HirosHIMA MATH. J.
31 (2001), 451-460

Bernstein functions and parabolic equations in BUC(R",R)

Gerd HeErzoG and Roland LEMMERT

(Received March 7, 2000)
(Revised May 15, 2001)

ABSTRACT. In this paper we give an application of quasimonotonicity methods and
Bernstein functions to parabolic differential-functional equations in BUC(R",R), and a
new proof of the known result in Theorem 1 on solvability and asymptotic behaviour of
its solutions.

1. Introduction

Let Dy, ..., D, denote the differential operators D;u = u,,, and for a multi-
index o= (ap,...,%,) €Ny let D*=D{"...D} and |of =a; + -+, For
y€R" let S, denote the translation operator (S,u)(x) = u(x+ y).

Let T € (0, ], ajx,b; : [0,T) = R (j,k=1,...,n)and ¢; : [0,T) — R, g; :
[0,T7) = R" (j=1,...,m) be continuous such that (a;(#)) is positive semi-
definite (1€ [0,7)).

In this paper we will consider the Cauchy problem for the parabolic dif-
ferential functional equation

() w= Y a()DDeu+ Y bi()Dju+ Y ¢()Symu,  u(0) =up
= =1 =1

in BUC(R",R), the Banach space of all bounded, uniformly continuous
functions on R” endowed with the supremum norm || - ||e.

We will obtain results on solvability and asymptotic behaviour of the
solution of problem (1) by applying quasimonotonicity methods and Bernstein
functions. For application of Bernstein functions to parabolic problems see
also [8].

For 7 > 0 let B, denote the following class of Bernstein functions:

B, :={ue C*(R",R):3IM >0 VxeR" Yoe N/ : |(D*u)(x)| < M},

Note that obviously B, = BUC(R",R) (r > 0).
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The vector space B, can be normed by

, D% ul|
l|lul|; := sup PR
xeNy Ti*
and by standard reasoning (B, || - ||;) is a Banach space. We will see later that
in fact || - [ = || - ||». In particular, each operator S : B, — B; is an isometry

on B;.

Let #(E) be the algebra of all continuous linear operators on a Banach
space E. Obviously D* e #(B.) and || D*ul|, <t|ju||, (xeN{,ueB;). Hence,
we can define L: [0, 0) — Z(B;) by

L([)u — Z aj7k(t)DjDku + Z bj(t)Dju + Z cj(t)Sg],(,)u.
Jok=1 J=1 7=l

We will see that L is continuous. Therefore, for ¢y € [0, T) the Cauchy problem
(2) w'(t) = L(tu(t),  u(to) =up € B:

is uniquely solvable on [tp, T) in B;.
We will prove the following result, which for the classical case g;(r) =0

(j=1,...,m) is a consequence of [4], p. 43, Theorem 9.
THEOREM 1. Let aji,b;:[0,T) — R (j,k=1,...,n) and ¢;:[0,T) — R,
g;i:10,T) —=R" (j=1,...,m) be continuous such that (a; (t)) is positive semi-

definite (t€[0,T)), and g;(t) #0=¢;(1) =0 (j=1,...,m,t€(0,T)). Then the
solution u : [ty, T) — B, of problem (2) satisfies

[u(@l < eXP(Jt C(S)dS> [uolle (2 €[t0, 7)),

to
where ¢(t) = 37", ¢;(1).

The following approximation theorem, due to Bernstein for the one di-
mensional case (see [2], [9] p. 14), will be the main tool to construct gener-
alized solutions of our problem in BUC(R",R), i.e., continuous functions u
with u(t9) = uy and which are locally (in [z9, 7)) uniform limits of solutions of

(2)-

THEOREM 2. The set B, :=|)__,B; is dense in BUC(R",R).

>0

Next, let || - ||| denote the the operator norm on #(BUC(R",R)) and C :=
{(t,10)eR*: 0 <ty <t < T}. We prove

THEOREM 3.  Let the functions a; i, bj, cj, g; be as in Theorem 1. Then there
exists a solution operator U : C x BUC(R",R) — BUC(R",R) with the following
properties.
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1) The function U is continuous, U(-,to)uy is a generalized solution of (2),
and for (t,t9) € C, up € BUC(R",R)

U(t,0)ug = U(t,10) U(to, 0)uo.

