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Abstract. In this paper we give an application of quasimonotonicity methods and

Bernstein functions to parabolic di¤erential-functional equations in BUCðRn;RÞ, and a

new proof of the known result in Theorem 1 on solvability and asymptotic behaviour of

its solutions.

1. Introduction

Let D1; . . . ;Dn denote the di¤erential operators Dj u ¼ uxj
, and for a multi-

index a ¼ ða1; . . . ; anÞ A Nn
0 let Da ¼ Da1

1 . . .Dan
n and jaj ¼ a1 þ � � � þ an. For

y A Rn let Sy denote the translation operator ðSyuÞðxÞ ¼ uðx þ yÞ.
Let T A ð0;y�, aj;k; bj : ½0;TÞ ! R ð j; k ¼ 1; . . . ; nÞ and cj : ½0;TÞ ! R, gj :

½0;TÞ ! Rn ð j ¼ 1; . . . ;mÞ be continuous such that ðaj;kðtÞÞ is positive semi-

definite ðt A ½0;TÞÞ.
In this paper we will consider the Cauchy problem for the parabolic dif-

ferential functional equation

ut ¼
Xn

j;k¼1
aj;kðtÞDjDku þ

Xn

j¼1
bjðtÞDj u þ

Xm

j¼1
cjðtÞSgjðtÞu; uð0Þ ¼ u0ð1Þ

in BUCðRn;RÞ, the Banach space of all bounded, uniformly continuous

functions on Rn endowed with the supremum norm k � ky.
We will obtain results on solvability and asymptotic behaviour of the

solution of problem (1) by applying quasimonotonicity methods and Bernstein

functions. For application of Bernstein functions to parabolic problems see

also [8].

For t > 0 let Bt denote the following class of Bernstein functions:

Bt :¼ fu A CyðRn;RÞ : bM > 0 Ex A Rn Ea A Nn
0 : jðDauÞðxÞjaMtjajg:

Note that obviously Bt JBUCðRn;RÞ ðt > 0Þ.
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The vector space Bt can be normed by

kukt :¼ sup
a AN n

0

kDauky
tjaj

;

and by standard reasoning ðBt; k � ktÞ is a Banach space. We will see later that

in fact k � kt ¼ k � ky. In particular, each operator Sy : Bt ! Bt is an isometry

on Bt.

Let LðEÞ be the algebra of all continuous linear operators on a Banach

space E. Obviously Da ALðBtÞ and kDauktatjajkukt ða ANn
0 ; u ABt). Hence,

we can define L : ½0;yÞ ! LðBtÞ by

LðtÞu ¼
Xn

j;k¼1
aj;kðtÞDjDku þ

Xn

j¼1
bjðtÞDj u þ

Xm

j¼1
cjðtÞSgjðtÞu:

We will see that L is continuous. Therefore, for t0 A ½0;TÞ the Cauchy problem

u 0ðtÞ ¼ LðtÞuðtÞ; uðt0Þ ¼ u0 A Btð2Þ

is uniquely solvable on ½t0;TÞ in Bt.

We will prove the following result, which for the classical case gjðtÞ ¼ 0

ð j ¼ 1; . . . ;mÞ is a consequence of [4], p. 43, Theorem 9.

Theorem 1. Let aj;k; bj : ½0;TÞ ! R ð j; k ¼ 1; . . . ; nÞ and cj : ½0;TÞ ! R,

gj : ½0;TÞ ! Rn ð j ¼ 1; . . . ;mÞ be continuous such that ðaj;kðtÞÞ is positive semi-

definite ðt A ½0;TÞÞ, and gjðtÞ00) cjðtÞb0 ð j ¼ 1; . . . ;m; t A ½0;TÞÞ. Then the

solution u : ½t0;TÞ ! Bt of problem (2) satisfies

kuðtÞky a exp

 ð t

t0

cðsÞds

!
ku0ky ðt A ½t0;TÞÞ;

where cðtÞ ¼
Pm

j¼1 cjðtÞ.

