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ABSTRACT. We study singularities of 2-ruled hypersurfaces in Euclidian 4-space. After
defining a non-degenerate 2-ruled hypersurface we will give a necessary and sufficient
condition for such a map germ to be right-left equivalent to the cross cap x interval.
The behavior of a generic 2-ruled hypersurface map is also discussed.

1. Introduction

The study of ruled surfaces in R is a classical subject in differential
geometry and ruled hypersurfaces in higher dimensions have also been studied
by many authors. Although ruled hypersurfaces have singularities in general,
there have been very few studies of ruled hypersurfaces with singularities.
Recently Izumiya and Takeuchi [3] showed that every singularity that appears
for some generic C*-map of a surface into 3-space occurs for some generic
ruled surface in R?, and vice versa.

A 2-ruled hypersurface in R* is a one-parameter family of planes in R*.
This is a generalization of ruled surfaces in R®. In this paper, we first define
non-degenerate 2-ruled hypersurfaces in R* and give a necessary and sufficient
condition for a non-degenerate 2-ruled hypersurface germ in R* to be right-left
equivalent to the cross cap x interval (Theorem 2.5). Furthermore, we show
that the singularities of generic 2-ruled hypersurfaces are cross cap X interval
(Theorem 5.3). Since any singularity of a generic smooth map of a 3-manifold
into R* is the cross cap x interval, the singularities of generic 2-ruled hyper-
surfaces are the same as those of generic C*-maps of 3-manifolds into R*.

The paper is organized as follows. In §2 we define non-degenerate 2-
ruled hypersurfaces as an analogue of classical noncylindrical ruled surfaces.
Classical noncylindrical ruled surfaces are those whose rulings always change
directions and non-degenerate 2-ruled hypersurfaces will be defined in the same
way. Then we present the main theorem (Theorem 2.5). In §3 we briefly re-
view the properties of the classical striction curve and generalize them to non-
degenerate 2-ruled hypersurfaces. It is quite remarkable that the striction curve
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coincides with the singluarity set in our case, while the set of singular points of
a noncylindrical ruled surface is contained in its striction curve but may not co-
incide. In §4 the proof of our main theorem is completed. In §5 we discuss
generic 2-ruled hypersurfaces. We will define almost non-degenerate 2-ruled
hypersurfaces which are generic in the usual sense and are non-degenerate al-
most everywhere. We prove that the set of 2-ruled hypersurfaces whose map
germ at any point is right-left equivalent to the cross cap x interval or an im-
mersion germ contains an open and dense subset of the space of 2-ruled hy-
persurfaces.

The author would like to thank Professors Shyuichi Izumiya, Takao
Matumoto and Osamu Saeki for their advice and suggestions. He is also
deeply grateful to the referee for careful reading and helpful comments.

2. Preliminaries and statement of the main theorem

In this section we give the definition of 2-ruled hypersurfaces and state our
main theorem.
Let S° be the unit sphere of R* and 1,Jy,J> open intervals.

DEFINITION 2.1. A 2-ruled hypersurface in R* means (the image of ) a map
Fiooe I xJ1 X Jp — R* of the form

Fly.o,0)(t,u,0) = p(1) + ud(1) + ve(1),

where y: 7 —R* 0:1— S* and ¢:1 — S are smooth maps. We assume
that the dimension of the vector space <J(¢),&(¢)) spanned by J and ¢ is always
equal to 2 for any tel. We call y a base curve and two curves ¢ and ¢ di-
rector curves. The planes (u,v) — y(f) + ud(t) + ve(t) are called rulings.

We consider (y,d,¢) € C* (I, R* x S? x §?) and we regard C*(I,R*x S3 x $3)
equipped with the Whitney C®-topology as a space of 2-ruled hypersurfaces.
A non-degenerate 2-ruled hypersurface in R* satisfies a condition analogous to
a noncylindrical ruled surface in R>.

DerFINITION 2.2, A 2-ruled hypersurface £, s (2, u,v) = y(t) +uo(t) + ve(t)
is said to be non-degenerate at t € I, if the four vectors &(¢), 8'(z), &(¢) and &'(¢)
span R*, that is, if

dim<6(2),0' (1), 6(2), €' (1)) = 4.

DerFINITION 2.3. A 2-ruled hypersurface Fp, 5, (f,u,v) = y(t) + ud(t) +
ve(t) is said to be non-degenerate, if Fy, ;. (t,u,v) is globally non-degenerate,
that is, if it is non-degenerate at any ¢ € [.
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Note that the non-degeneracy condition is not generic in the usual sense.
The generic condition will be discussed in §5.