2)  For each t > 0 and ug € B; the function t — U(t,t9)uq is the solution of
problem (2) on [ty, T).

3) If up € BUC(R",R) is such that uo(x) =0 (x € R") then (U(t,t0)uo)(x)
>0 (xeR" 1o <t<T).

REMARKS.

1. By 2), the function U is uniquely determined and may be considered
a generalized fundamental system in BUC(R",R), associated to L.
It will in general neither be differentiable with respect to ¢ nor will
U(t,to)uyg be differentiable with respect to x, as is seen from the
example n=m=1, a;,1 =0, ¢; =0, where we have

t

(U(t, t0)uo)(x) = ug <x + J bl(s)ds> (to<t<T).

to
2. From 3) we will get the estimate

t

14

||U<r,ro>||sexp(j c<s>ds> (th<1<T),

where the functions a;; and b; do not appear. Related results for
initial boundary value problems for parabolic equations are known, see
for example [7]. The above estimate gives an information on the asym-
ptotic behavior; since, if ug is constant, U(z,0)uy = exp(J}Z c(s)ds)ug, we
have

lim U(z,0)up =0  for each up € BUC(R",R)

t—T—

t

< lim J c(s)ds = —o0.

=T ),

3. For asymptotic estimates of solutions for the Cauchy problem for
parabolic equations with bounded initial function see [4], p. 56. There
L(f)u(r) is assumed to be bounded and the estimate for u(z) depends
on the bound of L(#)u(t), whereas our bound depends only on ¢ and
Uup.

4. Classical parabolic equations with uniformly elliptic differential opera-
tor in BUC(R",R) are studied in [6] by semigroup methods. A cen-
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tral tool in this paper are estimates for the fundamental solution of the
parabolic equation.
5. Our main tool for proving Theorem 1 will be the theory of continuous
quasimonotone increasing operators in ordered Banach spaces.
Using U, nonhomogenous and nonlinear problems can be handled. Since, for
each fixed t >0 and ug € B;, re C([0,T), B;), the solution of

(3) u'(1) = L(u(t) + (), (t€[0,T)),  u(0) = uo

is given by

t
u(t) = U(t,0)ug —|—J Ul(t, s)r(s)ds,

0
we call this expression the generalized solution of (3) if up € BUC(R",R) and
re C([0,T), BUC(R",R)). Here, the integral is the Riemann integral for con-
tinuous functions with values in the Banach space BUC(R",R). Approximat-
ing u( and r according to Theorem 2, we see that this generalized solution is the
(in [0, 7)) locally uniform limit of solutions of (3). Finally, if / € C(]0,T),R),
the generalized fundamental system U which belongs to L(z) := L(z) — [(t)I (I
the identity) is given by

Ut ty) = exp( —Jl 1(s)ds> U(t, ).

14
With this at hand, as an application of Theorem 3 we will prove:

THEOREM 4. Let U be as in Theorem 3 and let f:]0,T) xR — R be a
continuous function such that there exists an 1€ C([0,T),R) with

|f(t,x) — f(£,%)| < 1(2)|x — =], (te[0,T),x,xeR).

Then for each uy € BUC(R",R), the problem

t
(4) u(t) = U1, 0)u0+J UG,/ (s.u(s)ds  (1€[0,T))
0
has a unique solution u in C([0,T), BUC(R",R)).
This solution depends monotonic and continuously (with respect to uniform
convergence on compact subintervals of [0,T)) on uy.

