HirosHIMA MATH. J.
32 (2002), 229-308

On space-time decay properties of solutions to hyperbolic-elliptic
coupled systems

Dedicated to Professor Takaaki Nishida and Professor Masayasu Mimura for
their 60th birthdays

Tatsuo IcucHl and Shuichi KAWASHIMA
(Received August 31, 2001)

ABSTRACT. We consider the asymptotic behavior of solutions to the initial value
problem for a certain class of hyperbolic-elliptic coupled systems. It will be proved that
the solution is time asymptotically approximated by the superposition of diffusion waves
constructed in terms of the self-similar solutions of generalized Burgers equations. We
will give space-time decay estimates for the residual term through a pointwise estimate
for the Green’s function of the linearized system.

1. Introduction

We are concerned with large-time behavior of solutions to the initial value
problem for a certain class of hyperbolic-elliptic coupled systems in one space
variable. The system is written in the form

{ w,+F(w,q), =0,

1.1
(L.1) —Gxx + Rqg+v(w,q)G(w,q), = 0.

Here w=w(x,t) and ¢ = ¢(x,¢) are unknown functions taking values in a
domain Q = R™ and R”, respectively, where x e R! and >0, while F =
F(w,q), G=G(w,q) and v = v(w,q) are given smooth mappings from Q x R"
into R”, R" and Rl+ = {xeR!;x > 0}, respectively, and R is a positive definite
n x n matrix of real constant entries. We impose the initial condition at 1 =0
in the form

(1.2) w(x,0) = wo(x).

We shall assume that the eigenvalues of the Jacobian D, F(w,q) are all real.
Therefore, the first system of equations in (1.1) is a hyperbolic system of
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conservation laws for w, while the second one is a elliptic system for g. Hence,
we can call (1.1) a hyperbolic-elliptic coupled system.

This type of hyperbolic-elliptic coupled system was first studied by S.
Kawashima, Y. Nikkuni & S. Nishibata [4]. They considered large-time
behavior of solutions to the initial value problem in the case where the
mappings F and G have forms F(w,q) = f(w) + LTq and G(w,q) = g(w) with
smooth mappings f and ¢ and n x m matrix L of real constant entries. LT
denotes the transpose of L. Under suitable assumptions on f and g, it was
proved that a unique smooth solution of the initial value problem exists for all
t > 0 and converges to a given constant state (w,0) € 2 x R" as t — oo if the
initial datum wy = wy(x) is sufficiently close to W in a Sobolev space. They
also obtained decay rates of the convergence in a Sobolev space, then in L?
for 2 < p < oo by interpolation. The solution approaches the constant state at
the rate r~(1/20-1/7) a5 t — o0 in L? for 2 <p < 0. Moreover, it was shown
that the solution is well approximated by a solution of a hyperbolic-parabolic
coupled system at the rate ~(1/2C2=1/P)+¢ a5 t — o0 in L? for 2 < p < oo, where
¢ is an arbitrary positive constant.

On the other hand, T.-P. Liu & Y. Zeng [6] considered large-time behavior
of solutions to the initial value problem for general hyperbolic-parabolic
coupled systems and showed that the solution is time asymptotically approxi-
mated by the superposition of diffusion waves constructed in terms of the self-
similar solutions of generalized Burgers equations. They proved that the solu-
tion approaches the superposition at the rate r(1/2(1=1/P)=1/4 35t — o0 in L? for
1 < p < oo by integrating a space-time pointwise estimate. Such an estimate
was obtained through a pointwise estimate for the Green’s function of the
linearized system around a constant state and the analysis of coupling of
nonlinear diffusion waves. Since the rate ¢~(1/2(-1/7)=1/4 is faster than that
of the superposition, they got the optimal decay rate of the solution itself in
L? for 1 <p < oo, and ~1/20-1/P) is the rate.

The main purpose of this paper is to extend the results of Liu and Zeng
to the initial value problem for the hyperbolic-elliptic coupled system (1.1) and
(1.2) with extension of their results. One of our main tasks is to make a
space-time pointwise estimate for the Green’s function of the linearized sys-
tem. The difficulty of this lies in the fact that the Fourier transform of the
Green’s function has essential singularities. Such singularities do not appear
for hyperbolic-parabolic coupled systems and make our estimate for the Green’s
function to be weaker than that of Liu and Zeng’s. Nevertheless, such an
estimate is sufficient for the analysis of pointwise behavior of the solutions to
the nonlinear systems and our estimates for the solutions are also valid for
those to hyperbolic-parabolic coupled systems.

Another purpose is to weaken the hypothesis concerning the regularity of
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the initial data. To this end, we shall adopt the weighted energy method due
to A. Matsumura [7]. He showed the existence of unique smooth solution
globally in time to the initial value problem for a system of equations govern-
ing the motion of compressible, viscous and heat-conductive Newtonian fluid in
three space dimensions and obtained the decay rate of the solution as ¢ — co.
However, we can not directly apply his technique to our problem because the
decay rate of the solution is not enough compared with the case of three space
dimensions. Making use of the L” estimate of the Green’s function obtained
by integrating the pointwise estimate, we shall evaluate the L? norms of the
solution and it’s spatial derivatives in terms of the weighted energy norm.
Combining the estimates for the weighted energy and L? norms, we shall obtain
decay estimates of the solution, which are valid for less regular initial data.

The contents of this paper are as follows. In section 2 we give structural
conditions (existence of entropy function and stability condition) which are
imposed on the hyperbolic-elliptic coupled system (1.1), preliminary proposi-
tions and statements of our results. In section 3 we prove the existence of
solution locally in time to the initial value problem (1.1) and (1.2) under the
assumption that the system admits an entropy function. We explain how to
reduce it to the initial value problem for a symmetric hyperbolic system. In
section 4, following Matsumura we evaluate the weighted energy norm by
assuming the stability condition. At the same time, we obtain a priori estimate
for the energy norm and then the existence of solution globally in time. In
section 5 we give pointwise estimates for the Green’s function and its spatial
derivatives by making use of the Fourier transform technique due to Zeng [9].
The Green’s function contains the Dirac J-function because of the hyperbolicity
of the system. In section 6, following Liu and Zeng we study the coupling of
nonlinear diffusion waves. Although our calculation bears a resemblance to
theirs, our estimates do not directly follow from theirs. In section 7 we first
evaluate the L?” norm of the solution in terms of the weighted energy norm by
using the L? estimate for the Green’s function. Then, combining the estimates
of L? and weighted energy norms together, we obtain a priori estimates of their
norms. In section 8 we study the space-time pointwise behavior of the solution
by using the pointwise estimate of the Green’s function and L? decay estimate
of the solution. Finally, in section 9 we show that the order of time decay in
our estimates is optimal in general by considering a particular system.

NoTATION. Let F = F(w,q) be a smooth mapping from Q x R” to R,
where £ is a open set in R”. We denote by D,.F(w,q) and D,F(w,q) the
Jacobians of F(w,q) with respect to w and ¢, respectively, so that D,.F(w,q)
and D,F(w,q) are k x m and k x n matrices, respectively. For a matrix L, we
denote by L7 the transpose of L.
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For a non-negative integer /, we denote by 0/ and o' the derivatives (3/ or)!
and (0/ (')x)l , respectively. For simplicity, we write d, = ] and 0, = 3. For
a non-negative integer s, we denote by H* the usual Sobolev space on R!
equipped with the norm [[ul|, = (X1 fr [0u(x)]?dx)"*. For 1 <p < o0, we
denote by |-|, the norm of the Lebesgue space L’ = L’(RY). We use the
abbreviation ||| =1 -l[p=]|-],- For 1<p <o, a non-negative integer s
and a real number f, we denote by Wﬂl’p the space of all functions u = u(x)
on R' such that (1+ |x\)ﬁ(3iueLP for 0 </ <s with the norm |luf, ,,=
S0 (1 + [x])0Lul,.  For simplicity, we write W7 = Wy, || ||, , = - [, .o
and || = -lo,.. s Let j be a non-negative integer and / be an interval
contained in [0, c0). We say that ue C/(I; H%) if u is a function of C/-class
on [ with values in H°.

For functions u = u(x) and v = v(x) on R!, we denote by u v the con-
volution of u and v: (u*v)(x) = [ u(x — y)v(y)dy. The usual inner product
in R” or R” is denoted by {-,->. Throughout this paper, we denote inessential
constants by the same symbol C and C = C(a,b,...) means that C depends
only on a,b,....

2. Statement and results

First of all, we introduce a new dependent variable u by a diffecomorphism
w=w(u) from an open set O, onto an open convex set O, < Q. Putting
w=w(u) into system (1.1), we rewrite it as

(2.1) { AO(“)”I + A(”a q)ux + M(”a q)qx =0,

—qxx + Rg + v(w(u), q)(L(u, Q)us + J (1, 9)qx) = 0,
where

AO(“) D,w(u),

A(u,q) = DM(F<W(M)7 q)) = DywF(w(u), q)Dyw(u),
(2.2) M(u,q) = DyF(w(u),q),

L(u,q) = Du(G(w(u),q)) = DyG(w(u),q) Duw(u),

J( 7q)_DqG(W(u)7 )

DerNITION 2.1. Let O, and O,, be an open set in R™ and an open
convex set in £, respectively. We say that system (2.1) is symmetric on
0, x R" if the coefficient matrices verify the properties:

1. A%u) is positive definite for u e O,;

2. A(u,q) and J(u,q) are symmetric and M (u,q) = L(u,q)" for (u,q) e

0, xR".
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We say that system (1.1) is symmetrizable on O, x R" if there exists a dif-
feomorphism w = w(u) from O, onto O, such that the system is reduced to
a symmetric system (2.1).

The property that the system is symmetrizable can be characterized in
terms of an entropy function, which is defined as follows.

DeriNITION 2.2, Let O, be an open convex set in Q and # =#5(w) be a
real-valued smooth function defined on O,. We say that # is an entropy
Sfunction for system (1.1) if the following properties hold:

1. 7 is a strictly convex function defined on O, in the sense that the
Hessian D2y(w) is positive definite for we O,;

2. There exists a real-valued smooth function { = {(w,q) defined on
O,, x R" such that the relations

(2.3) {DWC(W, q) = Duwn(w)DyF(w, q),
' DyL(w,q) = Dun(w)DyF(w,q) = G(w,q)"

hold for (w,q) € O,, x R". ( is called an entropy flux corresponding to #.

ProPoSITION 2.1 ([4]). Let O,, be an open convex set in Q. Then, system
(1.1) is symmetrizable on O,, x R" if and only if the system admits an entropy
function on O,,.

We now state an existence theorem of solutions locally in time to the
initial value problem (2.1) and

(2.4) u(x,0) = up(x).

THEOREM 2.1. We assume that system (2.1) is symmetric on O, x R".
Let u be a constant state in O,. There exist positive constants ¢y = co(t) and
c1 = c1(a) such that if uy —u € H® for an integer s > 2 and |lug — al|, < co, then
the initial value problem (2.1) and (2.4) has a solution (u,q) on some time
interval [0, T] satisfying

{ u—ieC0,T); H)NCY([0, T); H ), g e C[0, T); H*),
Ju(t) = all, + lg(Dll 4y < Clluo —all, — for 0<t<T,

where T = T(|lup —ill,) > 0 and C = C(|lug — iil|,,s) > 0. Moreover, the solu-
tion is unique in the class
{u—aeCO([O,TLHZmclqo,T];H‘), ge ([0, T} 1Y),
lu(t) —all; +lq(Oll; <1 for 0<t<T.

The proof of this theorem is carried out in the next section. This theorem
and Proposition 2.1 guarantee the existence of a solution locally in time to the
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initial value problem (1.1) and (1.2) under suitable conditions on the initial
datum wy if the system admits an entropy function. If L(u,q) and v(w(u),q)
in (2.1) do not depend on ¢ and J(u, ¢) is identically zero, then we do not have
to impose the smallness condition on the initial data and the uniqueness of the
solution always holds.

We proceed to state the global behavior in time of solutions to the initial
value problem (1.1) and (1.2). To this end, we formulate the stability con-
dition.

DerFmNiTION 2.3.  Let @ be a constant state in O,. We say that the sym-
metric system (2.1) satisfies the stability condition at (u,0) if the coefficient
matrices verify the property:

For ueR! and ¢ eR", ud’@)p+ A(@1,0)p =0 and Ly =0 imply that
p=0.

In order to characterize the stability condition, we consider the lineari-
zation of the symmetric system (2.1) around a constant state (i,0):

(2.5) { A u, + Au, + L7 g, =0,
—qxx + RC] + V(Lux + J‘h) = 07

where
(2.6) A°=A@m), A=A(@,0), L=L(0), J=J(@0), v=yv(w),0),
and the eigenvalue problem associated with this system:

2.7) {/IAO¢+ifA(p+iéLT¢ =0,
' (&1 + R+ i&vI )Y + iévLp = 0,
with a real parameter ¢, where e C', p e C” and € C". The admissible

value of 4, which admits a non-trivial solution (¢,y) of (2.7), is denoted by
A =A(i¢). We note that system (2.7) is equivalent to the system

JA% + {iEA + EvLT(E + R+ i&v]) 'L}p = 0,
Y = —iév(E + R+ iévJ) ' Lo.

Therefore, the admissible values of 4 are the roots of the algebraic equation
det{/A° + icA + WL (E* 1 + R+ iévJ) 'L} = 0.

DerINITION 2.4.  Let K be an m x m matrix of real constant entries. We
say that K is a compensating matrix for (2.5) if the following properties are
satisfied:

1. KA° is a real skew-symmetric matrix;

2. [KA]'+ LTL is positive definite, where [X]" denotes the symmetric part

of X.
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ProPoSITION 2.2 ([4]). Let u be a constant state in O,, A(if) the value of A
corresponding to a non-trivial solution (p,\) of (2.7) and (u,q) € C°([0, 0); L?)
a solution to (2.5). Then the following five conditions are equivalent to each
other:

1. The symmetric system (2.1) satisfies the stability condition at (i1,0);

2. There exists a compensating matrix K for (2.5);

3. Re A(i€) <0 for ¢ eR!;

4. There exists a positive constant O such that Re i(i&) < —0&%/(1 + &2)
for Ee R!:

5. |lu(®d] + lg(®)|| — 0 as t — co.

The proof of this proposition is almost the same as that in [4], where the
case J =0 is investigated.

THEOREM 2.2.  Suppose that system (1.1) admits an entropy function so that
the system is put into the symmetric system (2.1). Let w be a constant state in
O,, and u the corresponding constant state in O, (w = w(u)). We also suppose
that the symmetric system (2.1) satisfies the stability condition at (u1,0). Let
s > 2 be an integer. There exists a positive constant ¢y = cy(w,s) such that if
wo — W e H* and ||wy — W||, < ca, then the initial value problem (1.1) and (1.2)
has a solution (w,q) satisfying

{w —iwe C°[0,00); H) N C([0, 0); H 1),
g e C°([0,00); HHY).

The solution verifies the uniform estimate

t
hw(e) = w13 + llg(0)5, + L(wa(f)llfq + (@) ,)de < Cliwo — w7

for t >0, where C = C(i,s) > 0.

This theorem is proved by standard continuation argument based on the
local existence of solution obtained in Theorem 2.1 and a priori estimates of
solutions given in section 4.

THEOREM 2.3.  Assume the same conditions in Theorem 2.2. Let s > 3 be
an integer. There exists a positive constant ¢3 = c3(W,s) such that if wo — w e
HSNL' and E; = ||jwo — |5 + |[wo — W|; < ¢3, then the solution (w,q) obtained
in Theorem 2.2 verifies the decay estimates

w(t) —w)||l._, < CIEs((l +1t 1 <l/l<s
g\, < CLE(1 +¢ I <Il<s-—
”ai ()Hy 1+1 C (1 )7(1/2)(1 D f 0 ) 1
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Sfor t = 0, where C; = Cy(w,s) > 0 and E; = ||wy — W||, + |wo — W|,. Moreover,
for 1 <p < oo it holds that

|02 (w(t) — )|, < Co(E; + [lwo — ]|, ,)(1 + )" PP i 0 <1 <52,
|05q(0)], < Co(Es + [Wo = Wllmax(i1.0) ) (1 +8) P00 <1< 53

for t =0, where C, = Cy(iw,s, p) > 0.

This theorem is proved in section 7.

Next, we consider the asymptotic profile of the solution to the initial value
problem (1.1) and (1.2). We fix W a constant state in O,, and introduce a new
dependent variable v by the relation

(2.8) w— w = D,w(u)v, w = w(a),

where w = w(u) is the diffeomorphism used in the derivation of system (2.1)
from (1.1). Under the hypothesis that system (1.1) admits an entropy function,
the system can be rewritten as

29) { A@)v, + A(@,0)vx + L(#,0) T gy = Hzx — O(v,v), = Hi,

—4xx + Rq +v(w, 0)(L (&, 0)vy + J (&, 0)qx) = Ha,
where the coefficient matrices are defined in (2.2) and
Hy = —(F(w,q) — F(%,0) — D, F(%,0)(w — ) — D,F(i,0)q),
Hy = —(v(w,4) D G(w, q) — (7%, 0)D,, G(7, 0) )
= (v(w,9)DyG(w, q) = v(,0)DyG(w,0))qx,
(2.10) H; = —(F(w,q) — F(w,0) — D,,F(w,0)(w — W)

— D,F(w,0 leZ,F w,0)(w—w,w—w)),
q 2w

O(v,v) = %Dﬁ,F(W, 0)(Dyw(@)v, D,w(@)?).