The following approximation theorem, due to Bernstein for the one di-

mensional case (see [2], [9] p. 14), will be the main tool to construct gener-

alized solutions of our problem in BUCðRn;RÞ, i.e., continuous functions u

with uðt0Þ ¼ u0 and which are locally (in ½t0;TÞ) uniform limits of solutions of

(2).

Theorem 2. The set By :¼ 6
t>0

Bt is dense in BUCðRn;RÞ.

Next, let jjj � jjj denote the the operator norm on LðBUCðRn;RÞÞ and C :¼
fðt; t0Þ A R2 : 0a t0a t < Tg. We prove

Theorem 3. Let the functions aj;k; bj; cj ; gj be as in Theorem 1. Then there

exists a solution operator U : C � BUCðRn;RÞ ! BUCðRn;RÞ with the following

properties:
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1) The function U is continuous, Uð�; t0Þu0 is a generalized solution of (2),

and for ðt; t0Þ A C, u0 A BUCðRn;RÞ

Uðt; 0Þu0 ¼ Uðt; t0ÞUðt0; 0Þu0:

2) For each t > 0 and u0 A Bt the function t 7! Uðt; t0Þu0 is the solution of

problem (2) on ½t0;TÞ.
3) If u0 A BUCðRn;RÞ is such that u0ðxÞb 0 ðx A RnÞ then ðUðt; t0Þu0ÞðxÞ

b 0 ðx A Rn; t0a t < TÞ.

Remarks.

1. By 2), the function U is uniquely determined and may be considered

a generalized fundamental system in BUCðRn;RÞ, associated to L.

It will in general neither be di¤erentiable with respect to t nor will

Uðt; t0Þu0 be di¤erentiable with respect to x, as is seen from the

example n ¼ m ¼ 1, a1;1 ¼ 0, c1 ¼ 0, where we have

ðUðt; t0Þu0ÞðxÞ ¼ u0

 
x þ

ð t

t0

b1ðsÞds

!
ðt0a t < TÞ:

2. From 3) we will get the estimate

jjjUðt; t0Þjjja exp

 ð t

t0

cðsÞds

!
ðt0a t < TÞ;

where the functions aj;k and bj do not appear. Related results for

initial boundary value problems for parabolic equations are known, see

for example [7]. The above estimate gives an information on the asym-

ptotic behavior; since, if u0 is constant, Uðt; 0Þu0 ¼ expð
Ð t

t0
cðsÞdsÞu0, we

have

lim
t!T�

Uðt; 0Þu0 ¼ 0 for each u0 A BUCðRn;RÞ

, lim
t!T�

ð t

t0

cðsÞds ¼ �y:

3. For asymptotic estimates of solutions for the Cauchy problem for

parabolic equations with bounded initial function see [4], p. 56. There

LðtÞuðtÞ is assumed to be bounded and the estimate for uðtÞ depends

on the bound of LðtÞuðtÞ, whereas our bound depends only on c and

u0.

4. Classical parabolic equations with uniformly elliptic di¤erential opera-

tor in BUCðRn;RÞ are studied in [6] by semigroup methods. A cen-
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tral tool in this paper are estimates for the fundamental solution of the

parabolic equation.

5. Our main tool for proving Theorem 1 will be the theory of continuous

quasimonotone increasing operators in ordered Banach spaces.

Using U , nonhomogenous and nonlinear problems can be handled. Since, for

each fixed t > 0 and u0 A Bt, r A Cð½0;TÞ;BtÞ, the solution of

u 0ðtÞ ¼ LðtÞuðtÞ þ rðtÞ; ðt A ½0;TÞÞ; uð0Þ ¼ u0ð3Þ

is given by

uðtÞ ¼ Uðt; 0Þu0 þ
ð t

0

Uðt; sÞrðsÞds;

we call this expression the generalized solution of (3) if u0 A BUCðRn;RÞ and

r A Cð½0;TÞ;BUCðRn;RÞÞ. Here, the integral is the Riemann integral for con-

tinuous functions with values in the Banach space BUCðRn;RÞ. Approximat-

ing u0 and r according to Theorem 2, we see that this generalized solution is the