LEMMA 2.4.  The non-degeneracy does not depend on the choice of director
curves 0 and e.

PrROOF. Suppose that J, ¢, ¢ and ¢’ are linearly independent. Put

{51(t) =a(1)o(t) + b(t)e(t),
el(t) = c(t)o(r) + d(t)e(e),

where a(t), b(¢), c¢(t) and d(¢) are smooth real valued functions with a(#)d(t) —
b(t)c(t) #0. We prove that 6y, d;, & and & are linearly independent. Sup-
pose that 110; + A»¢ +/135{ + 24¢; =0 for some A1,/2,43,44 € R. Then we have
(;\,la + )QC + /13a/ + ;»4C/)5 + leb + izd + i3b/ + l4d,)8 + (130 + )»4(,’)5/ +
(Z3b + J4d)e’ = 0. Since 6, ¢', ¢ and &' are linearly independent,

Aa+ Ahe+ 13611 + }V4C/ =0,
b 4 Jod + 23" + J4d’ =0,
Aa+ Aqc =0,
A3b+ A4d =0

holds. Since ad — bc # 0, it holds that 13 = 44 = 0 by the last two equations.
Now, the first two equations become

a c A
=0.
G o) (2)
So 41 = 4, =0 holds. Hence dy, (5{, ¢ and ¢ are linearly independent. []

Recall that x e N is a singular point of a differentiable map f: N — P be-
tween manifolds if rank(df), < min{dim N,dim P}. The image of a singular
point of a ruled surface map or a 2-ruled hypersurface map will also be called
a singular point of a ruled surface or a 2-ruled hypersurface respectively.

Singular points of non-degenerate 2-ruled hypersurfaces are characterized
by the following main theorem, by using the notion of the striction curve ¢
which will be defined in the following section.

THeOREM 2.5 (Main Theorem). Let F = F, 5, be the map germ of a non-
degenerate 2-ruled hypersurface with striction curve o(t) at (to,ug, o).

(1)  The point py = F(to,up,vo) does not lie on the striction curve (i.e.,
(uo,v0) # (0,0)) if and only if the map germ F is regular at (to,uq,vo).

(2) If po lies on the striction curve (i.e., (ug,vo) = (0,0)), then the fol-
lowing two conditions are equivalent.
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(@) The striction curve o(t) is an immersion near t = t.
(b)  The map germ F at (ty,uq,vo) is right-left equivalent to the cross cap x
interval.

Here, a cross cap x interval means the map germ at the origin of the map
defined by

(1,32, x3) = (X7, X2, 3, X12)
and the right-left equivalence is defined as follows.

DeriNITION 2.6, Let f;: (N;,x;) — (P, y:), i=1,2, be C*-map germs.
We say that f; and f; are right-left equivalent if there exist diffeomorphism
germs ¢ : (N1,x1) — (N2, x3) and ¢ : (Py, y1) — (P2, y2) such that

Yofi=fro4.

3. Striction curve of a non-degenerate 2-ruled hypersurface

Before defining the striction curve for a non-degenerate 2-ruled hyper-
surface, we review the case of ruled surfaces [3]. A ruled surface in R® is (the
image of ) a map F, 4 : [ xJ — R? of the form F,.6)(t,u) = y(t) + ud(t), where
y:I —R>and 0:1 — S? are smooth maps, and I and J are open intervals.
A ruled surface F, 4 is said to be noncylindrical if 5 x 6" never vanishes. For
any noncylindrical ruled surface, its striction curve is defined as a special base
curve as follows.

Lemma 3.1 ([3], Lemmas 2.1 and 2.2). (1) Let F, ) (t,u) be a noncylin-
drical ruled surface. Then there exists a smooth curve o:1 — R> such that

Image F, 5) = Image F, 5 and a'(t)-6'(t)=0  for all tel.

The curve o(t) is called the striction curve of F, s (t,u).

(2) The striction curve of a noncylindrical ruled surface F, s (t,u) does not
depend on the choice of the base curve y.

(3) Every singular point of a noncylindrical ruled surface is contained
in the image of the striction curve . Moreover, at every singular point py =
Fis.0)(to,uo), the ruling through o(ty) of Fs) is tangent to o.

We will define the striction curve of a non-degenerate 2-ruled hypersurface
after preparing Lemmas 3.2 and 3.3.

Lemma 3.2, For any 2-ruled hypersurface I, s (t,u,v) = y(t) +ud(t) +
ve(t), we can choose director curves 0 and ¢ such that not only ||0|| = |le]| = 1,
but also 6-e=0 and 6'-e=05-¢ =0 hold.
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We say that the director curves 0 and ¢ are constrictively adapted if they
satisfy the above conditions.