Changing the variable v with & by the formula &= (A4°(i1))"/*s, we can
reduce the problem to that in the case A°(i1) = I. Therefore, we assume that
A%@) =1 in the following. Since A(i,0) is symmetric, the eigenvalues of
A(@,0) are all real. Let 1 <Ay <---</, be the distinct eigenvalues of
A(@1,0) with multiplicity my,ma, ..., mgy; my +my + - +my, =m. Let the left
and the right eigenvectors associated with A; be [; and ry, j=1,...,m;

(21 1) A(Z/_l, O)Vij = iir,-j, IUA(L_!, 0) = /1,'[,‘], l,-jr,-/j/ = (Si,'féj'jf
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for i,i'=1,...,0, j=1,...,m; and j' =1,...,my, where 6; is Kronecker’s
delta. Put
In
lj: s ri:(ril,...,rimi), Pl':l’jll' for iil,...,O',
lim[
(2.12)
h
i‘: ) R* (rl, ;ra)
Iy

Then, P; is the projection onto the eigenspace associated with A; and it holds
that LR = RL = 1. Moreover, we have the spectral decomposition

(2.13) A(@,0) = izip,-.
=1

Now, we derive an approximate system of equations to (2.9). Neglecting
higher order nonlinear terms and derivatives of ¢ in the elliptic system for ¢, we
obtain

v+ Ave + O(v,v), + LTq, =0,
Rq + vLv, =0,

which yields the hyperbolic-parabolic coupled system
(2.14) v+ Avy + Q(v,v), = vLT R ' Lo,

where we used the notation in (2.6). We decompose v in the directions of the
right eigenvectors as

Uzzriuh v =l fori=1,...,0.
i=1
Then, (2.14) is equivalent to the system

g g
1 T p—1
Vit + Aivix + E L;Q(rjvj, rivr) . = E VLY R™ Lrjvjcx
Jik=1 Jj=1

fori=1,...,0. Neglecting the effects of the other families than the i-field, we
finally obtain

(215) Vir + ;Livix + le(Vilii, Vﬂ],‘)x = VliL TR_ILV,'U,'XX



238 Tatsuo IcucHr and Shuichi KAWASHIMA

for i=1,...,0. These are the desired approximate equations and called gen-
eralized Burgers equations. We seek a self-similar solution to (2.15) satisfying
the constraint

(2.16) J;wmﬁﬁzi

for i=1,...,0, where 5 is a given constant vector in R™. Under the hy-
pothesis that the symmetric system (2.1) satisfies the stability condition at (i, 0),
we see that the hyperbolic-parabolic coupled system (2.14) satisfies the stability
condition at @ in the sense of [2], that is, for A€ R! and p e R™, lp+ Ap =0
and vLTR 'Ly = 0 imply that ¢ = 0. Therefore, by Lemma 2.1 in [6] each
matrix vl;LT R~ Lr; is positive definite and we obtain the existence theorem for
the self-similar solution.

ProposiTioN 2.3 ([1, 6]). Assume the same conditions in Theorem 2.2.
There exists a positive constant cs = c4(it) such that if 5; e R™ satisfies the
condition |0;| < ca, then (2.15) and (2.16) has a unique self-similar solution of

xX—A;t

the form \/L;)(i( 7 ) with the condition lim,_._ . yy,(y) =lim,__o x/(y) =0.

Moreover, y; has the property

(2.17) 2i(y) = e 7y,

where p; is the maximum eigenvalue of vi;L TR='Lr; and y; and all its derivatives
are uniformly bounded by C|0;| with a positive constant C.

We choose ; in (2.16) as
&:Jw@mwzmmwm”Jom@—mm
R' R'

where wy is the initial datum in (1.2). If |wp — w|, is sufficiently small, then
Proposition 2.3 guarantees the existence of the self-similar solution. Using this
we define a function 0 by

(2.18) 0(x, 1) = > 0:(x,1),

and a function w by

(2.19) o(x, 1) = (Dw(i)) " (w(x, 1) — W — Dw(@)0(x, 1)),
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where w is the solution to the initial value problem (1.1) and (1.2) obtained in
Theorem 2.2. We shall show that w+ D,w(@)6(x, ) is an asymptotic profile
of the solution w(x,#). To this end, we prove that w(-,¢) decays faster than
0(-,t) as t — 0.

THEOREM 2.4. Assume the same conditions in Theorem 2.2. Let s >3 be
an integer and define a function Wy = Wy(x) by

Joc(wo(y) — w)dy for x>0,

(2.20) Wolx) =4 "
J, ‘(wo(y) —w)dy  for x<0.

There exists a positive constant ¢s = ¢s(w,s) such that if E3 <cs and 0 <[ <
s — 3, then the function w defined by (2.19) verifies the decay estimates

Co((1+ Ey)|[Woly + Ey)(1 + o) WAUHZURZUS 5 < p < oo,
0loo(1)], < { Ca((1+ Eo)| Woly + Es + |wo — 7], ,)
><(1+t)_(1/2)<l+1_1/”>_1/4 fl<p<o

for t >0, where we used the notation in Theorem 2.3.

The decay rates in this theorem are optimal, which is explained in section
9. However, if we impose an additional condition for nonlinear terms, then
we can obtain faster decay rates than the above one.

THEOREM 2.5. Assume the same conditions in Theorem 2.2 and the con-
dition

(2.21) P;O(Pu, Pu) =0 for ueR" i, j=1,...,0,i #],

where Q is the quadratic nonlinear term defined in (2.10) and P; is the projection
defined in (2.12). Let s > 3 be an integer, y < 1/2 and W, the function defined
in (2.20). There exists a positive constant c¢ = c¢(W,s,y) such that if E3 < cg,
0<l<s—3and 1 <p < o, then the function w defined by (2.19) verifies the
decay estimates

0L (1)], < C3((1 + E)| W, + [wo — |, , + Ey)(1 + 1) (/2R
Jfor t > 0, where Cy = C3(w, s, p,y) > 0 and we used the notation in Theorem 2.3.

Theorems 2.4 and 2.5 are also proved in section 7.

We proceed to state space-time decay estimates for the solution
(w(x,1),q(x, 1)) and the residual term w(x,¢). Those are the main results in
the present paper. For aeR' and f = (B, 5,) € R? we define functions by
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o/2
( (x— (1 + 1) ) /
(x,5 ) 1+ ,
1+1¢
(222) )= (14 P ALEON
141 ’
(0, (3, 15 4) + 0103, 5 2y, (5, 15 2)),
i=1
where 1,...,4, are the eigenvalues of the matrix A(w#,0) (cf. (2.11)).

THEOREM 2.6. Assume the same conditions in Theorem 2.2. Let s >3 be
an integer, f; =1, >0 and = (f,p,). There exists a positive constant
c7 = ¢7(W, s, f) such that if E3 < ¢, then the solution (w,q) obtained in Theorem
2.2 verifies the pointwise estimates

|03 (w(x, 1) — )| + 034(x, )]
< C(1+E)Epg (140" ppx0)  if 0<l<s—2
X, < Cy + Ly max(/,1), +1t X, ! ) <lI<s-—
ol Ca(1+ E)™ Epaxy 5, (1 + 0”2 g if 0<1 3

for xeR" and t > 0, where Cy = Cy4(W,s,p), Erp, = |wo — W, + ||wo — W1, 0.,
and we used the notation in Theorem 2.3.

THEOREM 2.7. Under the same conditions in Theorem 2.6, there exists a
positive constant cg = cg(w, s, [8,) such that if Ez < cg and 0 <1 < s— 3, then the
function « defined by (2.19) verifies the pointwise estimate

|aiw(x’ t)| < C4(1 +EV)I+I(E3 +E~v1(’lﬂ)l)(1 + t)*(l/z)(/+1)*l/4@ﬁ(x, t)

for xeR! and t >0, where

BV _ IWola + 1 Wollo, oo, p, + [wo = Wl o0, when 1 < <3/2,
LBy IWols + [[Wollo,o,1 4 llwo = Wll;, 0 4, when f; >3/2

with the function Wy defined by (2.20) and we used the notation in Theorems 2.3
and 2.6.

As we mentioned before, the decay rates in time are optimal. However,
by imposing a condition on the quadratic nonlinear term Q we can improve
them.

THEOREM 2.8.  Assume the same conditions in Theorem 2.6 and (2.21). Let
y < 1/2. There exists a positive constant cog = co(W,s,5,y) such that if E3 < ¢
and 0 <1 <s—3, then the function w defined by (2.19) verifies the pointwise
estimate
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ot (x, )] < Cs(1+ E)" (B + £ )(1+ 0 P07 adp(x, 1)

for xeR! and t >0, where Cs = Cs(i,s,p,y) >0,

52) _ IWoly + [[Wollo, oo, p, + 1IWo — Wl g, when 1 < ) <2,
= IWaly+ [ Wolly o + 0 — Wl oy when fy 2

with the function W defined by (2.20), and we used the notation in Theorem 2.3.
Theorems 2.6, 2.7 and 2.8 are proved in section 8.

ReEMark. If the matrix A4 (i, 0) has only one eigenvalue A with multiplicity
m (in this case A(#,0) must be equal to A/ and the condition (2.21) is au-
tomatically satisfied), we can replace the function @g(x, ) in Theorems 2.6 and
2.8 by ¢4 (x,54).

3. Local existence
To begin with, we consider a linear elliptic system in the form
(3.1) —4xx + Rq+Jgc=f.
Taking the Fourier transform of this system, we obtain
(&)1 + R+iE1)q(&) = £ (&),
where the hat " means the Fourier transform:
00 = | e a
—0

Lemma 3.1. Let R and J be symmetric n X n matrices of constant entries
and assume that R is positive definite. Then, there exists positive constants o
and C such that for any ze D, =C"\{zeC';|Imz| <a < |Rez| <a '} the
matrix —z>I + R+ zJ is invertible and verifies the estimate

(=T +R+z)) ' <C+ 2" for zeD,.
ProOF. Suppose that
det(—z* I+ R+zJ) =0, z=Xx+iy, x,yeRL

Then there exists ¢ € C" such that (—z>/ + R+ zJ)g =0 and |¢| = 1. Taking
the inner product of this equation with ¢, we obtain

{ (Rq.q) +vx(Jq,q) + (»* — x2)g|* = 0,
y(v(Jgq, q) — 2x|q|*) = 0,
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where (-,-) denotes the inner product in C". If y 0, then it follows from
these equations that (Rgq,¢) + |z|*|¢|* = 0, which contradicts the positivity of R.
Therefore, it holds that

det(—z2I + R+zJ)#0  for zeC', Imz#0.
On the other hand, it is easy to see that
det(—z2I + R+zJ) =z det(—I +z *R+z"'J) for zeC', z#0.

Hence, if we take o sufficiently small, then there exists a positive constant ¢
such that

det(—z%1 + R+ 2J)| > c¢(1 + |2|*)"  for ze D,,
which implies the results. []
This lemma gives directly the following one.

LEMMA 3.2. Let s be a non-negative integer. Assume that R and J are
symmetric n X n matrices of constant entries and that R is positive definite.
Then, for any f e H® the linear elliptic system (3.1) has a unique solution
q € H*"2, which verifies the estimate

lglls2 < ClIA s
where C = C(s,R,J) > 0.

Now, we consider the elliptic part in the symmetric system (2.1):

(3.2) —qxx + Rg +v(w(u), q)(L(u, g)ux + J(u,q)qx) = 0.

Let # be a constant state in O,. For ¢ >0, M >0 and an integer s > 1, we
define a function space X, by

Xy ={wu—ueH' |lu—il, <cllu—al, < M}.

PROPOSITION 3.1.  There exists a positive constant ¢ = c(u) such that for
any M >0 and integer s > 1 we have a mapping Q from X}, to H*Y which
verifies the properties: '

I If ue X}, then g = Q(u) solves the elliptic system (3.2),

2. IfueX?,. qgeH? solves (3.2) and ||q||, < ¢, then q = QO(u);

3. For any u,ve X}, we have the estimates

{ 0@, < Col|u —al;, 10(u) = Q)| < Col|u — v,
1051 < Crllu—ally, Q@) = Q)| < Crllu— vl

where Cg = C¢(@t) > 0 and C; = Cy(ii,s, M) > 0.
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ProOF. We rewrite (3.2) as
~qxx + Rq +vJgq, = ¥ (u,q),
where we used the notation in (2.6) and
W (u,q) = —v(w(u),q) L, q)ux — (v(w(u), q)J (u, q) — v(w(@r),0)J (@,0))qx.

We take a positive constant cjo = cjo(i#) so small that ||u — ||, < cjo implies
that u(x) € O, for x e R'. For fixed u satisfying the condition |lu — i/, < cio,
we define a mapping @ = ®(q) by

D(q) = (=102 + R+ vJd,) "W (u,q).

By Lemma 3.2, for ¢, e H! satisfying ||g|;, |¢|l; < c10, we have

{ 1D(g)]l> < Cs(llu—all, + llgll?),
I1B(g) — @)l < Cs(llu—all, + llall, + 14ll,)llg — gl

where Cg = Cg(it) > 1. Therefore, if u satisfies the additional conditions
10C3||u —a||, <1 and 2Cs|lu—il|; <cio, then @ becomes a contraction
mapping from

2Cs||u — all;
1+ /1 -4C|u—al,

S=qqeH]|ql, <

to itself. Hence, the mapping @ has a unique fixed point in S.

Now, we define the mapping Q such that Q(u) is the fixed point. Then
O(u) solves (3.2) and satisfies the estimate ||Q(u)|, < 2Cs||lu —@l|,. Moreover,
if v satisfies the same conditions imposed on u, then

10() = Q(0)lly = [(~103 + R+ vJ2.) ™ (¥, Q) — ¥ (v, Q)]
< Co(llu = vlly + (Ju = ally + [lo = allIIQ(w) = OW)]1);

where Cy = Co(r) > 0. Therefore, if |ju—l,,|lv—il, < (4Co)”', then we
have

10(u) = Q(v)[l, < 2Co|lu — o]},

It is sufficient to use the equation Q(u),, = RO(u) +vJO(u), — ¥ (u, O(u)) and
the induction on s to obtain higher order estimates. Finally, we define the
constant ¢ by c:min{(lOCg)fl,QCg)*lclo,(4C9)71}. Then we see that the
mapping Q satisfies all the properties stated in the proposition. []
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RemMARK. If L(u,q) and v(w(u),q) are independent of ¢ and J(u,q)
is identically zero, then we can directly define the mapping Q by QO(u) =
—(—13*> + R) '(w(w(u))L(u)u,). 1In this case we do not have to impose the
smallness condition |ju — ||, < ¢ on u.

Thanks to Proposition 3.1, if we restrict our attention to small solutions
which satisfy the conditions ||u(¢) — ||, < ¢ and ||g(?)||; < ¢ for 0 < ¢ < T, then
the symmetric system (2.1) is equivalent to the system

(3.3) A (), + A(u, Q(u))ux + L(u, Q(u)) " O(u),, = 0.

We can regard this as a symmetric hyperbolic system because the last term
behaves like lower order. Therefore, applying the standard iteration argu-
ments we can prove the local existence theorem to the initial value problem
(3.3) and (2.4), and then Theorem 2.1.

4. Estimates of weighted energy norms

We first prepare a fundamental lemma, which shall be used frequently in
the following of this paper without any comments.

LeEmMA 4.1.  Assume that N > 2 is an integer, I, b, ..., Iy are non-negative
integers, | <p,q,r <o and 1/p=1/g+1/r. Putl=5L+hL+---+Iy. Then
there exists a positive constant C = C(N, p,q,r,l) such that the inequality

(03u))

=

N-2 !
< Clulg, " [ul,|0yul,

p

=
Il
-

holds for any u= (uy,uy,...,uy).

Proor. Define p; by

A I 1
E<11>w—anr

for j=1,2,...,N. Then it holds that p <p; < oo for j=1,2,...,N and
l/p=1/p1+1/po+---+1/py. Therefore, by Holder’s inequality we obtain

(4.1)

N
[1@w)
=1

N
[
< [ 1001,
p 7

Here Gagliardo-Nirenberg’s and interpolation inequalities imply that
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i

r

|171,/1

!
(N—1)g |0t

[
103u;l,, < Clu;

< ClJug D g3/ N Y o | B
< Clu| =YW=} (VN=DX=hiD) Ly

Putting this into (4.1) yields the desired inequality. [

Now, we assume the same conditions in Theorem 2.2. Let s > 2 be an
integer, (w,q) a solution to (1.1) and (1.2) satisfying
(42) {W— we CU[0, Tl H) N C ([0, T H*),
' g e CO([0, T]; H**)
for some 7 >0 and (u,q) the corresponding solution to the symmetric sys-
tem (2.1) and (2.4). We take a positive constant ¢jp = ¢j2(w) so small that

|w — W| < ¢12 implies that w € O,, and assume, throughout this section, that the
solution verifies

(4.3) lw(t) — W[, + [lg(2)]l, < c12 for 0<tr<T.
For non-negative integers / and k£ and 1 < p < o0, we put

(4.4)

; 1/2
sup ([[w(z) = Wl + lg(2)[lxp1) + (J IIq(f)Iinf) for 1 =0,
0o<t<t 0
Ny = sup (1+2)(lolw(o)ll + 1105 q(0)ll12)
l,k(t)_ 0<7:Iit T WAk X q\t k+2
t 1/2
t([a+oda@Raer) for iz
0
t 1/2
(4.5) N2 () = <J (1 +f)’||a;+1w(f)||,§ldf) for k > 1,
’ 0
~ (1) SIC)
(4.6) Ny(t) = > N, ;1) +ZN1 (1)
1=0 =1
and
(4.7) Mip(t) = sup (1+ )P0l w(7) — )],
0<t<t

PROPOSITION 4.1.  Assume the same conditions in Theorem 2.2. Let s >2
be an integer and (w,q) a solution to the initial value problem (1.1) and (1.2)
satisfying (4.2) and (4.3). Then the solution verifies the estimates
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{( N§ (1) + N (0)* < Cllwo — w12+ NSO (NS (1) + N (1)),
(1) < C{HWO S+ (Mo (1) 1 Na(0)N(0)

for 0<t<T, where C = C(,s) > 0.

Proor. To begin with, we derive the L> estimate of the solution by
making use of an entropy function. Let # be an entropy function for system
(1.1) and ¢ an entropy flux corresponding to #. Then it holds that (cf. (2.15)
in [4])

48 a0+ )+ (Glng). ) = (SEL) L
where

A 2 V(Wv q)x

0 =<{Rq,q) + |q:|" — Yov.q) {q,qx)-

Noting that u = (D,n(w))”, we introduce E[w,w] and Z[w,,q] by

{E[W w] = n(w) —n(w) — {a,w—w),
Z[W’ w, Q} (W7 Q) C( ) - <F(W’ Q) - F(Wv 0)7ﬁ> + <G(Wa q)v Q>

By the convexity of # and (2.3), there exists a constant C = C(w) > 1 such
that

C'w—w|? < E[w,w] < Clw— w|%,
|Z[w, w. ]| < C(jw —w|* + |qI)

for |w— w|+|q| <cip. Moreover, by (4.8) we see that

Elw, ), + Z[w, ¥, q], + v(WQq) _ (iz;q;) |

Integrate this over R' x [0, 7], we obtain

(4.9) () — W]l + L lg(2)|7de

< C{flwo — |7 + Ng (D (NG (1) + N§ (1))

for 0<t<T.