(in ½0;TÞ) locally uniform limit of solutions of (3). Finally, if l A Cð½0;TÞ;RÞ,
the generalized fundamental system ~UU which belongs to ~LLðtÞ :¼ LðtÞ � lðtÞI (I

the identity) is given by

~UUðt; t0Þ ¼ exp

 
�
ð t

t0

lðsÞds

!
Uðt; t0Þ:

With this at hand, as an application of Theorem 3 we will prove:

Theorem 4. Let U be as in Theorem 3 and let f : ½0;TÞ � R ! R be a

continuous function such that there exists an l A Cð½0;TÞ;RÞ with

j f ðt; xÞ � f ðt; xÞja lðtÞjx � xj; ðt A ½0;TÞ; x; x A RÞ:

Then for each u0 A BUCðRn;RÞ, the problem

uðtÞ ¼ Uðt; 0Þu0 þ
ð t

0

Uðt; sÞ f ðs; uðsÞÞds ðt A ½0;TÞÞð4Þ

has a unique solution u in Cð½0;TÞ;BUCðRn;RÞÞ.
This solution depends monotonic and continuously (with respect to uniform

convergence on compact subintervals of ½0;TÞ) on u0.

For s A ½0;TÞ, u A BUCðRn;RÞ, f ðs; uÞ denotes the function f ðs; uð�ÞÞ A
BUCðRn;RÞ.
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2. Bernstein classes and quasimonotonicity

To discuss some properties of the functions in Bt we consider first the case

n ¼ 1. Then each function f A Bt is the restriction of the entire function

F ðzÞ ¼
Xy
k¼0

f ðkÞð0Þ
k!

zk

to R, and F is of exponential growth and type t, and bounded on R. Accord-

ing to a theorem of Bernstein, such a function satisfies the inequality

k f 0ky a tk f ky ð f A BtÞ;

see [1], p. 206, Theorem 11.1.2. This proves k � kt ¼ k � ky in case n ¼ 1. For

the general case of a function u ¼ uðx1; . . . ; xnÞ in Bt just note that f ðxjÞ ¼
uðx1; . . . ; xnÞ has all properties discribed above if x1; . . . ; xj�1; xjþ1; . . . ; xn are

fixed. Hence kDj uky a tkuky ð j ¼ 1; . . . ; nÞ and therefore k � kt ¼ k � ky on

Bt. Let k � k denote the Euclidean norm on Rn. By the Mean Value Theorem

juðxÞ � uð~xxÞja sup
x ARn

k‘uðxÞk kx � ~xxka t
ffiffiffi
n

p
kukykx � ~xxk ðx; ~xx A RnÞ

for each u A Bt. Hence for y; z A Rn and u; v A Bt

kSyu � Szvky a kSyu � Szuky þ kSzu � Szvky

a t
ffiffiffi
n

p
kukyky � zk þ ku � vky:

Therefore ðy; uÞ 7! Syu is a continuous mapping from Rn � Bt to Bt. This,

together with the fact that the functions aj;k; bj; cj; gj are continuous, implies

that L is continuous on ½0;TÞ.
We now consider ðBt; k � kyÞ ordered by the cone

K ¼ fu A Bt : uðxÞb 0 ðx A RnÞg:

As usual ua v : , y � x A K . The cone K is solid (that is K has nonempty

interior), since 1 A Int K.

The dual cone of K , denoted by K �, is the set of all continuous linear

functionals j A B�
t such that jðuÞb 0 ðub 0Þ.

A linear operator R A LðBtÞ is called quasimonotone increasing (in the

sense of Volkmann [10]) if

u A Bt; ub 0; j A K �; jðuÞ ¼ 0 ) jðRuÞb 0:

Let Qþ :¼fR ALðBtÞ : R is quasimonotone increasingg. As a consequence of

results on di¤erential inequalities [10] it is well known that R A Qþ , expðtRÞ
is increasing ðtb 0Þ. Let QG denote all R A LðBtÞ with GR A Qþ (sometimes
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called the quasimonotone constant operators), and note that R AQG )R2 AQþ
(see [5]). Moreover Qþ is a wedge, that is Qþ is closed, convex and T A Qþ )
lT A Qþ ðlb 0Þ.