For s€[0,T), ue BUC(R",R), f(s,u) denotes the function f(s,u(:))e€
BUC(R",R).
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2. Bernstein classes and quasimonotonicity

To discuss some properties of the functions in B, we consider first the case
n=1. Then each function f € B, is the restriction of the entire function

© f(k> 0
F(z) = kz:; k!( )zk

to R, and F is of exponential growth and type 7, and bounded on R. Accord-
ing to a theorem of Bernstein, such a function satisfies the inequality

1/ e <2l flle (f €B2),

see [1], p. 206, Theorem 11.1.2. This proves || - ||; = || - || in case n = 1. For
the general case of a function u = u(xy,...,x,) in B, just note that f(x;) =
u(xy,...,x,) has all properties discribed above if xi,...,x_1,Xj41,...,x, are
fixed. Hence ||Djull < tllulle (j=1,...,n) and therefore || -||; =] -] on
B.. Let | - | denote the Euclidean norm on R”. By the Mean Value Theorem
|u(x) —u(X)| < sup IVu(Oll llx = XI| < ev/nllullo[lx — X (x,¥€R")

for each ue B,. Hence for y,zeR" and u,v e B,
[Syu — Szvlloe < [|Syu — Szl + [|Szu — Szvf|
< wvnlfullolly = zl| + [l — vllec.

Therefore (y,u)— S,u is a continuous mapping from R" x B, to B;. This,
together with the fact that the functions g;,b;,c;,g; are continuous, implies
that L is continuous on [0, T).

We now consider (B, | -||») ordered by the cone

K={ueB;:ulx)>0 (xeR"}.

As usual u <v:< py—xe K. The cone K is solid (that is K has nonempty
interior), since 1 € Int K.

The dual cone of K, denoted by K*, is the set of all continuous linear
functionals ¢ € B} such that ¢(u) >0 (1> 0).

A linear operator Re #(B;) is called quasimonotone increasing (in the
sense of Volkmann [10]) if

ue B, u>0, pekK”, p(u) =0 = p(Ru) = 0.

Let O, :={Re ¥ (B;): R is quasimonotone increasing}. As a consequence of
results on differential inequalities [10] it is well known that R e Q. < exp(¢R)
is increasing (¢ > 0). Let Q4 denote all R € #(B,) with +R € Q, (sometimes
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called the quasimonotone constant operators), and note that Re Q04+ = R*’€ Q.
(see [S]). Moreover Q. is a wedge, that is Q. is closed, convex and T € Q. =
AT e Qy (A=0).

As a central tool for handling problem (1) we prove

THEOREM 5. Under the assumptions of Theorem 1, L(t) e Q. (0<t< T).

Proor. We fix 79 €[0,7). Since the identity I on B, is in Q4 and S,
is increasing for each y e R" we have

m

Z ¢i(10)Sy;(1) € O+

=1
since ¢j(tg) >0 if g;(t0) #0 (j=1,...,m). Next, for each j=1,...,n we
have D;e Q. since (by Taylor’s theorem)
(exp(tDj)u)(x) = u(x1, ..., Xj—1,Xj + 1, Xjs1, .-, Xn) (teR).

Hence
n

> bi(to)Dj e Qs

J=1

Finally, to prove that the second order part of L(¢) is in Q. it is sufficient to
prove that this part is the sum of squares of operators in Q;. Consider the
matrix A = (a;x(t9)). Since A is positive semidefinite it has a positive semi-
definite square root B = (b;;). By setting

n
R, = ijv,Dj (I=1,...,n)
=1
we obtain, since each R; is in Q4, that
R} = Z bj1bikDiDy € O,
k=1
and therefore
SR =Y bbiiDiDi =Y aji(to) DDy € Q.
=1 k=1 I=1 Jok=1
Alltogether L(zp) € Q. O

We now know that L is continuous and quasimonotone increasing in u.
Hence problem (1) is uniquely solvable in B; and the solution depends
monotone increasing on u.
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REmMARK. The monotonicity of the solution of the parabolic Cauchy
problem is not new, see for example [4], p. 56. Theorem 3 gives a different
proof of this fact in our framework.

3. Proofs

PROOF OF THEOREM 1.