We proceed to drive the L? estimate for the derivatives of the solution by
making use of the symmetric form (2.1). Let / and k be non-negative integers
such that 1 < /4 k <s. Differentiating (2.1) we obtain
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A% ()™ s+ A, )04 us+ L(u, q) 0 g = fiook,
(4.10) |

Sy O RO + (L 00 0, + T 1,005 4 = g

where
Sk = —A@){[05*, A%w) ™ A, @)y + 05, A°w) L q) TNgi},
grek = [0, L(u, )]0 u
1A ), )Ll )+ [0, (), ) )
and [-, -] denotes the commutator. We take the inner product of the first and

the second equations in (4.10) with (1 +7)’0"u and (1 + t)laffkq, respectively,
and add the resulting two equations to obtain

1 140 I+k,, Alt+k (1+t)1
5 L4 0" A0 0wy + S s

040 Sl 2l )+ )2l a0 )

(C0l gy, 01 gy + (ROL ™ q, 00 g)

_ W<ﬁi+kqx, a)l(+kq> + <L(u7q)a)1(+ku’ 8i+kq>}

(14071 (W) ol Fu, o Fuy

N~

00 | S0, + Al ) )0l 0L
b3 T 0), 080,35 + ik, 2> + o 6i+kq>}.
Integrating this over R' x [0,7], we get
(4.11) (140 lor u(n))? + K(l +1)')|0tq(v) |7 de
< cfjetul? + 1 (14 0 ot hu(o)ar

N J 149 (@], + g @L.)
0

x (|7 u(o)|* + |I5i+k61(f)|f)df}~
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Note that [0/ (w(z) — )| is equivalent to |0’ (u(z) — @)|| for 0 <[ <s under
the hypothesis (4.3). In the case / =0, we add (4.11) for 1 < k < s and (4.9)
together to obtain

(4.12) wm—mﬁfbmm&ﬂr

_ 1 1 2
< C{Jlwo — W, + NL () (NS (1) + N (1))

for 0<¢t<T. Inthecase 1 </<s, we add (4.11) for 0 < k < s —/ together
to obtain

t
(4.13) (140w, + L(l + 0103401171117

2 2 2
< C{l|atwoll? + (NP, oy (1)

2 1 2
+ (M1 oo (1) + N OYND, oy O+ N2 (0)7)

for 0<t<T.

We continue to estimate the solution by making use of the elliptic system
in (2.1). Let k be an integer such that 0 < k <s— 1. Differentiating the
system yields that

<4M>L%“u=¢{ MH—R@—Jwﬂmfwumw—LWﬂ»w}

v(w(u), q)
and
(4.15) —(959) + ROLq + VI (59),

= 0 {v(w(u), ) L(u, @)ux + (v(w(u), q)J (u, ) — v(w(@), 0)J (,0))qx},

where we used the notation in (2.6). We evaluate the right hand side of (4.14)
directly and apply the elliptic estimate in Lemma 3.2 to (4.15) to obtain

ILo u(@)ll < C{lIo5a(Dll, + klal.. 125 (w(r) — )]
+ () = .+ 1q(0)] e + 1ax(0)L) (07 w(D) | + 105a(0)]12)}
and
1o5a(n)ll, < CLlo w(n) | + (w(r) = W1, + la(0)] o a(0)I]}-

Therefore, by Sobolev’s inequality |g|, < v/2||g||"/*|l¢.]|"/> we obtain
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t t
JﬂummfﬂnuﬂmeMmh+%Wm%%n+M%mﬂ,

t t
(4.16) J (1+ ) |La u(@)ll,-yyde < C{J (1+0)101(@)II5- .1 d
0 0

1 2 1 1 2
+mamMAHme+%ﬂme@+M&mf}

for0<t<Tand 1 </<s—1 and
(4.17)
g7 < CLlws(D)lIZ; + N () (NS ()7},
(L4005 g(ON2 12 < L+ 0[O 2; + NN (1))

for0<t<Tand 1 <[ <y

Finally, we make use of a compensating matrix K for (2.5) whose existence
is guaranteed by the stability condition and Proposition 2.2. Let / and k
be non-negative integers such that 0 </+k <s— 1. Differentiating (2.1) we
obtain, in place of (4.10), that

(4.18) A0 Ry, + 40Ty, 4 LT g, = oIk,
where we used the notation in (2.6) and
h=—A°@){(A° ()" A(u, q) — A° (@)~ A(@, 0))us
+ (4°() " L, q) " — A°(@) " L(,0) gy}
We multiply (4.18) by K and take the inner product with 8i+kux to obtain
(4.19) (KA O, 0y + (KA u, 01w,y
+(KLT g oM uy = (KRR, 0w, .

We compute each term in this equation as follows. Since KA° is real skew-
symmetric, the first term can be written as

(KA Ry, 01 Ry
1 1
= {§<KA06;+"(u — i), a;+kux>} - {5 (KA (u — u), a§+ku,>} :
t X
Since [KA]'+ LTL is positive definite, the second term is estimated as

Ik, Al+k 14k (2 I+1+k, 12
(KA uy, 0 uyy > clo ' ul” — |LoH oul7,
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where ¢ = ¢(#) > 0 is the minimum eigenvalue of [KA]' + L7L. For the other

terms we have
IKKLT 0 g ot u | + <K h, 0 u, |

< 3100 af + C(lal gl + 1oL a).

Therefore, multiplying (4.19) by (1 + t)/ and integrating the resulting equation

over R! x [0,7], we obtain

t
3| s aiarturar

2Jo
1
< 5 (KA (g — 7). 01 ) — 5 (14 1) (KADL (o) — ), o1 ur)

N =

+£Lj(l + T)lfl(KAoai_*k(u(r) —a), 3i+l+ku(r))df

t

+J (1 + )| Lo Fu(r) || dx
0

t

[ (140105 (o) + 01 h0) ).

where (-,-) denotes the usual L? inner product. Adding this for 0 <k <

s —1[—1 yields that
t
@) [ a1l e

< c{nai(wO — I+ 12Low() — W,

t
+ lj (1 + 1) Jol(w(z) — w12 d
0

(2)

+ NSH (O (NG (1) + NE(0))?

t
b [0 D UL I+ el el e

for 0<t<T and 0</<s—1. Combining (4.12), (4.13), (4.16), (4.17) and

(4.20), we get the desired estimates. []
As a consequence of Proposition 4.1, we obtain a priori estimate which is

stated as follows.
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PROPOSITION 4.2.  Assume the same conditions in Theorem 2.2. Let s > 2
be an integer and (w,q) a solution to the initial value problem (1.1) and (1.2)
satisfying (4.2) and (4.3). There exist positive constants ci3 = c13(w,s) and
Cio = Cro(W,s) which are independent of T such that lfNSI%(T) < cy3, then the
solution verifies the estimates

t
_2 2 2 2 2
w(@) = wlI5 + lg(D)]l51 + JO(”WX(T)HS—I +lg@)I551)de < Crollwo — w5

for 0<t<T.

Theorem 2.1 and Proposition 4.2 prove Theorem 2.2.

5. Estimates of Green’s functions

In view of (2.9) and noting that we have already reduced the problem to
that in the case 4°(&r) =1, we consider a linear hyperbolic-elliptic coupled
system of the form

A LTg, =
(5'1) {UI+ UX—"_ qX h17

—{xx + RC] + V(Lux + J%) = hz,

where 4, R and J are symmetric matrices of constant entries, R is positive
definite and v is a positive constant. Taking the Fourier transform of this
system, we obtain

b4 iEAD+ iELTg = hy,
(81 + R+ i&vJ)g + iEvLo = hy.

It follows from these ordinary differential and algebraic equations that

B(&, 1) = e®Op(E,0) + Jl e (B (&, 1) + iELTW(E)hy (&, 7))dx,
0

G(&,1) = iEVP(ELH(E, 1) — P(Oh(E,1),
where

52) D(&) = —{iCA +vE*LT(E T + R+ i&vJ) 'L},
' P(E) = —(EL+ R+ iév) .

Therefore, introducing Green’s functions Gj(x,¢) and G»(x) by

(5:3) Gi(x,1) =7 "(x),  Glx)=F [¥()](),
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where Z ! denotes the inverse Fourier transform, we can represent the solu-
tions to (5.1) as

v(t) = G1(1) * v(0) + JI Gi(t—1)*(I(7)+ LTGy, = ha(7))dr,
(5.4) 0

q(t) = vGay x (Lv(t)) — Gy * ha(2).

We remark that @(&) is not entire function. This is one of the main difference
between the hyperbolic-elliptic and hyperbolic-parabolic coupled systems.

We now approximate the corresponding homogeneous system to (5.1).
To this end, we assume the stability condition for the homogeneous system and
use the notation in (2.11) and (2.12). As we mentioned in section 2, each

matrix v,LTR'Lr; is positive definite for i =1,...,0 so that the matrix B
defined by
(5.5) B=Y P(L'R'L)P,

i=1
is also positive definite because we have the relation
B = Rdiag(wh L"R 'Lry,... vI,LTR 'Lr,)L.
The approximate system for v is of the form
(5.6) v; + Avy, = Buyy,

which corresponds to the linearization of (2.15). We denote by G{(x,¢) the
Green’s function for this uniformly parabolic system:

(5.7) Gi(x,1) = 7 ' V(). @°(&) = —icA + (i&)°B

The aim in this section is to give pointwise behavior for these Green’s
functions Gj, G, and Gj, which are stated as follows.

ProrosiTION 5.1.  Suppose that A, R and J are symmetric matrices of
constant entries, R is positive definite, v is a positive constant and that the
corresponding homogeneous system to (5.1) satisfies the stability condition.
There exists a positive constant 0, such that the Green’s function Gy defined in
(5.3) has the properties

(5.8) 0.Gi(x,1) ZZew&sl N (x+¢00) Qi () + 0LG (x, 1) + RV (x, 1)
j=1 k=0

:Z 910" (x + ¢;00)0; 1 (1) + R (x, 1)
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for xeR', t>0 and 1 =0,1,2,..., where ¢; | and c¢; are constants such that
1< =01 for j=1,....0" and {cjo;j=1,....,0'y ={-Azi=1,...,0}, 4 is
an eigenvalue of A, Q; (1) is an polynomial matrix in t with degree not more
than k, o is the Dirac o-function, G{ is the Green’s function defined in (5.7), and
Rgl) and R(()U verify the pointwise estimates

a
|R§1)(x, | < Cf(l/2><l+1)(1 + ,)—1/2 Zeﬂ)‘l\x%t\/ﬂ 4 Cetok
i=1

(5.9)

|]2((]1)()c7 l)| < C(l + l)—(l/2)(1+l) 67(31‘)(71,'[‘/\/;_’_ Cefl‘f()‘]‘)('

4
i=1

for xe R and t >0 with a positive constant C. Particularly, we have the L?
estimates

5.10 R ()], < C(14 )7 201,
(5.10) 0 —(1/2)(I+1-1/p)
R (0], < C(1+1)
, <

for t>0 and 1 <p < o0.

PrROPOSITION 5.2.  Suppose that J and R are symmetric matrices of con-
stant entries, R is positive definite and that v is a constant. There exists a
positive constant d1 such that the Green’s function G, defined in (5.3) has the
properties

/-
(5.11) 0i.G2(x) = 5(1—2—k)(x)Qk + Rg)(x)
0

S8}

>~
Il

for xeR" and 1 =2,3,4,..., where 0 is the Dirac d-function, Qy is an symmetric
matrix of constant entries and we have the pointwise estimate

(5.12) |Ga(x)] + [Gax (x)] + |RY (x)] < Ce 1
for x € R with a positive constant C.  Particularly, we have the L? bound
(5.13) |Gal, + Gaul, + |RY|, < €
for 1 <p < .
We proceed to prove these propositions. Put
(5.14) E(z) = —A+vzLT(=z* T+ R+ vzJ)"'L.

By Lemma 3.1, we see that there exists a positive constant o such that E(z)
is holomorphic in D, U {co} and that E(z) is real symmetric for z e D, NR'.
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Therefore, by similar arguments to those in [6] (see pages 66-69) there
exist a finite number of exceptional points zj,zy,...,z; and a positive integer

o' such that for any ze D,\{zi,z2,...,2x}, E(z) has distinct eigenvalues

M(2),42(2), ..., 2e(z). We denote by P;(z) the eigenprojection for /i,(z), which
is given by
- 1 _
PO = 5], (G~
I;(z

2ni

where I'j(z) is a closed positively-oriented curve enclosing 4;(z) but excluding
all other A4(z). Then it holds that

(515 EQ) =Y A0BG). S BE=I B =B,
= =

for ze D,\{z1,22,...,2zx} and j,k =1,2,...,0’, where J; is Kronecker’s delta.

Moreover, J;(z) and Pj(z) are holomorphic at z =0 and z = oo.
Since @(&) = iCE(i), we have

(5.16) Gi(&,1) = 37 B i),
=

where Gi(&,1) is the Fourier transform of the Green’s function Gy(x,) with
respect to x. Taking the limit of (5.15) as z — 0, we obtain

(5.17) —A4 =" 4(0)P0),
=1
which implies that —ij(O) is an eigenvalue of 4 for j=1,...,6’. Considering

this fact, we classify /{j(z) as ijk(z) such that

Op@ik=1,...m,j=1,....0} = {A(2);j=1,...,0'},

ijk(()):—lj for k:l,...,nj, jZl,...,O‘,
n+--+n,=0a.
Let Py (z) be the eigenprojection for i_,»k(z). Then we have

n;

(5.18) > P(0)=P  for j=1,...,0
k=1

It follows from (5.14) and (5.15) that



Hyperbolic-elliptic coupled systems 255

(Z P,-k(z)) (—A+vzLT (=21 +vzJ + R)™ (Z Py(z )
k=1

= (Zj: f_’,’k(ﬂ) <zj: jjk(Z)Pfk(Z)> .
k=1 k=1

Expanding this around z = 0 and comparing the coefficients for z on both side,
we obtain

P(vL"R'L)P Z

where we used the relations AP; = P,A = A;P; and (5.18). Adding this for
1 <j < o yields that

(5.19) Z 2

which implies that ZJ'(O) is an eigenvalue of B and that it is positive for
j=1,...,d'. By (5.7), (5.17) and (5.19) we have

’"Ux

(5.20) Ze D' P(0).

Particularly, we obtain the following proposition.

PROPOSITION 5.3.  Assume the same conditions in Proposition 5.1. Then
the Green's function Gf defined in (5.7) can be written in the form

!

a 1 a2 adt -
5.21 G? X, t) = ~76—@‘-"—/@(0)1) /(4}“,(0)Z)P 0
(521) =3 (0)

for xe R and t > 0, where /{_,»(0) is an eigenvalue of —A and i]'(O) is a positive

constant for j=1,...,¢'. Particularly, we have the pointwise estimate

a
(5.22) 101G (x, 1)] < Cr- /201§ =t/ )
i1
for xeRY t>0and 1 =0,1,2,... with a positive constant u and the L estimate

(5.23) |a§Gl*()\ < ¢y (/2U+1=1/p)

for t>0 and 1=0,1,2,..., where C = C(l) > 0.
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Since /~1j(z) and P;(z) are holomorphic at z = 0, by expanding them around
z =0, we obtain the following lemma.

LemMMmA 5.1.  Assume the same conditions in Proposition 5.1. There exist
positive constants 0, and Cy such that the estimate

2

|elél(zg tP(lf) zgi(O) (0))1P< )| <G |ezfl(0) &22/(0))1 |(|f| +|f| teco\q t)
holds for ¢ eC', |&[ <20y, t=0 and j=1,...,0'

Next, we consider the behavior of G; (&,t) as & — oo. Since ij(z) and
P;(z) are holomorphic at z = o, we have the expansions

- o0 l _ o0 1
(5.24) W)=Y grmg B =) Pux
= Z =0 z

as z — oo, where all the coeflicients are real (matrices) and ¢; o is an eigen-
value of —4 for j=1,...,0’ because E(c0) = —A4. Noting that i¢A;(i¢) is an
eigenvalue of @(&) we apply Proposition 2.2 to obtain

2T & 1
Re(ié4;(i&)) < —6 for £e R,
(Eh(i€) < 0= for ¢
where J is a positive constant. This and (5.24) imply that ¢;; < —J for
j=1,...,0'. Using (5.24) we can show the following lemma.

LEMMA 5.2.  Assume the same conditions in Proposition 5.1. There exist
positive constants N and 03 such that the relation

1+1

(lé) 15/1 (i€ lP(lf) — elig ot )t (Z Q] —k +Rj,l(f7 l))

holds for 1 =0,1,2,... and j=1,...,0', where c;o, ¢;1 and Q; (t) have the
properties stated in Proposition 5.1 with 0 replaced by 03 and R;; verifies the
estimate

|R1(&,1)] < CIE[ (1 4 1) 2el/400
for E€CL ¢ =N, t>0,1=0,1,2,... and j=1,... 0, where C = C(I) > 0.

We proceed to investigate the behavior of G (&,1) for ¢ away from 0
and oo by making use of a compensating matrix K for the corresponding
homogeneous system to (5.1).

LemMMA 5.3. Assume the same conditions in Proposition 5.1. Let 0, be a
positive constant and (&) the matrix defined in (5.2). There exists a positive
constant 04 such that the estimate
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e EHn| < g0 (14
holds for &neR', |&] =0y, || <204 and t > 0.
Proor. For ( =¢+in, &,neR!, and heC™, we put
8(¢, 1) = e®rh,
{ 4, 1) = —itv(PT + R+ iv]) " Lo(C, 1).
Then (9, ) satisfy the system
{ b, +ilAD+i(LT§ =0,
(T + R+ ivJ)g + ilvLi = 0.