As a central tool for handling problem (1) we prove

Theorem 5. Under the assumptions of Theorem 1, LðtÞ A Qþ ð0a t < TÞ.

Proof. We fix t0 A ½0;TÞ. Since the identity I on Bt is in QG and Sy

is increasing for each y A Rn we have

Xm

j¼1
cjðt0ÞSgjðt0Þ A Qþ;

since cjðt0Þb 0 if gjðt0Þ0 0 ð j ¼ 1; . . . ;mÞ. Next, for each j ¼ 1; . . . ; n we

have Dj A QG since (by Taylor’s theorem)

ðexpðtDjÞuÞðxÞ ¼ uðx1; . . . ; xj�1; xj þ t; xjþ1; . . . ; xnÞ ðt A RÞ:

Hence Xn

j¼1
bjðt0ÞDj A QG:

Finally, to prove that the second order part of LðtÞ is in Qþ it is su‰cient to

prove that this part is the sum of squares of operators in QG. Consider the

matrix A ¼ ðaj;kðt0ÞÞ. Since A is positive semidefinite it has a positive semi-

definite square root B ¼ ðbj; lÞ. By setting

Rl ¼
Xn

j¼1
bj; lDj ðl ¼ 1; . . . ; nÞ

we obtain, since each Rl is in QG, that

R2
l ¼

Xn

j;k¼1
bj; l bl;kDjDk A Qþ;

and therefore

Xn

l¼1
R2

l ¼
Xn

j;k¼1

Xn

l¼1
bj; l bl;kDjDk ¼

Xn

j;k¼1
aj;kðt0ÞDjDk A Qþ:

Alltogether Lðt0Þ A Qþ. r

We now know that L is continuous and quasimonotone increasing in u.

Hence problem (1) is uniquely solvable in Bt and the solution depends

monotone increasing on u0.
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Remark. The monotonicity of the solution of the parabolic Cauchy

problem is not new, see for example [4], p. 56. Theorem 3 gives a di¤erent

proof of this fact in our framework.

3. Proofs

Proof of Theorem 1.

Let h be a constant; then expð
Ð t

t0
cðsÞdsÞh is the solution of (2) with initial

value h, and by monotonicity,

u0a h ) uðtÞa exp

 ð t

t0

cðsÞds

!
h ðt A ½t0;TÞÞ:

From this, the proposition readily follows. r

Proof of Theorem 2.

Consider the entire function

jðzÞ ¼ sin2ðzÞ
pz2

ðz0 0Þ; jð0Þ ¼ 1

p
:

The function j is of exponential type 2 and
Ðy
�y jðxÞdx ¼ 1 (see for example

[3], p. 641). For any t > 0 let jt be defined by jtðzÞ ¼ tjðtzÞ, and note that

jt is of exponential type 2t and
Ðy
�y jtðxÞdx ¼ 1. Hence Ft defined by

Ftðx1; . . . ; xnÞ ¼
Yn

j¼1
jtðxjÞ

is a function in B2t and
Ð
Rn FtðxÞdx ¼ 1. For a function u A BUCðRn;RÞ we

set

utðxÞ ¼
ð
Rn

uðxÞFtðx � xÞdx ðx A RnÞ:

First we will prove ut A B2t. Obviously jutðxÞjakuky ðx A RnÞ. We fix n� 1

real variables and consider

hðzÞ ¼
ð
Rn

uðxÞjtðx1 � x1Þ � � � � � jtðz � xkÞ � � � � � jtðxn � xnÞdx

The function h is an entire function, bounded on R (by kuky), and for z ¼
a þ ib, b0 0 we have

jhðzÞja tkuky
ð
R

jjðtðz � xkÞÞjdxk ¼ kuky
p

ð
R

sin2 hþ sinh2ðtbÞ
h2 þ t2b2

dh

a kuky 1þ sinh2ðtbÞ
jtbj

 !
:
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Hence h is of exponential type 2t, bounded on R, and according to Bernstein’s

Theorem we have

jDa j

j utðxÞja ð2tÞa jkuky ðx A Rn; aj A N0Þ:

Hence ut A B2t.