Let # be a constant; then exp(]}f} c(s)ds)n is the solution of (2) with initial
value #, and by monotonicity,

up < n = u(t) Sexp(J

t

c(s)ds)n (telt, T)).

to
From this, the proposition readily follows. O

PROOF OF THEOREM 2.
Consider the entire function

.2
o) =0 L) p0)=

1
nz? T
X =

The function ¢ is of exponential type 2 and ffooo o(x)d. 1 (see for example

[3], p. 641). For any 7 > 0 let ¢, be defined by ¢.(z) = t¢(zz), and note that
@, 1s of exponential type 27 and ffooo ¢, (x)dx =1. Hence @, defined by

¢‘t(xla s 7xn) = H(or(xj)
j=1

is a function in By, and [, @.(x)dx = 1. For a function u € BUC(R",R) we
set

u(x) = JR” u(&) D, (x — &)d¢E (xeR").

First we will prove u, € By,. Obviously |u.(x)| < ||ullc (x€R"). We fix n—1
real variables and consider

WD) = | @01 =)z = ) - &)

The function 4 is an entire function, bounded on R (by |[#|), and for z =
a+ib, b #0 we have

_Hu||OCJ sin? 57 + sinh?(zh) i

()] < el | Io(e(z - &)ldce g

s sinh?(zh) .
|7b|

T

< ||u
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Hence / is of exponential type 2z, bounded on R, and according to Bernstein’s
Theorem we have
o .
D/ us(x) < 20 lulle  (xeR",2 e Ny).

Hence u, € B,,.
To show that u, approximates u, let ¢ >0 and choose d > 0 such that
Ix —y|l < ¢ implies |u(x) —u(y)] <e/2. For xeR" we have

|u(x) — u(x)| =

|| ) — et - crae

A

< S 2lule [ elen = &) ae(, - e

lx=¢ll =6

&
=52l | ) o) <

Iyl =00

for T > 7; if 7; is such that

o0

&
w 7] ..... ¢ 77}1 d’7 < S —
Jn>(571 ( l) ( ) 4||u|

This is possible since || is integrable. ]

PROOF OF THEOREM 3.
1) To each ug € By, according to Theorem 2 there exists a unique solution
u of u'(t) = L()u(t), u(ty) = up; we define U: C x B, — B,, by

U([, lg)uo = u(t), (l, Zo) eC, up € By

Clearly U is continuous and linear with respect to the third variable, and
according to Theorem 1 we have

t

10U, toYuo]| < p(j c(s)ds> [

1

Hence U(t,tp) admits a unique continuous linear extension to BUC(R",R),
also denoted by U(z,¢), such that

t

||U(lvlo)||SeXP<J c(s)ds> (th<1<T).

to

Finally it is easy to see that U is continuous.
2) and 3) follow immediately from the definition of U and the properties
of the solution of problem 2 in the spaces B;. O
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PROOF OF THEOREM 4.

As f is uniformly continuous on compact subsets of its domain of defini-
tion, s — f(s,u(s)) is continuous if s — u(s) is a continuous function from [0, T')
to BUC(R",R). Under the given conditions, the right hand side of our integral
equation defines a map J from C([0, T), BUC(R",R)) into itself which turns out
to be a contraction on C([0, T}], BUC(R",R)) for each T} < T if a norm in this
space is suitably chosen.

To see this, let M = C([0, 7], BUC(R",R)) and

= sup |u<r>||mexp(—j;<c<s> n z(s))ds).

It is easily seen that (M, || -||sr) is a Banach space. For u,ve M we get

1)) — J@) ()]
< [ ewn( [ ctorto))1uts) ~ o).

0 K

< Jr eXp(JI c(a)da) 1(s)||ut — v||Mexp<J(:(c(a) 4 l(o))da) ds

0 K

= exp(J;(c(s) + l(s))ds) |let — v|| s (l — exp (—J; l(s)ds)),
T
1) = J@) 1 < Il — ol (1 - exp<—j0 1<s>ds>> ,

and Banach’s Fixed Point Theorem gives exactly one solution in M. Since
T, was arbitrary, we get a unique solution in C([0,7), BUC(R",R)), which a
forteriori depends continuously on u#;. As to monotonicity, as a consequence
of the considerations before Theorem 4, (4) is equivalent to

SO

u(t) = O (t, to)uo + J; (e, $)(I(s)uls) + £ (s, u(s)))ds.

The respective succesive approximations for this equation, starting with uy < vy
converge, and since this inequality is maintained for the iteration, we get u < v
on [0,7) for the respective solutions. O
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