We take the inner product of the first and the second equations in (5.25) with

v and %q, respectively, and add the real parts of the resulting two equations to
obtain

(5.25)

1d,, . L . 1 . .
5 11" + 12 Re(L6.9) — (45,0) ~ (/4,9)) + (€~ 1)la” + (RG,q)) =0,
where (-,-) denotes the inner product in C” or C". This implies that
d, . . . .
(5.26) %Ivl2 +e(1+ Mgl < Clal(8” + (1 + n1)1dl’).

where ¢ and C are positive constants. Let K be the compensating matrix. We
multiply the first equation in (5.25) by —i¢K, take the inner product with o
and take the real part of the resulting equation to obtain

-3 %(my, b) 4+ &* Re((KAb,9) 4+ (KL g, 0))
— né Im((KAb,d) + (KL"g,9)) = 0.
Since [KA]'+ LTL is positive definite, it holds that
Re(KAb, b) = c|b]” — |Lo|*.
By the second equation in (5.25), we have
€I Lo] < C((1+ 7 +&D))al + || |o])-
Therefore, we obtain
(527) €% (Ke0) + € < (1407 + E)Nal + bl
Now, we put

pé
1+¢&

Eg(L,1) = [8(C,1)]* — (iKD(C, 1), 8(C, 1)),
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which is equivalent to |6(¢,7)|* for small positive f. We add (5.26) to (5.27)
multiplied by (1 + &%)~ to obtain

2
Ep(C.1) + (ﬂ% - cw) (¢, o)

+ (c(1+E) = C(lnl + B(L+EN))aC, 1> <0

if f and # is small. Therefore, for any d, > 0 there exists a positive constant
d4 such that if |y|,|f] <d4 and |¢] > J,, then we have

2
52

for ¢t > 0, which yields the desired estimate. []

d
—E[;(C, l) +54

7 Eg(L 1) <

Using the constants c] o and cjl and the polynomial matrix Q;«(f) in
Lemma 5.2, we define R( (x,t) and R (x, t) by the relation (5.8). Our task
is to show that these functions satlsfy the pointwise estimate (5.9). Taking
the Fourier transform of (5.8), we obtain

a 1

RY (1) = (1) O =33 elFontanig; i (n)(ie)™,
(528) j=1 k=0

R0 = R (&0 - (1) e .

By Lemma 3.1, there exists a positive constant Js such that R (f t) and
(f t) are holomorphic in {feC1 |Im &| < Js5}. Let s, Co, N and J4 be
the constants in Lemmas 5.1, 5.1, 5.2 and 5.3, respectively, and put

. - A(0) 2,(0)
51 _mln{52,54,é5, 4C0 ,...,TCO .

Without loss of generality, we can assume that 0 <J; < N. We first evaluate
R(ll> (x,1) in the case t > 1. To this end, we consider the following three cases
according to (x,1).

Case 1. x—A¢t>0 for all i=1,...,6. By (5.16), (5.20), Lemma 5.2
and Cauchy’s integral theorem, we see that

E ) 0+idy V1 R '
(529)  2aR(x,1) = J R (& 1) de = J RV (&, 1) dé

-0 —o0+id1 V1

! / / !
= R, (x,0) + R, (x, 1) + R, (x, 1) + R, (x, 1),
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where

/

a J(>1+1(>1/\/- N

1 1 x t 1( zi tP (lf) i&(4;(0 )-Hf,l P( ))eixé dé,

M

J=1 J=o1+id /\f

! —N+i(51/\/; (XJ+[(51/\/;
1 2 (x,1) J +J
i—1 —o0+id /1 N+is Vi

I+1
( lé ! zgl zg)tP (lf) Z l€Cj.0+Cj.l)tQj,k([)(l.é)l_k>eixé df,

k=0

0 o’ —N+idy /it 0+id) [\/1 . .
Risbet) =2 J +J elEo0te; 1 (1) (i) e dé

Q

M

~,

— o+ /T N+id1 /1
and

a —01+i01 /v/1 0+id /V1 e e ~ )

R == D[ O B e e

—o0+id /1 01+idy V1

ag 1 N+i(51/\/; » s
J eEaotaig,  (n)(ic) e de

=1 k=0 ¥ —N+io/Vi

—(51+i(51/\/; N+[(51/\/; . .

—N+io VT J61+id [V

We compute each term in (5.29) as follows. By Lemma 5.1, Rg{)l(x, 1) is
estimated as

(530) |RY,(x,1)]

a oo/ Vi I d (OO0 SAE
< CoZJ s v | EHOTHOTE + e VT
—01+io1 /'t

<CZe OO [" e FO-RRIE ] 1/ 1+ e
2

< G (/204D S gmdif=l Vi,
i=1

By Lemma 5.2, R(I{)z(x, t) is estimated as
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!

0 g —N+idi/\/1 0+idy V1 e o
(5.31) |R1,2(x, 1 < Z j +J e +i&(x+cj0 )Rj.,/(é’ 1)| |dé|

j=1 7?@4’1’(5]/\/; N+i(51/\/2

o_/
< CZCQJI?&NXqu‘O[)/\/;J‘ |é|_2d6(1 + t)1+26(1/4)§3[
j= [Kl=N

< Ce~(1/2)dst e—Ot—Aitl Vi

We can express R% (x,1) as

(5.32) R<1 )3 (x, 1) ZCC/II 31 (x+¢j, ot /\/_Q 11 (0)

* sin & - °°> 01/t ey )
—d - j,00)¢ d .
) {JXJFC/:MN é é * (Jw +JN lf(lf —51/\/2)6 é

Therefore, we get
g

(5.33) IR%(x, 1) < Ce*(l/Z)éstZe—éllx—}.,vz\/\/i.
=1

By Lemma 5.3, RYL(X, f) is estimated as

(530) I £ €3BT e A

[&]=04

a1
+CZZ(1+ k C/]I —di( ’(Jri /\/-qu_SN(|é|+l/\/;)lkdé

=1 k=0

I Cefélx/\/;J (€] + l/ﬁ)leﬂhéz(l%z)*lt dé

o <|¢|<N
< Cefést e—&ﬂx—).,»t\/\/?
with a positive constant dg. Collecting the above estimates, we obtain
(5.35) IRV (x, 1) < cr1/20+2) Z o0 x—itl VT
i=1

Case 2. x—4;t<0 for all i=1,...,0. Instead of (5.29), we take the
integral pass as
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Joc—i(s] /\/;

27R (x,1) = RV (& ne™ de.

—oo—iél/\/?

Similar calculation to that in Case 1 shows that the estimate (5.35) is valid in
this case, too.
Case 3. x— ;1 <0< x— A;t for some i; and i». By (5.16) and (5.20),

we decompose R(ll) (x,1) as
1 S ! 1
(536)  2mR{(w0) = D (R ;06 0) + R 06,0) + RUA (. 1)
=1

where

(51 i d ey~ Pl Ll ~ .
R j0x01) JOWWWWM@—ﬂwwwmﬂ@wﬁ%

-5
—-N o¢)
o= +],)
!
((lf) zéi (i¢ IP lf Ze zqc,-_0+¢j,-_I)tQLk(l‘)(ié)/Ic>eixcf dé
k=0

and

</> - 51 . llg 0)+i&A](0))t ixé
Ry 5(x,1) J, + (i)'e Pi(0)e™ d¢

293

j=1 k=0

—0) N .
+ <J +J )(ié)’eﬂ@femé dé.
—N J1

We compute each term in (5.36) as follows. By Cauchy’s integral theorem,
0

N
J zéc, 0+¢ji1) IQ ( )(ié)lfkeixg” dé

N

we further decompose Ry’ ;(x,7) as
: Sy +idi /1 —01 +i61 /1 J1
&l 0 = (| +j +j
o 31 +id1 [Vt —Jy 01 +idy /1
(i&) (e A9V By (i) — OO B(0))e" de

= I]ﬁj(x, l) + Izﬁj(x, l) + 131]‘()6, l).
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We can evaluate I; ;(x,#) in the same way as in (5.30) to obtain
(5.37) I j(x,0)] < Cr~(1/DU+2) g F01 (x+4;(0)0) /i

By Lemma 5.1, L ;(x,?) is estimated as

1] 1|eié(x+ij(0)t)—i,’(0)ézt|(m + 1] 3teCo|f.\3f) |d¢|

—91+id1 /\/1
(538) |L(x0)| < COJ

-
- +31/V1 - ~
< C(l + 1)676‘ (A//(O)fzcod‘l)lj ef(x+l,-(0)t)n+ﬂ/{(0)nzt|d’7|
0

<C(1+ t)efaf(i;(opzcoal)zem\x+i,»(0)t\/ﬁ

Here, we have |x| < (|4 |+ |4,))r and 2 <e ol anidl/Vightyvi 4
e =iyl [Vig=014iy Vi, Therefore, we obtain

(5.39) b, j(x, 1) < Ce™ (e A lVT gmorb—intl/ Vi

with a positive constant d;. Similarly, we see that I3 ;(x,f) also satisfies the
estimate (5.39). Hence, we get

|R(11>l (x,0)| < Ct—(]/z)<1+z)(e—al\.x+i,<0)z|/\/? +e—(51\x—/lilt\/\/?+e—b‘llx—/l,-ztl/\/-t)
y 1, ’ - :

By Lemma 5.2 and Cauchy’s integral theorem again, we decompose R
as

!
U, (x,0)

; —N+id /i 0 +idy/Vi -N N+id /vt
R, (x,1) = J +J + J +J
o —o0+id VI IN+is Vi —N+io /vi N

~ /
<<i«f>’e"“f<ff~>fé<z’f> =D e (nic) ’k> e

k=0

=:J1,j(x, 1) + Jo (X, 7).

Since Ji j(x,t) and J, ;(x,t) are estimated in the same way as in (5.31)—(5.33)
and (5.38), respectively, we obtain

|R(11)2 (x t)| < Ceﬂsgz(eﬂs]\xﬂj.oz\/ﬁ_|_eﬂsl|x7;.,lr\/\/z _"_ef(;l\xfl,-zt\/\/f)
A -

with a positive constant ds. By Lemma 5.3, R%(x, 7) is estimated as
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|R13XI|<CZJ ] e O g

[ =6

/

+ CiZ(l + t)"effvl’Jv . &' ac
¢l <

j=1 k=0
n CJ Efle i1+ g
S <|e<N
< Ce %! < Ce—éml(e—él\x—iil /i + 6—51\«’(—)421\/\/?)
—_— —_ )

where d9 and 1y are positive constants. By collecting the above estimates, we
see that the estimate (5.35) is valid in this case, too. Therefore, (5.35) holds
for xeR! and 7> 1.

We proceed to evaluate Ré[)(x7 t) in the case 0 <z < 1. By (5.16), Lemma
5.2 and Cauchy’s integral theorem, we see that

o0 +id;

(5.40) angD(x,,):F RY (&, et dézj R (&,1)e" de

—o0 +1id

I I I
= R(().)l (x,0) + R(()’)z(x, 1)+ R((),>3(X7 1),

where
g’ N+id, o0 +id
x l =
; (J 0 +id; JNii(Sl )
1+1
lf iE2;(i€) tP (lf) Z zéc/ 0+¢j1)t Q k( )(if)lik eixé df,
k=l
o’ N+io; 0 +id; y A
R =32([L L # [y e 00 e i
j=1 o0 +id; N+id
and

; N+id } o o
R(<)7>3(x7 1) = J PO _ Ze i€cj0+¢), 1)f k(1 )(zf)l k) gixé dé.

—N +id) j=1 k=0

We compute each term in (5.40) as follows. By Lemma 5.2, Ré{>1(x, t) is
estimated as
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/

O] z “NE o ¢j 1 t+iE(x+cj 1)
[Ron(x, 0l < > + e YR 1) dé]

/':] 700ii51 Nii&]

a_/
< Czec/.ltiél(xﬂ,;lt)J |f|72df < CeFor~,
j=1 [é|=N

In view of the identity

g’ 0 :
Ré{)z (x,1) = Z egiFaleaan g (t){sgn(x +¢j o) J %dé
=

[x+cj 0t N é

+ (JN+ JOC> 5—16i(x+fj'.0f)f dé}
—w Iy ) EE(iE F 1) ’

where sgn x is the sign function of x, we have
|RYL(x, 1)] < CeFo,

Lemmas 5.1 and 5.3 imply that [e?©)| is bounded in {¢ e C';[Im & <d,}.
Therefore, we see that R((){)3(x, t) also satisfies the same estimate as above.
Hence, the estimate

(5.41) IR (x, 1)| < Ce™H

holds for xeR! and 0 <7< 1.
To summarize, we obtain the estimates

101Gy (x,1)| < Cr~ /D0 Ze’m"“’z"'/‘ﬂ for xeR', >0,
i-1

IRV (x,0)| < cr(1/20+2) Ze’él""l”"/ﬂ for xeR', 1>1,
=1

i=

|R(()l)(x7 0] < Ce for xeRL,0< 1< 1.
These together with the relation
R (x,1) = R (x.1) + 0,G{ (x.1)

imply the desired estimate (5.9). We complete the proof of Proposition
51. O

We proceed to prove Proposition 5.2. Put

E(z) = —(—2T + R+vzJ) "
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By Lemma 3.1, there exists a positive constant J; such that E(z) is holomorphic
in D5, N{o0}. Moreover, we have the expansion

>0
= k

k+2
k=0 z

as z — oo, where Qy is a real symmetric matrix because so is E(z) for
z € Dy, NR'. Therefore, we obtain the following lemma.

LEmMMaA 5.4. Assume the same conditions in Proposition 5.2. There exists
a positive constant Ny such that the estimate

-1

Zlélzk Sc|é|_2

k=0

holds for £e€C, |£| = Ny and 1 =1,2,3,... with a positive constant C, where
V(&) is the matrix defined in (5.2) and Qy is a real symmetric matrix for
k=0,1,2,....

Let / > 2 be an integer and Q) the matrix in Lemma 5.4, and define R}(x)
by the relation (5.11). We show that R}(x) verifies the pointwise estimate
(5.12). Taking the Fourier transform of (5.11), we obtain

-2
7o) - o
k=0
By Lemma 5.4 and Cauchy’s integral theorem, we see that
o0 +id;

54 Rl = | M@ea=| T R@ea

700il‘(;1

! [ !
= R, (x) + Ry, (x) + RYs(x),

—N) +id; 0 +id I-1
Ry, (x) = (J +j ) )= Y &) o e ae,
’ —o0+id) Ny +id; =0

J —N1+io; o0 +id; 1 e
RY,(x) = (J +J )(ff) e dSQ
7()Cii($1 N]ilﬁ]

and

8]

—N; +id;

T
o

Nitid I—
R(zf)3(x) = J ((i@lg/(é) _ (ié)”ka> ™ dE.
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We compute each term in (5.42) as follows. By Lemma 5.4, Rg)l(x) is
estimated as

(/) 7N1i[l§1 OOi[b] 2 i
|R2,1<x>|sc(j +] )|fe’-*f|dé

—o0 +id) Nj+io;

< Cewj & 2de < CeTor,
[E]=Ny

In view of the identity
o0 : —N; o0
(! _ AFoix Sll’lé (J J ) 51 ix¢
R, (x)=¢ sgn x ——dé+ + ————e" d&
2“’2( ) { & szvl ¢ < —w N iE(i¢ F o1) :
we obtain
IRV, (x)| < Ceor,

Since (&) is bounded in {¢ e C';|Im &| <}, Rgg(x) also satisfies the above
estimate. Therefore, the estimate

|R(21) (x)] < Ce 11X

holds for x e R'. Similarly, we can show that G,(x) and G (x) verify the
above estimate. We complete the proof of Proposition 5.2. [

6. Estimates of coupling of diffusion waves

The aim in this section is to show the following propositions. Although
the proofs given below are essentially due to [6], our results do not directly
follow from theirs.

PROPOSITION 6.1. Let 1 >0 be an integer, G{(x,t) the Green’s function
defined in (5.7), Q(u,v) the quadratic form defined in (2.10) and 0;(x,t) the self-
similar solution defined in (2.18) for i=1,...,0. We put

6. £ = [ [ o716 r= 00 - ROt v

Here and in what follows, we use the notation in (2.11), (2.12) and (2.22).  There
exists a positive constant g, such that IiU) (x,t) verifies the pointwise estimate

6.2) 1" (x,0)] < CI5|(1 + )" /AUD-1/4

g
% Z(e*(x*/l/c(1+[))2/(l‘0(1+1)) + g3 (x, 15 Ay e A0y
=1
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for xeRY, t>0 and i=1,...,0. Particularly, we have the L’ estimate
(63) 1 (1)], < CloIP (14 o) V2P
for t>0, 1 <p<oo and i=1,...,0, where C is a positive constant.

PrOPOSITION 6.2. Using the notation in Proposition 6.1, we put
t
! *
(6.4) I,(j)(x7 1) = Jo JRI TG (x =y, t — 1) Q(rili(y, 7), 1,0;(y, T))dydx.

There exists a positive constant , such that Ii(yl/?(x7 t) verifies the pointwise

estimate

(6.5) |]I(l]) (x,0)] < C\gz| |5]‘(1 + 1)7(1/2)(”2) ie—(x—i/c(1+t))2/(/lo(1+f))
k=1

forxeR, 1>0,i,j=1,...,0and i #j. Particularly, we have the L’ estimate
1 S8 —(1/2)(I+2—1

(6.6) 150, < CIal 1§11 712

for t>0,1<p<oo, i,j=1,...,0 and i #j, where C is a positive constant.

In order to prove these propositions, we first prepare fundamental lemmas,
which shall be used frequently in the following of this paper without any
comments.

LEmMMA 6.1. Suppose that oy < 1 and a0y € R'. Then we have

1 .
J T (1 41) 2dr < Ci' (14 )™ =) (1 5, log(1 4 1))
0

for t >0, where J is Kronecker’s delta and C = C(ay,0,) > 0.

Proor. Since o) < 1, it holds that

lim
t—0 l1711

t
1
(1 4 1) Rdr = :
Jo ( ) l—o

For t > 1, we see that

t t
J (1 +1) 2dr= C—I—J (1 + 1) 2de
0 1

< C+ C(1 4 p)tmommintat=a)p 5 log(1 4 1))

These imply the desired inequality. []

This lemma and standard technique yield the following one.
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LEMMA 6.2, Suppose that oy < 1, B; <1 and ay,f, € R'.  Then we have

t
J (=)™ (1 +1—7) 2Pl + 1) Pdr
0
< Czl—(oc1+/f1){(1 + t)*(0(2+min(ﬁ2s1*ﬁl))(1 + 3, 4p,1 log(1+ 1))
(1 )7 (] 46,0 Tog(14 1))

for t >0, where 0 is Kronecker’s delta and C = C(ay,02,[,5,) > 0.
LemMmA 6.3. Suppose that oy >0, oy <1 and o eR!. Then we have
t
J e M0 4 1) B dr < Cr' 2 (1 4 1)@
0
for t >0, where C = C(ay,0,03) > 0.