To show that ut approximates u, let e > 0 and choose d > 0 such that

kx � yk < d implies juðxÞ � uðyÞja e=2. For x A Rn we have

juðxÞ � utðxÞj ¼
ð
Rn

ðuðxÞ � uðxÞÞFtðx � xÞdx
				

				
a

e

2
þ 2kuky

ð
kx�xkbd

tnjðtðx1 � x1ÞÞ � � � � � jðtðxn � xnÞÞdx

¼ e

2
þ 2kuky

ð
khkbdt

jðh1Þ � � � � � jðhnÞdh < e

for tb t1 if t1 is such thatð
khkbdt1

jðh1Þ � � � � � jðhnÞdh <
e

4kuky
:

This is possible since jjj is integrable. r

Proof of Theorem 3.

1) To each u0 A By, according to Theorem 2 there exists a unique solution

u of u 0ðtÞ ¼ LðtÞuðtÞ, uðt0Þ ¼ u0; we define U : C � By ! By by

Uðt; t0Þu0 ¼ uðtÞ; ðt; t0Þ A C; u0 A By:

Clearly U is continuous and linear with respect to the third variable, and

according to Theorem 1 we have

kUðt; t0Þu0ky a exp

 ð t

t0

cðsÞds

!
ku0ky:

Hence Uðt; t0Þ admits a unique continuous linear extension to BUCðRn;RÞ,
also denoted by Uðt; t0Þ, such that

jjjUðt; t0Þjjja exp

 ð t

t0

cðsÞds

!
ðt0a t < TÞ:

Finally it is easy to see that U is continuous.

2) and 3) follow immediately from the definition of U and the properties

of the solution of problem 2 in the spaces Bt. r
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Proof of Theorem 4.

As f is uniformly continuous on compact subsets of its domain of defini-

tion, s 7! f ðs; uðsÞÞ is continuous if s 7! uðsÞ is a continuous function from ½0;TÞ
to BUCðRn;RÞ. Under the given conditions, the right hand side of our integral

equation defines a map J from Cð½0;TÞ;BUCðRn;RÞÞ into itself which turns out

to be a contraction on Cð½0;T1�;BUCðRn;RÞÞ for each T1 < T if a norm in this

space is suitably chosen.

To see this, let M ¼ Cð½0;T1�;BUCðRn;RÞÞ and

kukM ¼ sup
t A ½0;T1�

kuðtÞkyexp �
ð t

0

ðcðsÞ þ lðsÞÞds


 �
:

It is easily seen that ðM; k � kMÞ is a Banach space. For u; v A M we get

kJðuÞðtÞ � JðvÞðtÞky

a

ð t

0

exp


ð t

s

cðsÞds
�

lðsÞkuðsÞ � vðsÞkyds

a

ð t

0

exp


ð t

s

cðsÞds
�

lðsÞku � vkMexp


ð s

0

ðcðsÞ þ lðsÞÞds
�

ds

¼ exp


ð t

0

ðcðsÞ þ lðsÞÞds

�
ku � vkM



1� exp



�
ð t

0

lðsÞds

��
;

so

kJðuÞ � JðvÞkM a ku � vkM

 
1� exp

 
�
ðT1

0

lðsÞds

!!
;

and Banach’s Fixed Point Theorem gives exactly one solution in M. Since

T1 was arbitrary, we get a unique solution in Cð½0;TÞ;BUCðRn;RÞÞ, which a

forteriori depends continuously on u0. As to monotonicity, as a consequence

of the considerations before Theorem 4, (4) is equivalent to

uðtÞ ¼ ~UUðt; t0Þu0 þ
ð t

0

~UUðt; sÞðlðsÞuðsÞ þ f ðs; uðsÞÞÞds:

The respective succesive approximations for this equation, starting with u0a v0
converge, and since this inequality is maintained for the iteration, we get ua v

on ½0;TÞ for the respective solutions. r
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