A SðrÞgÞ ¼ 0:
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Each of the conditions (2), (3), (4) is clearly necessary for (1). The

su‰ciency of (2), (3), (4) was established by Armitage [1, Theorem 1], Mizuta

[5, Theorem 4], and Nakai and Tada [6, Theorem 1] respectively. (I have

reformulated the statements in [1], [5] and [6] in order to facilitate compari-

sons.) We note that for a continuous (not necessarily polyharmonic function)

u on Rd , condition (2) implies (3), but there are no other implications between

(2), (3) and (4). In this note we prove the following result.

Theorem 1. Let u A Hp, where p A N. If s > 2p � 2 and

(5) lim inf r!þy r�s�dþ1
Ð
SðrÞ u

þ ds ¼ 0,

then u is a polynomial of degree less than s.

For a continuous function u : Rd ! R each of the conditions (2), (3),

(4) implies (5). Thus Theorem 1 includes Theorem A. However, the main

interest of Theorem 1 perhaps lies in the simplicity of its proof, which uses only

the Almansi representation for polyharmonic functions (see, e.g., [3, p. 4]) and

a few elementary facts about harmonic functions, for which we refer to [2].

2. Proof of Theorem 1

We note first that u has an Almansi representation

uðxÞ ¼
Xp�1

m¼0

kxk2m
hmðxÞ ðx A RdÞ;

where kxk ¼ ðx2
1 þ 
 
 
 þ x2

dÞ
1=2 and hm A H1 for each m. Hence, by the mean

value property of harmonic functions ([2, Theorem 1.2.2]),

(6)
Ð
SðrÞ u ds ¼ sðSðrÞÞ

Pp�1
m¼0 r2mhmð0Þ ¼ oðrsþd�1Þ ðr ! þyÞ:

Since juj ¼ 2uþ � u, it follows from (5) and (6) that

(7) lim inf r!þy r�s�dþ1
Ð
SðrÞ jujds ¼ 0:

We write HPn, where n A f0gUN, for the vector space of all homogeneous

harmonic polynomials of degree n on Rd . For future reference, we recall the

orthogonality property

(8)
Ð
SðrÞ HK ds ¼ 0 ðH A HPn;K A HPn; n0 n; r > 0Þ;

see [2, Lemma 2.2.1]. Each of the harmonic functions hm is given on Rd by a

series
Py

n¼0 Hm;n, where Hm;n A HPn, and the convergence of the series is

uniform on every sphere SðrÞ; see [2; Theorem 2.2.4].

The proof of Theorem 1 will be complete if we show that Hm; n 1 0 for all

values of m and n such that 2mþ nb s. We fix such integers m and n and,
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arguing towards a contradiction, we suppose that Hm; n 2 0. We define

FðrÞ ¼
ð

SðrÞ
Hm; nu ds ðr > 0Þ

and note first that by (7)

(9) lim inf r!þy r�s�n�dþ1jFðrÞj ¼ 0.

We also have

FðrÞ ¼
Xp�1

m¼0

r2m

ð
SðrÞ

Hm; nhm ds

¼
Xp�1

m¼0

r2m
Xy
n¼0

ð
SðrÞ

Hm; nHm;n ds;

the change of order of integration and summation being justified by uniform

convergence. Hence, by the orthogonality property (8),

FðrÞ ¼
Xp�1

m¼0

r2m

ð
SðrÞ

Hm; nHm; n ds

¼
Xp�1

m¼0

amr2mþ2nþd�1;

where each am is a real number. Our assumption that Hm; n 2 0 implies that

am 0 0. Hence F is a polynomial of degree at least 2mþ 2nþ d � 1. Since

2mþ 2nþ d � 1b s þ nþ d � 1, this contradicts (9), so the proof is complete.

3. Generalization

Nakai and Tada [6, Section 4] indicated a generalization of their result (the

implication (4) ) (1) in Theorem A) to a wider class of functions, namely the

class of functions u : Rd ! R that are expressible in the form

(10) uðxÞ ¼
Pq

m¼0 kxk
m
hmðxÞ;

where hm A H1 for each m. They showed that if a function u has the form

(10), then the harmonic functions hm are uniquely determined by u, and if

further u satisfies (4) for some s > q, then each hm is a polynomial of degree

less than s � m (see [6, Theorem 3]). The proof of Theorem 1 can be easily

adapted to show that if u is a function of the form (10) satisfying (5) for some

s > m, then again each hm is a polynomial of degree less than s � m.
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