We proceed to prove Proposition 6.1. In view of (5.18) and (5.21), we
can express Ii([) (x,1) in the form

j

67 xn=3" !

Z Jt J = e e~ (ry=4i(1=1)* /(445 (0)(1—1))
7 o Jo R (4n2 (0)(2 - 1)) /

Ek(0)6;+1 Q(rigi(yv T)7 riei(y7 T))dydT

Moreover, by (2.18) and Proposition 2.3 we have
101 (0: + 2:0,)2 0(rii(»,7), 10,3, 7))
< Cl5:*(1 + T)—(1/2)<11+212+2)e—(yf;.,<1+f))2/(4,4,<1+1))

for yeR!, >0 and /;,,=0,1,2,.... Therefore, Proposition 6.1 follows
from the following lemma.

LeMMmA 6.4. Let | be non-negative integer, u and & positive constants, and A
and }' real constants such that ). # A'. Suppose that a function h(y,t) satisfies

the estimates
|h(y7 T>| < A(l + 7;)_1e—(y—/l’(l+r))2/(4,,(1+r))7
1008(y, 7)| < A(1 + 7)W= (140" (149
(0 + 40y — “af)h(yv )| < A1+ r)*Ze*(yfi’<1+r)>2/<4u<1+f)>,
(’JJI,(OI + }t’@y — ,uaf,)h(y,r)| <A1+ T)—(1/2)(l+4)e,(y,)~,<IH))Z/W(IH))
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for yeR' and ©>0 with a positive constant A. Then we have

t
—1/2 —(x—y—i(t—1))*/(Bu(t—7)) Al+1
(6.8) JL](Z—I) e (A= =0) g1 3, 7Yyl

0

< CA(1 + 1) VD14 (o =(r=h(1+0)*/(pt2) (140)
+ e—(x—)/(l+r))2/((4,u+a)(l+t)) + (ﬂ3/2(X, 2 /1) char S;L,)L’(-)ﬁ l))

for xeR' and t>0, where char$ 5., Is the characteristic function of
the set S; ;= {(x,t);min(Z, A" )(1+17)+ |- |1 < x <max(4,4")(1+1) —
|2 =AWt} and C= C(l,p,e,4,2") > 0.

Proor. By changing the variables x, y and u into X, y and g by the
relation

x—A1+7) - y=AMl+7)
Iy R

u

69)  x= T

a= ;
we can reduce the problem to that in the case A =0 and A’ = 1. Therefore,
we assume that 2 =0 and 2’ =1 in the following.

We first consider the case r > 4. We split the integral with respect to 7 in
(6.8) over (0,+/7), (v/1,t— /1) and (t — \/t,t) and write the respective integrals
as I1(x,t), L(x,t) and Ii(x,f). By integration by parts with respect to y and
the identity

(x=»)? (r—(+7)°

(6.10) P
B 1+1¢ (1+1)(x+ (—1)V
_(z—f)(1+f)(y+ I )

(x—(1+1)?
l1+¢ ’
we have
NG
I (x,1)] < C4 JO Ll(z _ gy D (g 4 gy

x e~ () (@ere/ (=) o= (r=(142)*/ (4u(1+)) gy, g

Vi )
<C A,—<1/2><z+2>J (1 4 7)1t (40 (e 2)(140) g,
0



270 Tatsuo IcucHr and Shuichi KAWASHIMA
Here, for any K > 1 it holds that

sup e (- (140 /((ute/2)(1+0)

0<t<V1
e/ ((4ute/2)(1+41)) for x <0,
< Qe (U=UK S /(ure/2)(14+0)  for x> 2K/T 1 4,
e K /ug=x*/(4u(1+1)) for 0 < x <2K+1+1t.

Therefore, we obtain
|]l (X, l)l < CAZ—(1/2)(l+1)—l/4e—x2/((4,u+f.)(l+t))

for xeR! and 7> 0. Similarly, we can show that

< —(1/2)(1+1)=1/4 o= (x—=(140))* /(4p+2) (1+2))

|I(x,1)| < CAt e

for xeR! and 7> 0. By the identity

6}’ = (a‘r + ay - ,ua)%) - (a‘r - :ua)zf)
and integration by parts with respect to y and 7, L(x,?) is decomposed as

) = =V O R iy

+ (l — \/})fl/ZJ. ((_ay)lef(xfy)z/@ﬂ(tfﬁ)))h(y’ \/Z)dy

Rl

t/2
+J J (1 = 7) V(=) et dnta—))
Vi JR!

X (0r + 0y — ud})h(y, 7)dydz

Vi
- J J (t— r)*‘/2e7<«*ﬂ'>2/<4ﬂ<f*f>>a;(af + 0, — pud*)h(y, t)dyde
/2 JR!

=:Iy(x,t) + I5(x, 1) + Is(x,8) + L (x, 1),
where we used the equality
(0e + u02) (1 — 1) PG aute=0)y _ g

By the identity (6.10), I4(x,?) is estimated as
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\Li(x,1)| < CA(t — T)—I/Z(l + 1')_1 J o= ()2 /(4n(1=1) o= (y=(142))*/ (4u(1+7)) dy
R! t=t—V1

< CA( 40 2(1 4 1 — /i) VDD (e (10 +VD da(140)

< CAr/2U+2) o= (=(1+0)/(4ue+e) (140).

Similarly, we have

|15(x, l)‘ < CAI_(1/2>(Z+1)_1/4€_x2/((4’u+£>(1+t)).
Is(x,t) and I;(x,t) are estimated as

|I6(x7 t)| + |I7()C, t)|

t/2

SCAJ J (1 — 1)~ AN 4 1)72
Rl

Vi
w &= ) (ate/2) (=) g~ (r=(140)*/ @u(149) g, 1

—V/1

+CAJ J (t—7) (1 4 7)" 1209
R]

/2

o () /(=) o= (= (140)*/(4u(149) g 17

=i

t
< C A2 J (1 4+ 1) 2 () (a2 (141) g

Vi
=: CAr VAT [ (x, 7).
We evaluate the last integral Ig(x,¢) in the following way.
Case 1. x </t
-1
I(x 1) < J (1 + 1) 2dire (= 0V (pse/2)(140)
Vi
< Cr1Ae—/(ua) [ (1+0)
Case 2. x>1+1— /1.
—/1 5
L(x, 1) < J (1+ 7)73/2dref(,x—(l+t)+\/;) J((4ute/2)(141))
Vi

< Cr VA= (e=(140)/(4ute)(140)

Case 3. Vt<x<1+4+t—+/t. For any K > 1,



272 Tatsuo IcucHr and Shuichi KAWASHIMA

1—\/1
Iy(x, 1) = J¢ (1 4 1) e (e /(ute/2(140) charfz; K(1 + 1) < x}dt
t

-1
+ J (1+ ‘L')_3/2670‘7(1+T>>2/((4ﬂ+8/2)(1+l>) char{r; K(1 4+ 1) > x}dz
Vi

-1
< J (1 + 1) Y2 e (11K (/) (140)
Vi
+1<3/2)f3/2j o7/ ((4ute/2)(140) 4o
Rl

< Cr e U-VK S Wt/ (150) o CR32(1 4 V21 41 4 x2) 3,
which yields that

Iy(x, 1) < Cr VA (e /(Gure)(140) 932 (x, ;0) char Sp 1 (x, 7).

Therefore, (6.7) holds for x e R! and ¢ > 4.
Next, we consider the case 0 <t <4. We denotes the left hand side of
(6.8) by I(x,f). By integration by parts with respect to y and (6.10), we have

I(x,1) < C4 JI

J (=2 (1 4 o) (120
0JR!

x & () /(s /2)(=0) g~ (r=(140)*/u(149) g, g

t
< CA(1 + l)—l/ZJ (t— T)—1/2(1 + T)—(1/2)(1+1)e—(x—(l+f))2/((4ﬂ+8/2)(1+f)) dr
0

< C e /(o) (1+0)

Therefore, we complete the proof of Lemma 6.4. []

By (2.18), Proposition 2.3 and the relation

-4+1) (=41 +7)’

1+7 1+7
2 di+ S (=)
1+T<y— 3 (1+‘L’)>+2(1+‘[),

we see that if i # j, then there exists a positive constant o such that

10,00ri0,(y, 1), 110y, )|

< CIo| 8o e 010D B (142 o= (r—2s(140) By (142)
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holds for yeR!, t>0 and /=0,1,2,.... Therefore, in order to prove
Proposition 6.2, it is sufficient to show the following lemma.

LEMMA 6.5. Let [ be non-negative integer, o. and p positive constants and A
and J. real constants. There exists a positive constant y, such that if a function
h(y,7) satisfies the estimate

Ih(y, )| + [0 h(y, )| < Ae™ e (#0500 (wu(i0)

for yeR' and © >0 with a positive constant A, then we have

t
—1/2 o~ (x—y—i(t—0))*/(u(t—7)) 51+1
(611) JJRI([—T) e (x—y—2(t=1))"/(ult ))ay h(y,T)dydT

0

< CA(1 + 1)~ VD) (2000 ((1+0) 4 (x4 140) g (10)y

for xe R and t >0, where C = C(l,0,p4,2,2") > 0.

Proor. We give the proof only in the case A # A'. The proof in the
case A=/’ is simpler than that of the previous case. Moreover, by chang-
ing the variables in accordance with (6.9), we can assume that 1 =0 and
A =1.

We denotes the left hand side of (6.11) by I(x,?). By integration by parts
with respect to y and (6.10), we see that

t/2
I(x,1) < CAJ J (t — 7)1/ gare=(s=3)*/ Cuult=1) = (y=(142)*/ (W47 g g
0 JR!
t
+ CAJ J (1 — 7) " eme ) Cule= D= (=) 1+ gz
/2 JR!

t
<C A,—<1/2><l+1>J e (2071 — 1)1 2em (142 u14) g
0

= CAr V2V (x, 1)
and that
t

I(x,t) < CAJ

J (r— T)*lefwef(xfy)z/<2ﬂ(fff)>ef(y7(1+r))2/(/4(1+r)> dydrt
0 JR!

< CAI](X, [).

We evaluate the integral 7;(x,7) in the following way.
Case 1. x<0.
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t
Lx,0) < | e @27t — 1) V2gee/Cul140)
0

< C(1 + 1) V2ex/Cul140)

Case 2. x>1+1t

t
Lx1) < J e~ (41205 (y _ 7)™V e (e (140)* Cul1 )
0

<C(l+ t)71/ze*("'*(1+t))2/(2/t(l+r))'

Case 3. 0<x<l1+41t

t

Li(x, 1) = J e (/27 (p — )12 (=100 /Qu(0) char{7;2(1 + 1) < x}de
0

t
+ J e (27 (¢ — 1)~V 2e (0 /Qu+0) Ghar{z; 2(1 + 1) > x}dr
0

t t
< J e—(a/2)r(t7T)fl/ZdTefo/(S,u(1+t)) +ef(1/4)(x/271)J ef(a/4)r(tir)fl/2dr
0 0

<c(1 +t)71/2(efxz/(8ﬂ(1+t)) +efo<x2/(8(1+t))).

We now complete the proof of Lemma 6.5. []

7. Decay estimates of energy and L7 norms

We shall show the decay estimates stated in Theorems 2.3, 2.4 and 2.5.
Throughout this section, we assume that system (1.1) admits an entropy
function and that the symmetric system (2.1) satisfies the stability condition
at (,0). Let Gi(x,7) and G{(x,t) be the corresponding Green’s functions
defined in (5.3) and (5.7). The following lemmas are simple consequences of
Propositions 5.1 and 5.3.

LemMA 7.1.  Let | be a non-negative integer, 1 <p < oo and ue WHrnL!.
Then we have the estimate

101G (1) 5 ul, < (e [lull, , + (14 1)~ V2D )
for t >0, where J is a positive constant and C = C(I, p) > 0.

Proor. By Proposition 5.1, we can express 6iG1(t) *U as

I d

LG (1) v u =" e (0 u(- + ¢jo) + RY (1) .

k=0 j=1
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This and Young’s inequality imply that

101G (1) % ul, < ZZé‘“’IQ (1 ul, + |RY (1) ul,

k=0 j=

!
Z —ot lth k al k |)+ C(l +t)*(1/2)<1+1*1/17)|u|l7
k=0

which gives the desired estimate. []
LEmMMA 7.2. Let [ be a non-negative integer, 1 <p < oo and a« <1/2.
Suppose that a function H(x,t) satisfies the estimates
A(D), k=0,1,...,1+1,
0L (2)], < A)(1 4012021
<

A(t)(l + l‘)70(7(1/2)</+171/]7)7
—a—1/2

for 0 <t <t with a non-negative valued function A(t). Then we have the
estimate

< CA®)(1 + o) WD 1, log(1 + 1))
P

t
Jdﬂa@—ﬂ*ﬂumr
0

for t >0, where 0 is Kronecker’s delta and C = C(I,p,o) > 0.

Proor. By Proposition 5.1, we have

t
J MGy (1 — 1) % H(z)dx
0 »

I+1 o'
< eI (1 — 1)l |0y T H ()| d

1 T t
3 J e, (1 — )| |0 F H ()| de
=1

/2
+J0 RS (=), [H(0), dr+J R (1 — )|, 0L H ()] .

This together with (5.10) and Lemmas 6.2 and 6.3 gives the desired
estimate. [
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Similarly, we can show the following lemmas.

LemmA 7.3.  Let [ be a non-negative integer, 1 <p < oo and ue WH? N L',
Then we have the estimate

101(Gy = G}) (1) = ul, < Ce™ull,, + (14 072w
for t >0, where J is a positive constant and C = C(I, p) > 0.

LemMA 7.4. Let | be a non-negative integer, 1 <p < oo and a« <1/2.
Suppose that a function H(x,t) satisfies the estimates

|O5H(7)|, < A()  k=0,1,....1+]1,
0LH (7)], + [0 H ()], < A(r)(1 4 ¢) > /A01P),
|H(7)|, < A()(1+7) 12

for 0 <t <t with a non-negative valued function A(t). Then we have the
estimate

rayl(cl — G))(t— 1)+ H(t)dt
0 P

< CA()r VAR (1 47 12(1 4+ log(1 + 1))
for t >0, where C = C(I,p,o) > 0.

Lemma 7.5. Let | be a non-negative integer, 1 <p,r,q <o, 1/q+
l/r—1=1/p and ue LY. Then we have the estimate

|0LGr (1) * ul, < Ct*<1/2)<l“*1/’>|u|q
for t >0, where C = C(l,p,q,r) > 0.

LEmMA 7.6. Let [ be a non-negative integer, 1 <p < oo and a < 1/2.
Suppose that a function H(x,t) satisfies the estimates

|H(7)|, < A1+ 7)1,
0LH (7)], < A()(1 + o) (1/202-1p)

for 0 <t <t with a non-negative valued function A(t). Then we have the
estimate

< CA(Z)I_(I/Z)(Z“_I/”)(I + t)—a

t
UO O G (1 — 1) H()de
P

for t >0, where C = C(I,p,o) > 0.
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Let (w,q) be a solution to (1.1) and (1.2) satisfying (4.2) and (4.3), and
(v,q) the corresponding solution to (2.9). By (5.4), derivatives of (v,q) can be
expressed as

dLv(r) = 3LGy (1) * v(0)
(7.1) + J; TGy (t — )+ (Hy (1) + LT Gy * Ha(7))dfx,
dLq(t) = vGy x (L0 0(r)) — 01.Gy * Ha ().
In addition to (4.4)-(4.7), we put
!
Mi(1) = (M2 (1) + My o (1)).
k=0

ProprosiTION 7.1.  Assume the same conditions in Theorem 2.2. Let
s>3 be an integer, 1 <p < oo and (w,q) a solution to the initial value
problem (1.1) and (1.2) satisfying (4.2) and (4.3). There exist positive
constants ¢4 = c14(,s), Cyy = Cy(w,s) and Cyp = Cip(w, s, p) such that if
N3(T) + M|(T) < ci4, then the solution verifies the estimates

{Ns(T) + M, 5(T) < Cu([[wo — ||, + [wo — Wl;),
M p(T) < Cia([[wo = Wl , + [lwo — Wl + [wo — Wl;)

for 1=0,1,... 5 —2.

ProoOF. In view of Proposition 4.1 and (2.8), it is sufficient to show that
the estimate

(72) 0w, < €1+ 0 PO o)), +10(0)],
+ (Mo(6) + Ni(0) (Mi(1) + Nia(1))}

holds for 0 <¢t< T and /=0,1,...,5s—2. To this end, we evaluate the right
hand side of the first equation in (7.1). By (2.10), Lemma 4.1, Proposition
5.2 and Sobolev’s inequality, we see that

(1.3)  [kH ()],

< C(jo(0)y, + lg(@ ) (1050(T) ], + 051

< C(1+ 1) WPETIPN (ag o (1) + NI () (Mi 2 (7) + N, o (0)),
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(7.4) 105Gy * Ho(7)|, + 05" Go x Ha(7)], < CloSHa (7)),
< C(Iv()]y, + la@ 1) (165 0(x) ], + 105 (1))
< C(1+ 1) PESTID (g o, (1) + N (Mii1.2(1) + N, (7))
and that
(7.5) |05 H\(1)], + 165 Gy + Ha(7)],
< C(jo(0), + lg@ )WL oDl + 1652 q(0)]),)

< C(1+ 1) VR (4 0, () + N ()N (0):
By these estimates and the interpolation inequality My »,(7) < My (1) +
My, (1), we see that all the hypotheses of Lemma 7.2 are fulfilled with o« = 0,
H=H + LTG2 x H, and A(l) = C(M()(l) + Nl(l))(Ml(l) + N[+2(l)). There-
fore, the desired estimate (7.2) follows from Lemmas 7.1 and 7.2. The proof
is complete. []

By this Proposition 7.1, we obtain the decay estimates for w stated in
Theorem 2.3.

Next, we investigate decay properties for g. Note that we have the decay
estimate for the energy norm of ¢ because of the above argument. In view of
Proposition 5.1, we define a function Vi, (x, ) by

Vi (£) = R{TV(0) % 0(0) + J; 012Gy (1 — 1) % (Hy (2) + LT Gy = Ha(7))dx.

Then, by the first equation in (7.1), we have
I a
O ol 1) = 0 e Qi ()0 T u(x + €01, 0) + Viga (x, 1),
1

k=0 j=

Therefore, by the second equation in (7.1) and Proposition 5.2, ¢ and its
derivatives can be expressed as

(76) q(l) =Gy * (LV](I)) — Gy % Hz(l)
+ vie”f‘”(Gz * (LQj1(H)o(- + ¢j0t,0)
=

+ Gox x (LQj 00(- + ¢,0t,0)))
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and

(7.7)  0lq(t) =vGy * (LViy1 (1)) — 0.Gy % Ha(t)

+ vZeC/’-”(Gz * (LQj 111 ()v(- + ¢j.01,0))
=1

+ Gox * (LQj 1()v(- + ¢,0t,0)))

-1 o
+ VZ Ze"fv"(QOLQ_jyk(t)ﬁi*l*ka +¢j0t,0)

k=0 j=1
+ RY 4 (L k()0 u(- + ¢.01,0)))
for /=1,2,.... Hence, we obtain

l4(1)], < Cle (1 +0)|v(0)], + [Vi(1)], + G2+ Ha(1)] ),
04(0)], < e (14 0) M o(O)ll , + Vi (1)], +|05G2 * Ha(0)],)-

Moreover, by the argument used in the proof of Proposition 7.1 and the decay
estimates obtained above, we see that

Vi1 (1), < CE(1 4 1) 1/202710)

for 1<p<o and /=0,1,...,5s—3, where E;=|wy— W+ |wo— .
These estimates, (7.4) and the decay estimates obtained above yield the L7
decay estimate for ¢ stated in Theorem 2.3. We complete the proof of
Theorem 2.3. []

We proceed to give the L? decay estimate for the function w defined by
(2.19). We first note that the approximate function 6(x,¢) defined in (2.18)
satisfies the parabolic system

0, + A0x+ > PiO(ri0;,ri0;), = BOs,

i=1

because 6; is a self-similar solution of (2.15) (see also (2.13) and (5.5)).
Therefore, by using the Green’s function Gj(x,¢) defined in (5.7), 6 and its
derivatives can be expressed as

aL0(t) = .Gy (1) x 0(0) — Z J; T G (t — 1) * PiQ(rif(1), 1,0(7))dx.
i=1

By this expression, (7.1) and the relations w(x,t) = v(x,t) — 6(x,¢) and H; =
H; — Q(v,v), we obtain
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(7.8)  dlw(r) = 3LG; (1) * w(0) + 0L(Gy — G})(¢) * v(0)

a

-, oGl (1= 1) % (Qo(7), 0(x)) = Y PiQ(ribi(x), rifi(7)))d

i=1

+ ;a;“(c;l — G)(t—1) % Q(v(x), v(1))dr

t
+ | 3Gy (1= 1) % (H3(x) + LT Gy % Hy(7))dz
0

= 0(t) + L(t) — L(t) + Iy(t) + Is(2).

Note that &; in (2.16) was chosen so that
J o(x,0)dx =0.
Rl
In view of this, we define a function @(x) by
(7.9) (x) = J oy, 0)dy.
-0

Then we have

(7.10) ax(x) = o(x,0)
and
1) o= o0dy [ om0t = 000y~ | o300
Now, we put
(7.12) M () = sup (1+0) P10l 1))
0<t<rt

LEmMmaA 7.7. Assume the same conditions in Theorem 2.4. Then the
Sfunction w(x,t) defined by (2.19) verifies the estimates

(713) |aiw(1)|p < th(1/2)(l+171/p)71/4|d~)|2 + CEStf(l/Z)(l+lfl/p)fl/4
4 Cr1/2+1-1/p)—
X {E3(My,2,(t) + Mi, (1)) + Es(Mo,2,,(2) + Mo, (1))}

for t>0,2<p<oo, y<1/2 and 1 =0,1,...,5—3, and
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(7.14)  [0lo(2)|, < Cr-WAEIDZ2 (1@ + [[0(0)], ,)
+ CESZ—(1/2)(1+1—1/P)—1/4 + Ccr(1/20+1=1/p)=y
X {E3(Mi,2,(1) + My o0,(1)) + Es(Mo,2,5(1) + Mo, 0,5 (1))}

for t>0, 1<p<oo, y<1/2 and [ =0,1,...,5—3.

ProOF. We evaluate each term in the right hand side of (7.8) as follows.
By (7.10) and Lemma 7.5, I;(x,¢) is estimated as

IL(0)], = 10" G} (1) x @, < Crr A== g
for >0 and 2 <p < oo, and
|Il(t)|p < Clﬁ(l/Z)(/lef1/17)71/2|C~O|1
for t>0and 1 <p < oo. By Lemma 7.3, L(x,t) is estimated as
L), < e PEEUD(0(0)]; + [[0(0)]];,,)

fort>0and 1 <p < oo. Since Q(v,v) has quadratic non-linearity, by Lemma
4.1 and the results of Theorem 2.3, we have

05 0(u(2), v(2))], < Clo@)]5,|050(e)ly, < CE(1 4 7)~ 12O

for t>0 and k=0,1,...,5s—2. This implies that all the hypotheses of
Lemma 7.4 are fulfilled with o =0, H = Q(v,v) and A(f) = CE;. Therefore,
we obtain

|Li(1)], < CE,~ /202710 (1 4 log(1 + 1))

fort>0and 1 <p <oo. By (2.10), Lemma 4.1 and Sobolev’s inequality, we
see that

0¥ H3 ()|, < Clg(7)],,10%q(0)]l,
+ C(lv(D)l + 19()] ) ([o(D)y, + 1a()l5)
x (|0%0(0)]5, + 195g(D)])
< CE,(1 4 7) 1/2®H3-1p)

for t>0, 1<p<oo and k=0,1,...,5—2. Moreover, by (7.4) and the
results of Theorem 2.3, we have

105G+ Ha(7)], + 05 Ga % Ha(7)], < CE(1+7)/203710)
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for t>0, 1 <p<o and k=0,1,...,5s—3. These estimates imply that all
the hypotheses of Lemma 7.2 are fulfilled with o« = 1/2, H = H3 + L7 G, x H,
and A(t) = CE,. Therefore, we obtain

|I5(1)|, < CEg¢ (/22710 (1 4 log(1 + 1))
fort>0and 1 <p < co. It remains to estimate I3(x,f). We decompose it as

(7.15) L(r) = 20: J[ TG (1 — 1) * (I — P)Q(ribi(7), ri0i(2)))dt

i=1 70

+ Z JI 0i+l G (t—1)* Q(rit;(z),r;0;(7))dr

i#j 70
+ J; LG (1 — 1) % Q(0(7) + v(7), 0(1))dr

=: 51 (t) + L2(7) + I,3(2).
By Propositions 6.1 and 6.2, we have
{|I3,1(’)|p < CEs(1 +[)7(1/2)(l+171/p)71/4,
|]3,2(Z)|p < CE3(1+ t)*(l/Z)(1+2*1/p)

for t>0and 1 <p < oo. By Lemma 4.1, (7.12), the results of Theorem 2.3
and the estimate

(7.16) 0L0(r)|, < CE3(1+1)’<1/2)<’“*1/1’)

I,,
for t>0, 1<p<oo and /=0,1,2,..., which comes from (2.18) and Prop-
osition 2.3, we see that

1050(0() + v(1), (1)),
< C{(10(0)]5, + [o(1) ) |0k (T) 5, + (1050(T)]5, + |050(T) |5 |0(T) ] }
< C(1 4 1) WAEZUD= (B o, (2) 4+ EsMo 2p.4(7))

for t>0, | <p<oo and k=0,1,...,5s—2. Therefore, by Lemma 7.6 we
obtain

|13,5(1)], < Co WU (B M, o, o (7) + EsMo,2p,5(7))

for t>0and 1 <p < 0. Collecting the above estimates and using the inter-
polation inequality My 5, () < My 2 ,(t) + My, » ,(t), we obtain the desired
estimates (7.13) and (7.14). We complete the proof of Lemma 7.7. []

Here, by Proposition 2.3 it holds that
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X
J H(y,O)dy’ < CEze™/40) for x <0,
(7.17) -

o
J 0(y, O)dy‘ < CEze /() for x >0,

X

where u is a positive constant. By (7.11), (7.17) and (2.8), the L? norm of @&
is estimated as

(7.18) @], < C(Wol, + E3)

for 1 < p < oo, where W) is the function defined by (2.20). Moreover, Theo-
rem 2.3 and (7.16) imply that the estimate

(7.19) 0r0(1)], < [00(1)], +10:0(1),

b
< C(Es + [lwo — wl|; ,)(1 + [)7(1/2)(/4*171/17)

holds for t >0, 1 <p <o and /=0,1,...,5s —2. Using this, the estimates in
Lemma 7.7 with y = 1/4 and (7.18), we obtain the decay estimates for «w stated
in Theorem 2.4, provided that Ej is suitable small. This complete the proof
of Theorem 2.4. []

Finally, we also assume the condition (2.21). From (2.21), (5.15), (5.18)
and the relation Pir; =r; for i=1,...,0, it follows that

Py (0) O(riui, riu;) = 0 for u; e R™,

where k=1,...,n;, i,j=1,...,0 and i #j. Therefore, by (6.1) and (6.7) we
see that the integral 3 |(x, ) is identically zero. Hence, in place of (7.13) and
(7.14) we obtain the estimate

|01 (1)], < e WA () 4 10(0)]], )
4 CESI‘(1/2><I+1_1/”)‘1/2(1 +log(1+ 1) + - (1/D+1=1/p) =
X {E3(Mi2,,(1) + My, 0 (1) + Es(Mo,2,5(t) + Mo, o 5(2)) }

fort>0,1<p<oo,y<l1/2and/=0,1,...,5— 3, which together with (7.18)
and (7.19) yields the decay estimate stated in Theorem 2.5, provided that Ej is
suitable small. This complete the proof of Theorem 2.5. [

8. Space-time decay estimates

In this section we shall show the pointwise decay estimates stated in
Theorems 2.6, 2.7 and 2.8. To this end, we first establish a series of lemmas.
In addition to (2.22), we use the function
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—o/2
— A1 2
(8.1) G,(x, 1,75 7) = (1 +(xt(—+f))> :
— 7T

Lemma 8.1. Suppose that f>1, §>0, 1<p<o, LeR' and ue
L'n W/?’@. Then we have

(82) J 6715|x7y7}.t|/\/1+t|u(y)|dy
R!
< Clul(1 4 ) VO Pgol=1 401 /4VTT

+ Clul gy (14 )PP Vg (x,1;.0)

for xeR' and t > 0. Particularly, we have
(8.3) j e PRI () dy < C(July + lul ) g (x, 15 2)

for xeR! and t >0, where C is a positive constant.

ProOOF. We denote by I(x,?) the left hand side of the inequality (8.2).
By splitting the integral over S| = {y e R';2|y| < V1 +t¢,(x,5;4)} and S, =
{yeR:2ly| > VI +1p,(x,1;4)}, we see that

I(x,1) < sup e—é\x—y—ir\/zx/l_ﬂj efé\x—y—iz\/Z\/l_thW(y”dy
yeSs R'

+suplu()] | e T gy
yeSy R!

< C{|u|p|e5|-/2\/1—+t|p/(p_l)e(5|x).(1+t)/4\/1_+t

+ [l gy (1 + 0" sup(1 +y2)/”/2}.
yeS

This yields the desired inequality (8.2). The proof is complete. []

Lemma 8.2, Suppose that f,0,,3=0, 6>0, 1<pg<oo, l/p+
l/q=1 and p,q > 1. Then we have

L' eIV (3,73 0), (1,73 0)dy

< C{(t—0) P A+ )P0, (x,1,7,0) + (1 — 1) Py (x, 7500, (x, 73 0)}

for xeR! and 0 <1 < t, where C is a positive constant.
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ProorF. We denote by I(x,¢) the left hand side of the above inequality.
By splitting the integral over {y e R';2|y| <|x|} and {yeR';2|y| > |x[}, we
see that

I(x,1) < e MV j| ST e (i 00y
yI<|x

+ CJ e oIV dygg (x,7;0)y, (x,750)
[[>]xl/2
< e P VET lgy (- 7 0)),

+ Cle Y gy (x,7:0), (x, 73 0).
This yields the desired inequality. The proof is complete. []
Similarly, we can show the following lemma.

LemMma 8.3. Suppose that p,,p, =0 and 6 > 0. Then we have

Ll e g (3,70), (3,7 0)dy < Cog, (x, 7500, (x,7; 0)
for xeR! and v >0, where C is a positive constant.

Lemma 8.4. Suppose that B,0,p3 =0, oy —f,/2 <1, oo — f,/2 < 1 and
¢>0. Then we have

t
L(r— o) (14 7)o, (3, 1,75 0) g, (%, 75 0) oy, (x, 75 0) e

< C(14 1) Vg, o (x,80)y, (x, 1;0)
for xe R and t > 0 satisfying |x| > cv/1+t, where C is a positive constant.
ProoF. We denote by I(x,¢) the left hand side of the above inequality.

In view of Y (x,7;0) <y (x,£;0) for 0 <7 <1, we see that

t
I(x,1) < Jo(t _ T)—(“I—ﬁlﬂ)(l + ,[)—(sz—ff’z/z)dl.|x|—(ﬁnJr/f’z)‘//ﬂ3 (x,1;,0)

<C(1+ [)*(“1+0‘2*1)+(ﬂ1+/32)/2(1 + Z+x2)*(ﬁ1+ﬁz)/2lpﬁ (x,1;0)

3

= C(1+0) "= Vgp o (x, 1000, (x, 1 0).
This completes the proof. []

Lemma 8.5. Suppose that oy, 00,p1,02,03,04 =0, oy +op >1/2, oy —
Pi1/2 <1, aa—p,/2 <1, r<min(ay,o,0 +oa—1/2) and ¢>0. Then we
have
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(8.4) L(l —1) (L 4+1) g5 (x, 8,7 Dgp, (3, 7 D (x, 75 1)de

{1+ 0702 g o (6,120, (x,1.2)
2=0,1

+ (1 =+ Z)i(1/2)(0(1+“2+r71/2)¢11+a27r71/2(xv N ;”)W[Lt (X, IR /1)}

for xeR" and t > 0 satisfying |x| > cv/T+1 and |x — (1 +1)| > cv/1+ 1, where

C is a positive constant.
If, in addition, ay,0n < 3/2, then we have

8:5) | (=070 0750 (g, (5,7 Dl (v e

< C(l +t)—(0£1+o(2—1)

X Z {¢ﬂ1+ﬁ2 (X, l; i)‘//ﬁg (X, t; l) + [ (X, l; l)‘ﬁ/ﬁ (X7 t; }V)}
1=0,1

for xeR'" and t >0 satisfying |x| > cv/T+1 and |x — (1 +1)| = eV/T+1.

ProoF. We denote by I(x,¢) the left hand side of the inequalities (8.4).
Then we see that

1
(8.6) I(x,1) < CJ (t—7) PR gy heD
0

x(1+t—1+(x—(141)})h?
X(1+7+(x—(1+ ‘c))2)7/32/21pﬁ3 (x,7; 1)dr.
We evaluate this integral by considering the following three cases.
Case 1. x<—cv1+¢t Since |[x—(1+471) > |x] =cV1+1t we see that

t

I(x,1) < CJ

O(Z _ T)—(“l—ﬁl/z)(l + ,[)—(“z—ﬁz/2)d‘[|x|/f’l-*-ﬁzl//ﬂ3 (x,1,0)

< C(1+ 1) Vg, (3,800, (x, 1;0).

Case 2. x > 1+4+t+cvi+t.

Since |x — (1+17) = |x—(1+1)] =
cv1+1t, we see that
t
I(x,0) < CJ (r— T)—(oq—/f]ﬂ)(l + r)_(az_ﬂZ/z)dﬂx —(1+ Z)|ﬂ’+ﬂzzﬁﬂ}(x, 1)
0 E

< C(1+0) "2 Vg, (x 6y (x,1:1).
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Case 3. ¢/l1+t<x<l+t—cy1I+t We split the integral in (8.4)
over {t€(0,#);2|x — (1 +7)| > min(x,1 + 7 —x)}, {r€(0,£/2);2]lx — (1 +7)| <
min(x, 1 +7—x)} and {z € (¢/2,1);2|x — (1 + 7)| < min(x, 1 + ¢ — x)}, and write
the respective integrals as I1(x,?), L(x,t) and L(x, ). By the same way as in
Cases 1 and 2, I;(x,t) is estimated as

L(x,0) < COL 1) 0D N " g (6 15 AW, (3, 85 4).
=0, 1

Note that if 2|x — (1 4+ 7)| < min(x,1 + 7 — x), then we have %x <l+7< %x
and 1(1+1—x) <t—1<3(1+¢—x). Therefore, Lr(x,t) is estimated as
L(x,)) < CA+0)"(1 41— x) P20~ haf2)
(1/2) min(x, 14+1—x)
xj (41— x4 p2) 2 (x + p2) P ay.
0

Since 2(a; —r) =0, 200 >0 and 2(o; —r) + 20 > 1, there exist p,q e [l, 0]
such that 2(a; —r) —1/p >0, 200 —1/¢ >0 and 1/p+1/g=1. Using these
p and ¢, we further evaluate L(x,?) as

L(x,1) < C(1+ 1) (141 — x)" 17 A/270) ~amho/2)

(1/2)(141-x) i 1/p
X J (1+t—x+y2)7(/)pﬂ‘dy
0

(1/2)x 1/q
y J (x + y2) (112482 gy,

0
<C(l+0)"1+¢t— x)*(ocl7r)+1/(2p)x—o<z+]/(2q)
< C(l + t)_r(x_(“‘”l—"—lﬂ) + (1 i x)—(oc1+ocz—r—l/2))

< C(l + [)*(1/2)(0¢1+‘12+"*1/2) Z (ﬂa|+a27r71/2(x; t; )")
A=0,1

< C(l + [)*(1/2)(ﬁ1+0€2+"*1/2) Z wazlJrocgfrfl/Z(xﬂ t; )“)l//ﬁ4(x7 t; ;“)
4=0,1

Similarly, we can show that I3(x, ) is estimated as

Lx,0) < C(L4 o) W2 N =g 16 85 20y (3, 1. 2).
7=0, 1

Collecting the above estimates we obtain (8.4).
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If oy,00 < 3/2, then we can take r = oy + o —% and the estimate (8.5)
follows. The proof is complete. []

LEmMA 8.6, Suppose that f,,f, >0, a; > 0 and ay, 2 € R'.  Then we have

t
J e T (1 1) gy (x, 75 Ay, (x, 13 A)dT < C(1+ 1) 20y (x, 15 )W, (x, 1 2)
. 2

for xeR! and t >0, where C is a positive constant.

Proor. It is sufficient to show the estimate in the cases A =0 and 1 = 1.

If A =0, then the desired estimate follows from Lemma 6.3 because we have
9, (x,7;0) < ¢p (x,1,0) and g (x,7;0) < Y (x,£0) for 0 <7 <1
Now, we assume that A = 1 and consider the following two cases according
to (x,7). We denote by I(x,7) the left hand side of the above inequality.
Case 1. |x—(1+7)|<V1+1t
t
I(x,0)< | e (14 0)de< C(1+0)"
0
< C(L41)2gp (x, 6 D)y, (x, 151).

x—(1+17)]=+v1+¢t We split the integral over {r e (0,7);
2t—1| < |x—=(14+1)|} and {re(0,¢);2|t—1| > |x— (1 +¢)|}, and write the
respective integrals as [(x,f) and L(x,7). If 2|t —1] <|x— (1 +¢)|, then we

have |x — (1+17)| > %\x — (1 +1¢)]. Therefore, I;(x,t) is estimated as

t
I](x,l‘) < CJ
0

Case 2.

e 7 (1 + 1) 2 degy (x, 1 )y (x,151)

< C(L+1)"2gp (x, 6 1)y (x, 1;1).

If 2|t—1|>|x—(1+1¢)|, then we have |x— (1+1¢)| <2(1+1¢). Therefore,
L(x,t) is estimated as

0
L(x, 1) < CJ e~ dr < Celx—(1+01/2
(1/2)lx=(1+1)]
< C(1+ (x = (1+0)}) =2y, (x 1)

< C(L+1) g (x, )i, (x,11).

Collecting the above estimates we obtain the desired one. The proof is
complete. []

LemMA 8.7. Suppose that oy <1, 0p <3/2, i > 1, p5,63 >0, >0 and
JeR'. Then we have
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t
J, ], (1= o1 e oINS g (3 2y (. e

< C(L+0) 7 gy (6, (5, 152) + gy, (5. :.2)}
for xe R and t >0, where C is a positive constant.

Proor. Noting that oy < 3/2, we take p,q € (1, c0) such thatay — 1/2g < 1

and 1/p+1/g=1. We denote by I(x,¢) the left hand side of the above
inequality and evaluate it by considering the following two cases.

Case 1. |x—A(1+1¢)|<+v1+¢ By Hoélder’s inequality, we see that

JRI e ORIV (1 A (3,75 A)dy

< eV gy (15 2)], = Ct— )P (1 4 1) /9

which together with Lemma 4.1 implies that

7

t

I(x,1) < CJ

(1 — 7)1/ (1 4 )~ (a1/20) gy
0

< C(l + t),(aH,aZ,:;/z) < C(l + Z‘)7(9<1+06273/2)(0ﬁ3 (x7 l, j.)
Case 2. |x—A(1+1¢)|>+v1++¢ By Lemma 8.2, we see that

| R X

= JR‘ e—élx—z(1+z)—y\/\/ﬁ(pﬁ] (3,7 O)W/;Z(y, v 0)dy
< C{(l‘ — 1—)1/(217>(1 + T)l/(2q)¢ﬁ3(x - A(l + l‘), Z,T;O)

+(t=1)"py (x = A1+ 1), 7 0)y, (x — (1 + 1), 7;0)},
which together with Lemma 8.4 implies that

I(x,1) < CJ

0

t

(t— ) () g ) VR G (v — 4(1 + 1), 1,7;0)d

t
+ CJ (1— T)—(d1—1/2)(1 +1)7®
0

x g, (x = A(1 + 1), 7 0)¢hp, (x — A(1 + 1), 73 0)dT

< C<1 + [)7(11+a273/2){(oﬁ3 (X, Z; }“) + ¢ﬁ1 <x> t; j’)wﬁz()ﬁ Z; l)}
This completes the proof. []
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Lemma 8.8. Suppose that o) <1, an <3/2, f; =1 p5,035,4 =0, 6 >0,
2,2 eRY and ). # 2. Then we have

t
J, [ (1= e N 2 (3.

< C(l + t)7<0(1+0(273/2)
X Z {¢ﬁ3(xa 5 l) + Pp, (xv 5 l)wﬁz(xa 5 l) + ¢ <x> 5 l)l///ﬁ(xv 5 l)}
=2,
for xeR! and t >0, where C is a positive constant.

Proor. By changing the variables x and y into X and y in accordance
with (6.9), we can assume that A =0 and 2’ =1. Noting that o, < 3/2, we
take p,q e (1,00) such that ap —1/2g <1 and 1/p+1/g=1. We denote by
I(x,t) the left hand side of the above inequality and evaluate it by considering
the following three cases.

Case 1. |x|] <+v1++¢ By the similar calculation to that of Case | in
the proof of Lemma 8.7, we see that

H(x,0)] < C(1+0)" "7, (x,1,0).
Case 2. |x—(1+17)|<+1+¢ Similarly, we have
H(x, )] < C(+ 1) gy (x,11),
Case 3. |x|=v1+tand [x—(1+1¢)]>+1+¢ By Lemma 8.2, we see
that

Ll e NIV (p, 1 Dy, (3,7 )dy

= JRI e—é\x—(l+f)—y|/\/l——?(pﬁl (y7 T O)IP/;Z(y, o O)dy

< C{t=0)"P A+ 1)1, (x,1,7:1) + (1= 1) Py (x, 75 DYy, (x,75 1)},

which together with Lemma 8.5 yields the desired estimate. The proof is
complete. []

LemMA 8.9. Suppose that 1,0 >0, 1, >0 and ay,. € R'. Then we

have

t
LkgMHm+ﬂ”f“ﬂ%umm%um@@m

< C(l + l)_%z(ﬂﬁl (x, t; )v)lpﬁz (X, t; ;»)

for xeR! and t >0, where C is a positive constant.
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Proor. By Lemma 8.3, we see that
J, & (v 2 (s 20

= JRI e—&‘x—i(]-ﬂ-‘!)_}"(pﬂl (y7 T O)IPﬂz (y7 T O)dy

< Cop (x, 73 ), (x, 75 2).
This and Lemma 8.6 give the desired estimate. The proof is complete. []

Now, let @g(x, 1) the function defined in (2.22). By Lemmas 8.3, 8.6-8.9,
we can easily obtain the following four lemmas.

LemMa 8.10.  Suppose that = (B,0,), P1,P» =0 and 6 >0. Then we
have

J e (v, t)dy < Cdg(x, 1)
Rl

for xeR! and t >0, where C is a positive constant.

Lemma 8.11. Suppose that = (B,5,), Bi,f, =0, a1 >0 and o e R'.
Then we have

t
J e (1 4 1) 2 Dp(x — At — 1), 7)dT < C(1 + 1) " Dy(x, 1)
0

for xeRY, t>0 and i=1,...,0, where C is a positive constant.

Lemma 8.12. Suppose that f= (f1,0,), i =1, =0, o1 <1, ap <3/2
and 6 > 0. Then we have

t
L JRI (t—7)" (1 + T)_“267()‘)“}’7’“"(’4)‘/‘/Eéﬁ(y, 7)dydt

< C(1+ 1) 2 @y(x, 1)
for xeRY, t>0 and i=1,... 0, where C is a positive constant.

Lemma 8.13. Suppose that = (fy,p5), B1,f> =0, 01,0 >0 and o € R'.
Then we have

t
J J e 0= (1 4 1) ey 3, T)dyd < C(1 + 1) By(x, 1)
0 JR!

for xe R and t >0, where C is a positive constant.
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In the following we assume that system (1.1) admits an entropy function
and that the symmetric system (2.1) satisfies the stability condition at (i,0).

Let Gi(x,t) and Gj(x,t) be the corresponding Green’s functions defined in
(5.3) and (5.7).

LemMma 8.14. Let | be a non-negative integer, f; =1 and u e Wﬂll% NL.
Then we have

U 0Gi(x =7, r)u(y)dy\ < Cluly + ully )10 HPEND Sy (v, 052)
i=1

=
for xeR! and t >0, where C is a positive constant.

Proor. By Proposition 5.1 and (8.3), we see that

JR] LGy (x -y, f)u(y)dy‘

! a

< 32310 ul-+ o) + | 1R (= puyuly)ldy
k=0 j=1
/ a
< Ce " (1+0) 33" |0 u(x — dit)|
k=0 i=1

L +,)7<1/2><1+1>ZJ e OV ) dy
Rl

i=1

reet | e u()ay

Rl

a

< Cllully g 1+ 0" (14 (x = 42)*) P2
i=1

+ C(Jufy + Iuml)){(l +1) DN " gy (x,1520) + (1 +x2>”1/2},
i=1
which gives the desired estimate. The proof is complete. [

LemMA 8.15. Let [ be a non-negative integer, f = (f1,5,), f1 =1, f, =0
and o < 3/2. Suppose that a function H(x,t) satisfies the estimates

{ 0K H(y,7)] < A()(1+ 1) Pp(y, 7)., k=0,1,...,0+1,
O H(y,7)| + |0 H (1) < A(0)(1+ 1) @y( v, 7)
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for yeR" and 0 <t <t with a non-negative valued function A(t). Then we

have

< CA(D)(1 + 1) VP2 p,(x 1)

t
“ oMM Gy (x — y,t — 1) H(y, 7)dydt
0 JR!

for xeR! and t >0, where C is a positive constant.

Proor. By Proposition 5.1, we have

t
[/ ], 26 = vy

! o’ /2
<> J e (0|0, (1 — 1)0 T HH(x + ¢ 0(t — 1), 7)|de

t
+ J J |R(()l)(x —y,t— r)(?}l)H(y, 7)|dydz

a

t
< CA((1 + t)l/z{ ZJ e ORI (] 4 ) Dy(x — L1 — 1), 7)d7
i=1 70

a t
+ J J r—7 - 1+7 -
S ] [0
x e ORIV g (4 B dyd
t
+J J le_(l/2)(t_r>(1 +T)7a.e—()1\x—y|¢3ﬁ(y’ ‘[)dyd‘[}.
0JR

This and Lemmas 8.11-8.13 give the desired estimate. []

Similarly, we can show the following lemmas.
LemMma 8.16.  Suppose that f = (f,,0,), b1 =1, f, >0, o < 3/2 and that a
function H(x,t) satisfies the estimate
[H(p,7)| < A(0)(1 + 1) ®y(y, 7)
for yeR! and 0 <t <t with a non-negative valued function A(t). Then we

have



294 Tatsuo IcucHr and Shuichi KAWASHIMA

t
JJ Gi(x—y,t—1)H(y,7)dydr
0 Jr!

< CA()(1+ 1) Vay(x, 1)

for xeR! and t >0, where C is a positive constant.

LemMma 8.17. Let I be a non-negative integer, f; =1 and u e W/fl“ NL'.
Then we have

Um oGy — G (x —y, t)u(y)dy‘

a

< Cljuly + fully ) P A )72 g (6 85.0)

i=1

for xe R and t >0, where C is a positive constant.

LemMma 8.18. Let [ be a non-negative integer, f = (f,5,), py =1, =0
and o < 3/2. Suppose that a function H(x,t) satisfies the estimates

{|afH<y,r>|sA<z><1+r>“@m,r), k=0,1,... 141,
05 H (p,7)] < A(1)(1+7)" P gy(y, 1)

for yeR! and 0 <t <t with a non-negative valued function A(t). Then we
have

t
J J NGy = GF)(x =y, t — ) H(y, 1)dydz| < CA()(1 + 1) /**@p(x, 1)
0 JR!

for xe R and t >0, where C is a positive constant.

LemMa 8.19. Let [ be a non-negative integer, f = (f,5,), iy =1, f, =0
and o < 3/2. Suppose that a function H(x,t) satisfies the estimates

0KH (p,7)] < A1+ 1) By (y,7)

for yeR', 0 <7<t and k=0,1, with a non-negative valued function A(1).
Then we have

t
L JRI oGy (x —y,t — 1) H(y, )dydz

< CAMP(1 4+ 07 P @y(x, 1)

for xeR! and t >0, where C is a positive constant.

Lemma 8.20. Let | be a non-negative integer, f; > 1, >0 and 1<
p < oo. Then we have

U oG (x . r>u<y>dy] < Cllul, + lul ) VDS g (x1:2)

i=1
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for xeRY and t >0 if ue Wﬂ?’wﬂL”, and

URI oGl (x —y, t)u(y)dy‘

< CZ{ Jual =+ [ual gy )~ VDY g (x5 25) g, (x, 15 20)

+ (uxly + [l g, ) VPEDUDBN g, (x 15 20))

for xeR" and t >0 ifue W NL" and u, € Wﬁ?’DO NL', where C is a positive
constant.

Proor. By Proposition 5.3, the integral can be decomposed as

JR NG (x =y, 1) Zl (x, 1),

and we have the estimates

8.7) (.0 = €0 | e an a) gy
and
(8:8) [1i(x, 0)] < € 120D j e A () dy

forxeR',t>0and i=1,...,0. (8.2) and (8.7) give the first estimate of the
lemma. In order to show the second one, we evaluate [;(x, ) by considering
the following two cases.

Case 1. |x—Z(1+17)]<1+¢ By (8.2) and (8.7), we have

[x.0)] < CrODEDOD (0] 4 Ju )y (x, 1 )
< CrORED=CO (ol ul ), (x5, 1 20, (%, 6 )
Case 2. |x—A(1+1¢)] =14+t By (8.2) and (8.8), we have
Li(x, 0)] < Cr (WD |y | o0V TH/4=db=2(1+0)|/8V T3
+ [l g, (14 1) PP (x1504)
< el + ] gy )~ VPED-0DBD g (17,

These give the desired estimate. The proof is complete. []
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We proceed to prove Theorem 2.6. Let (w,q) be a solution to (1.1) and
(1.2) obtained in Theorem 2.2, and (v,q) the corresponding solution to (2.9).
We introduce a weight function ¢, = ¢,(x) by

(8.9) ¢, (x) = e (I/mvit for xeR!, n=1,2,3,...,
and put
(8.10) v"(x, 1) = g, (x)o(x, 1), q"(x,0) = 4,(x)q(x, 7).

We multiply (2.9) by ¢, to obtain

{ v+ Avt + LTq? = (¢,H)), + 4, (Av+ LTq — Hy),
—qt + Rq" + V(Lo + Jq) = ¢,Hy + v, (Lo + Jq) + ¢,/q — 2(4,4),-

Therefore, by (5.4) derivatives of (v",¢") can be expressed as
oLv" (1) = 0LGy (1) * v"(0)

[ 0161« G0+ 176w a0

(8.11) t
+J LGy (t —7) * H](v)dk,
0
Lq" (1) = Gax % OL(vLU" (1) + 2¢,/q(1)) — 04.Ga + HY (1),
where
(8.12)

{ H} =¢,(Av+ LTq— H\) = 2LT Goxx * (¢,q) + LT Gy * (v4,(Lv + Jq)),
H! = ¢,H, +vg) (Lv+ Jq) + ¢, q.

We put
(8.13)

My = sup {(1+7) P pp(x, 1)} (100" (x,7)] + 10Lg" (x, 7).

0<t<t,xeR!

Note that we do not know a priori that sup, g ¢ﬁ(x,r)71(|8iv(x,r)|+
|0'g(x,7)|) is finite for > 0. However, M'4(¢) is finite for >0 because of
the weight function ¢,.

LemMma 8.21. Under the same assumptions in Theorem 2.6, we have
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M 5(1) < C{lp(0); + [0(0)] 5, + (B3 +n~" (1 + 1)) Mg 5(1)}

for t>0 and n=1,2,..., and

M;'y(1) < C{|U(0)|l 100,00 5, + (B3 + 07" (14 )2 My (1)

(B +n (14 E)(1 + /20D ]212 }

k=0

fort>0,1=1,....,s—2and n=1,2,..., where C is a positive constant inde-
pendent of t and n.

PrOOF. We evaluate the right hand sides of the equations in (8.11). By
Lemma 8.14, we have

URl 0,Gi(x = y, )" (v, 0)dy

< C(|o"(O)]y + (0" (0], 5 ) (1 + )"V Dy (x, 1)
< C([p(0)], + [[6(0)]];, 5, ) (1 + )" PE Dy (i, ).

By (2.10), Lemma 4.1, Sobolev’s inequality and the results of Theorem 2.3
(see also (2.8)), we see that

[H\ (x, )] < C([o(D)]., + 9(D)],)(Jo(x, D + 1g(x, 1)
< CE3(1+ 1) (Jo(x, 0)] + la(x, 1)),

[Hux(x, )] < C(lox()], + 1ax ()]0 ([o(x, ] + g (x, 1)])
< CE3(1+ 1) (Jo(x, 1)] + lq(x, 1)),

|0LH (%, 0)] < C(Jox(0)] . + lax(0)]) (10 o(x, 1)] + 107 g(x, 1))
/-2
+C (10 v(0)] + 107 a (1)) (1050(x, )] + 5 q(x, 1))
k=0

< CE3(1+ 0710 olx, )] + 107 g (x, )

-2

£ CEY (14 1) WP ok, 1) 4 [0k q(x, 1),
k=0

2<i<s-2,
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and

103 H (x, )] < Cla0)],, + s (0)],) (182005, 0)] + 183 g(x, 1))
Z(II” (o) + 103 g0k, )] + 18q(x, 1))
k=l

< CE(1+ 07105 0(x, 0] + 103 q(x. 1))

5s—3
+ CE Y (140 V29108, 1) + |08 q(x, 1))

for xeR' and 7 > 0. On the other hand, by the definition (8.9) of ¢,, we have
$4() 71016 (¥)] + 6, (x| (x) )| < Cn”!

and then

/-1
[40(x)03u(x)] < 104(4,(x)u(x)| + Cn™t Y 107 (4,(x)u(x))]
k=0

for xeR' and n,/=1,2,..., where C = C(l) > 0. Therefore, we see that
|, (xX) Hi (x, )] < CEsMG y(1)(1 + 1)~ @y, ),
|0x(¢, (X) Hi (x, )| < C(1+ 07" V) Es MY y(0) (1 + 1)y (x, 1),

-2
|0L(¢h, (x) H (x,0))] < C{E3M,"Lﬁ( )+ E(L+n )Y N (e }
k=0

x (140" W py(x 1),  2<i<s—2,
and
53
5 )| < C BB ) + 147 a2070) S s 0}
k:O
x (14 1) dy(x, 1)
for xeR', >0 and n=1,2,.... Thus, we can apply Lemma 8.15 with

o=1 and H = ¢,H, to obtain

H 0.Gi(x — 3,1 — Oo(y) Hi (7, D)y
0 JR!

< CEs(1+n7 ' )83 4(0) (1 + 1) Py (v, 1)
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and

J(: JR] 5)lc+1G1 (x =y, t —1),(y)H1(y,7)dydr

/-1

< C{E3M,'fﬁ(t) + E (1420 N M,;(,,(z)}(l + 1) D@ (x 1)
k=0

for xeR', r>0, I=1,...,5—2 and n=1,2,.... By similar evaluation,
Proposition 5.2 and Lemma 8.10, we see that [;[p 0-"'Gi(x—p,t—1)-
(Gy * (¢,Ha(-,7)))(y)dydr satisfies the same estimates as above and that

t
J J Gi(x — 3yt — 7 HZ(y, D)dyde| < Cn (1 + 1) /2B (1) g, 1
R '

0

and

t
J J 0.Gi(x — y,t — ) H} (y,7)dydr

0JR
/-1
<Cn {Mlﬂ E)Y M} }q)ﬁ X, 1)

forxeR!, r>0,/=1,...,s—1landn=1,2,.... Adding the above estimates
together, we obtain

Jo" (x, )] < CLI(0) ]y + [0(0) ] ) + (B3 + 17" (14 0) Mg (1) }(1 + 1) 2 y(x, 1)

and

0" (x,1)] < C{|U(O)1 + 00Ol o, + (B3 + 07" (14 02D agp0)

-1
+ (Ey +n Y1+ Ey)(1 + 0)1/2UD) ZMﬁ }

k=0

x (140 1N @y(x, 1)

for xeR', 1>0,7/=1,...,s—2 and n=1,2,.... Moreover, by evaluating
the right hand side of the second equation in (8.11), we see that ¢"(x, ) satisfies
the same estimates as above. This completes the proof of the lemma. [

By Lemma 8.21, for each ¢ > 0 there exists a number N(z) > 0 such that
the estimates
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Mg (1) < C([v(0)]; + [0(0)](4,))
I-

M}'y(1) < C<|U(0)|1 +1100)7, 005, + Z >
k=0

hold for /=1,...,5s—2, n> N(f) and ¢>0, provided that E; is suitable
small. These imply the estimate

M7y(1) < C(1+ E)'([o(0)]; + 0(0) 1. 5,)

for /=0,1,...,5—2, n>N(¢) and t > 0. Taking the limit as n — oo in the
above estimate and using the relation (2.8), we obtain the former estimate in
Theorem 2.6. In order to show the latter one, it is sufficient to evaluate the
right hand sides of the equations (7.6) and (7.7) by using the pointwise estimates
obtained above. We omit the details and finish the proof of Theorem 2.6. []

We proceed to prove Theorem 2.7. Let w be the function defined by
(2.19) and put

8.14) Mg, ()= sup {(1+7) VP Tey(x 1)} |0loo(x, 7)),

0<r<itxeR!
where y < 1/2. By (2.18), Proposition 2.3 and Theorem 2.6, we have
(8.15)  |ose(x, 0)| < [0L0(x,1)| + [0Lv(x, 1)
< C(Es+ (1 + E)'Epp )1+ 1) P g (x, 1)

for xeR', r>0and /=0,1,...,s—2. Therefore, M;jﬁ.y(t) is finite for 1 > 0
and /=0,1,...,5—2, and we do not have to use the weight function ¢,.

LemMma 8.22. Under the same assumptions in Theorem 2.7, we have
Mo p1/a(t) < CL(1+ E)(Es + B\ ) + EsMo 5.174(1)}
for t =0 and
-1
My g0 < C{(l + BBy + E)') ) + EsMy 514(1) + E, ]; Mkﬁﬂ,m(z)}
for t =0 and I =1,...,5s—3, where we used the notation in Theorem 2.7.
ProOF. We evaluate each integral [;(x,¢), i=1,...,5, in the right hand

side of (7.8). By (7.10), I;(x,f) can be expressed as

(8.16) Ix.0) = JRI 011G} (x — y, 0 (y)dy.
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This and Lemma 8.20 yield the estimate
(8.17)

C(‘Cbb =+ |Cb|(ﬂ]))17(1/2)(”1)71/4@[3()(, t) When 1 < ﬂl < 3/27
(Ol < 4 Claly + 1]y + |-, 0)]; + (-, 0)| ) D dy(x, 1)
when f;, > 3/2

for xeR' and 7> 0. Here, by (7.11), (7.17) and (2.20), we have |@|, <
C(IWol(p,) + E3). Moreover, it holds that |o(-,0)], < C(Jwo — W[, + E3) and
lo(-,0)[(5,) < C(lwo — |4, + E3). Therefore, we obtain

Z1) « B
5 (x,1)] < C(Es + By )i oy (x 1)
for xeR' and r>0. By Lemma 8.17, h(x,?) is estimated as

[L(x, )] < C(lwo — W], + [[wo — |

l,w,ﬁl)t7(1/2>(l+2>¢ﬂ(x’ 1)
for xeR! and 7> 0. By the results of Theorems 2.3 and 2.6, we see that
|0(v(x, 1), 0(x, 1))| < CE g, (14 1) Bp(x, 1)
and
10, 0(v(x, 1), v(x, 1))
< CO+E)E 15040 P yx0), 1<i<s—2.
Therefore, we can apply Lemma 8.18 with « =1 and H = Q(v,v) to obtain
\L(x, )| < C(1+ E) M E g (1 4+ 02 @y (x 1)
for xeR! and > 0. Similarly, we can get

|5(x, )] < C(1+ B By (14 0) V202 oy (x 1)

for x e R' and 7> 0, where ¢ is an arbitrary positive constant. It remains to
estimate I3(x, ¢), which is decomposed as (7.15). By Proposition 6.1 and 6.2,
we have

L1 (x,1)| < CE3(1+ )" WU g (1)
and
L.a2(x, )] < CEs(1+ 1)~ V20 @y (x, 1)

for xeR! and 7> 0. By the results of Theorem 2.3 and (8.14), 5 3(x,?) is
estimated as
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CEsMy 5.,(1)(1+ 1) /*7®y(x,1)  when [ =0,

-1

B0l <4 (Bt gy + S My ) (140 020001
By By J;
k=0

when 1 </ <s-2

for xeR' and 7> 0. Adding the above estimates with y = 1/4 together and
using (8.15), we obtain the desired estimates. The proof is complete. []

By Lemma 8.22, we obtain the estimate
(8.18) Myp1pa(1) < C+ B (Es + )

fort>0and /=0,1,...,5 — 3, provided that Ej is suitable small. This is just
the estimate stated in Theorem 2.7. This completes the proof of Theorem
27. O

Finally, we also assume the condition (2.21). As we mentioned in section
7, in this case the integral I3 (x,?) is identically zero. Moreover, by (8.16)
and Lemma 8.20, we obtain, in place of (8.17),

C(la|, + @5 VDD Dp(x, 1) when 1<y <2,
(0l < Cllodly + 1]y + 0(0)]; + [w(0)]4,)) MDDy (x, 1)
when f; > 2
for xeR' and > 0. Therefore, the estimate
2(2) | —
L (x, 0)| < C(Bs + Eg) )i 2Dy (x, 1)
holds for x e R! and 7> 0. Hence, in place of (8.18) we obtain

Myp,(1) < C(1+ E)™ (B + E))

fort>0and /=0,1,...,5s — 3, provided that Ej is suitable small. This is just
the estimate stated in Theorem 2.8. This completes the proof of Theorem

28. O

9. Remark of the order of time decay

The aim in this section is to show that the decay rate with respect to time
in Theorems 2.4 and 2.7 is optimal, by considering a particular hyperbolic-
elliptic coupled system of the form

v+ 2(v1v2) + g1 = 0,
(9.1) v + 2+ (0]) + q2x = 0,

—{qlxx + q1 + vy = 07

—Goxx + G2 + U2y = 0
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with the initial conditions

g —x2/4 g —(x=1)%/4
02 w0 =grme a0 = et

where J is a parameter. System (9.1) is symmetric and satisfies the stability
condition at the zero state. However, it does not satisfy the condition (2.21).
The equations for the corresponding self-similar solutions 6 = (6,0,) are of
the forms

=0 XX 5
93) { 01 = 01,
02r + 02x = 02xx~
Therefore, 6 can be written explicitly as

5 )
Oty = O e
(1) (dn(1 + 1)/

)

(9.4) (5
Or(x, 1) = — 0 e~ (e=(140)°/(4(140)
H(x, 1) TR

Now, we put @ = (w1, w) = (v; — 01,02 — 6>). Then, it holds that w(x,0) = 0.
Therefore, by Theorems 2.3 and 2.4 there exists a positive constant dy such that
if |0| <o, then we have the L? decay estimates

o). < ClS|(1 + ¢ *(1/2)(1+1*1/p)71/47
9.5) {I wo(1)], < Clof(1 +1)

|619(1)], < Clo|(1 4 1) /22D
for t>0 and / =0,1,2, where C is a positive constant. Moreover, we have

the following proposition which asserts that |w,(7)|,, does not decay faster than
(1 4—1)_3/4 as t — oo.

ProOPOSITION 9.1. Let 1 <p < o0 and ¢ > 0. There exists a positive con-
stant g depending only on & such that if 0| < dy, then we have the estimates

{ 1(1)], < Cualo] (1 + )",
C1*41 ‘(5|2(1 + l)_3/4 < |0)2(l>|,}o < C14|(5|(1 + Z)—3/4

Jor t > Ty, where Ty = To(d) >0, Ci3 = Ci3(p,e) >0 and Cy4 is an absolute
constant.

In the following we shall show this proposition. By (9.1) and (9.3), @
satisfies the system

01 = O1xx — 2((01 + 01)(02 + @2)), — qrxxxs
W + Wy = Woxx — ((61 + wl)z)x — {2xxx-
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Therefore, we can express w as

t

o1(f) = —2 JO Kinlt = 7) % (01 + 01)(02 + w2)) (x)d=
9.6) - L Kius(t — 2) % 1 (),
wy(f) = — L Ko(t — 1) % (01 + w1)*(7)dr — L Koexx (1 — 7) % g2 (7)d,

where K (x,?) and K(x, ) are the Green’s functions of the first and the second
equations in (9.3), respectively, and written as

(9.7 Ki(x,1) = (47;)1/2 e/, K>(x,1) = (47;)1/2 e~ (=1 /(41).
We decompose w;, as

(9.8) wy = wél) + a)g),

where

t
w(zl)(xv ) =— Jo Ko(t — 7) % 0, (1) *dx.

LemMA 9.1.  There exist positive constants ¢ and T such that for any
o eR!, we have

05 ()], = (1 + 1)
for t>T.
ProoE. By (9.4) and (9.7), we have

2 t
T I L R (RS ()

g~ (y=(1=1)/(4(1=1)) =/ (2(1+1)) dyd-.
Using the identity

(x—y—(t—1)° y
-7 2040

21+ - (1+7) 141 :
T 40 +1) (y_z(l+z)_(1+f)<x_(’_’)))

(x—(t=1))°

Ut -(+0)
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we see that

2 g
() _ 0 32 -1
(9.9) ' (x,t) = 6372 Jo JRl(t ) (1 +1)

2(t —1)
X (2(1+z)(1+f)(x_(’_f))_z>

« e~ QU —(140) /A=) (141)22 o~ (v—(1-0))>/ CR1+)~(14+7))) g7

52t —-1/2 -3/2
:_EL(HT) QU+ —(1+1)(x—(1-1))

o o= (=) /QO+)-(149) gy

Particularly, we have

52 t 2
(1 +1,1)| = EJ (1402201 + 1) — (1 4 7)) o1+ /QRU-(149) g
0

52 -3/2 ! 1/2 2
S 41 /J | 4 1) 21407/ C01+0) gy
8\/§7z( ) 0( )

21/4
" 81

1+0)/v2)'/?
52(1+t)_3/4 J(( )/V2) Sl/zeﬂ,z dS,
(142072

which implies the desired estimate. The proof is complete. []
LemMMA 9.2. For any e R and 1 <p < oo, we have

< PP+ 0 VP14 log(1 + 1))

J’ Kio(1 — 1) (010 (1)d
)4

0

for t >0, where C = C(p) > 0.

Proor. We denote by I(x,7) the integral in the left hand side of the
above estimate. By (9.9), we have

0 (0.9)) < CA (1) | (1497080 g
0

This together with (9.4) and (9.7) implies that

ol el [ [ a-o a0 ey

% e*(xfy)2/(8(1*7))61'2/(4(1“))e*(y*(T*S))z/(S(Hf)) dydsd-.
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Using the identity

(x=»° (y—(t—9)’°
8—1) 16(1+0)  16(1+ 1)

T e L ] (]

(x—(1=9/2)° G 5)*
8(1+ 1) 2(1+7)’

_|_

we obtain
()], < CPP (1 + 1)~ W/20=P)

trT
< J J (1= 1) 21 4 7)1 4 5) 29/ C2149) goge.
0Jo

Since

JT(I 4 5) e e/ s < C
0

for 7 > 0 with a positive constant C, we see that
t
1(r)], < CP]* (1 + z)*“/2><1*1/">J (t—1) (1 +7) de
0

< Clo) (1 + 1)~ log(1 + 1))

for t > 0. This completes the proof. [

LEmMMA 9.3. Let 1 <p < oo and ¢ > 0. There exists a positive constant
do = 0o(¢e) such that if 0| < oo, then we have

jo1()], + |57 (1)], < Clo|(1 + 1)~ /DI,

for t =0, where C = C(p,¢e) > 0.

Proor. Put

1/p)—e 2
My(1) = sup (1+7)"2C0 (g, ()], + [0 (7)],).

By (9.6), we have
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Kix(t — 7)(0,05)()dr — 2 J; K.t — 7)(010Y)(7)dz

t

(1) = —ZJ

0
t

-2 Jtle(t — 10108 + (01 + @)1 (t)dT — J K (t — 7)1 (2)d
0 0

=: 11([) + Iz(t) + 13(1) + I4(Z).

We evaluate each integral I;(f), i=1,...,4, as follows. By Proposition 6.2
and Lemma 9.2, we have

IL(0)], < CIoP(1 + )~ V2P (1 4 1og(1 + 1))

for t>0 and 1 <p < oo. ©L(f) and L(¢) are estimated as

{ (1), < C62(1 + 1)7(1/2>(271/p>7
»

/2 )
1L(1)], < JO K1t = )], (100)], + o)) (o1 (1), + |05 (2)] . )d

t
+ J/z |Kix(1 — T)|1(|9(Z)|p + |a)(l)|p)(|co1(z)\30 + |wg2)(f)|w)dr
t

t
< C"S‘f“/z)“"/”)J (t =0 V(1 + 1) ode b (1)

0

< CP|(1 + 1)"WRCUPte g (g

and

t

t/2
1), < j Kt — )] a1 (0)y 2 +j (1= 1005

t/
t
< C|5|t‘“/2><3“/1’>J (t— 1) 2(1 + 1) Pde < Clo|1/PG-1p)
0
for t>0 and 1 <p < 0. Therefore, we obtain

(9.10) w1 ()], < COI(1 + o) PV 4 ar (1))

for t>0 and 1 <p < . In view of the relation

t

t

o (1) = _J Koult — 1) % (20, +w1)w|)(r)dT—J Kovnlt — 1) # ga(0)d,
0 0

we see that a);z)(t) also satisfies the estimate in (9.10). Thus, we get the

estimate

M,(1) < CIO|(1+ M (1))
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for >0 and 1 <p < co, which yields that the estimate M,(7) < C|d| holds
for >0 and 1 <p < oo, provided that J is suitable small. This shows the
desired estimate. The proof is complete. []

Lemmas 9.1 and 9.3, and the relation (9.8) prove Proposition 9.1.

References

I.-L. Chern, Multiple-mode diffusion waves for viscous non-strictly hyperbolic conservation
laws, Comm. Math. Phys., 138 (1991), 51-61.

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of con-
servation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.
S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic
systems associated with the conservation laws, Tohoku Math. J., 40 (1988), 449-464.

S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-
elliptic coupled systems and applications to radiation hydrodynamics. Analysis of systems
of conservation laws (Aachen, 1997), 87-127, Chapman & Hall/CRC Monogr. Surv. Pure
Appl. Math., 99, Chapman & Hall/CRC, Boca Raton, FL, 1999.

S. Kawashima and S. Nishibata, A singular limit for hyperbolic-elliptic coupled systems
in radiation hydrodynamics, preprint.

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-
parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125, no. 599 (1997).
A. Matsumura, An energy method for the equations of motion of compressible viscous and
heat-conductive fluids, Univ. of Wisconsin-Madison, MRC Tech. Summary Rep. #2194
(1981).

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with
applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.
Y. Zeng, L' asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm.
Pure Appl. Math., 47 (1994), 1053-1082.

Y. Zeng, L? asymptotic behavior of solutions to hyperbolic-parabolic systems of conser-
vation laws, Arch. Math., 66 (1996), 310-319.

Tatsuo Iguchi
Department of Mathematics
Graduate School of Science and Engineering
Tokyo Institute of Technology
Tokyo, 152-8551, Japan
e-mail: iguchi@math.titech.ac.jp

Shuichi Kawashima
Graduate School of Mathematics
Kyushu University
Hakozaki, Fukuoka 812-8581, Japan
e-mail: kawashim@math. kyushu-u.ac.jp