Proor. We may suppose that the director curves ¢ and ¢ satisfy the con-
ditions that ||d|| =|l¢]| =1 and 6-&=0. Now, we put

{(51 (1) = (cos 0(1))d(z) + (sin O(1))e(?),
e1(t) = —(sin 0(2))0(¢) + (cos 0(¢))e(2)

for a smooth function 6(z). We see that ||01]| = |le1|| =1 and 6; -¢, =0. On
the other hand, we have

01(1) - & (1) = (=(sin 6(1))0'(1)6() + (cos 0(1)) 0" (1)
+ (cos 0(1))0"(1)e(1) + (sin 0(1))e’ (1))
- (=(5in 0(2))(2) + (cos 0(1))e(2))
=0'(1) +0'(2) - e(0).

Since 01 - &1 = 0, we have 5{ &1 +01-¢ =0. So any solution 6 of the differ-
ential equation

0'(1) +6'(2) - e(t) =0
gives a desired pair (d;,¢;) of director curves. O

Lemma 3.3, Let F s (t,u,v) = y(t) +ud(t) +-ve(t), tel, be a non-de-
generate 2-ruled hypersurface whose director curves ¢ and & are constrictively
adapted. Then, there exists a smooth curve o: 1 — R* such that

Image F, 5 ,) = Image F, ;) and o -6 =0d"-¢ =0.

Proor. Since ¢’ and &’ are linearly independent by the non-degeneracy
of the 2-ruled hypersurface F{, s, we see easily that

! !
det<5 o 5);&0

o ¢ ¢

f 88 &N\ —yo
(o) = (% w) (5%)
Then, o() = p(t) +1(£)5(2) + g(1)e(?) satisfies the conditions ¢’ -6' =’ - &' = 0.
O

So, we can put

DEFINITION 3.4. A curve ¢(¢) which satisfies the condition in Lemma 3.3 is
called a striction curve of a non-degenerate 2-ruled hypersurface Fi, ;) (t, u,v).
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Since ¢/ L o', 6’ Le', 0" 15,0 Le 6L, ele and dim{s,0',¢e,¢e'y =4,
we have ¢’ € {J,¢). This means that the striction curve is tangent to the ruling
at any .

LemMA 3.5. Let F ;5.4 (t,u,0) = o(t) +ud(t) + ve(t) be a non-degenerate
2-ruled hypersurface with the striction curve a(t). Then the set of the singular
points of the 2-ruled hypersurface F, ;. coincides with the image of the striction
curve o(t).

PrOOF. By definition (#,u,v) is a singular point of F = F s, if and only

if the Jacobian matrix

<€a—f’g_5’aa_f) (t,u,v) = (o' (1) + ud' (1) + ve'(1),0(¢), &(1))

of Fis not of full rank. Note that ¢’ € {J,¢) as remarked just after Definition
3.4, and the four vectors 6, ¢', ¢ and ¢’ are linearly independent. Then, we see
easily that the above matrix is not of full rank if and only if u=v=0. [

COROLLARY 3.6. The striction curve of a non-degenerate 2-ruled hyper-
surface in R* does not depend on the choice of a solution 0 of the differential
equation 0' +06' - =0 in the proof of Lemma 3.2 or on the choice of director
curves 0 and .

ReMARK 3.7. For a non-degenerate 2-ruled hypersurface F{; s . (f,u,v) =
(1) + ud(t) + ve(r) whose director curves satisfy d(7) - &(r) = 0, a direct calcula-
tion gives the following formula for the striction curve:

a(0) = 10+ 11000 + g ol

with

(0" &) 0) + (& &) )0 2)
+ (0" ) = () d),
B(t)=(y'-0)(0" - &)’ + (' - &)(0 - &)’
—((0"-0)(y" - 0) + (0" &) (" - ) (0" - &)
— (0" ) + (0 )y - ),
Ct) = (0" -o)* = ((0"-0) + (/- &))@ - 0)?

+ (5/ ~5/)(6l . 8/) _ (5/ . 8/)2.
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By setting 6 =6" — (0" -¢)e and E=¢' — (J-¢&')0 we see that

5(0)-5(1) 81 -am) o

(1) -o(1) &(r)-&(2)

ol

C(t) = det<

Now, we give some examples. We can easily check that the striction
curve coincides with the set of singular points in these examples by a simple
calculation.

1 t

ExampLE 3.8. We put y(¢) = (£,0,0,0), 6(¢) = {0, , ,0,

b e put 20 = (60.0.0), 010 =)

and ¢(t) = ,0,0, . This gives a non-degenerate 2-ruled hy-

() <*1+12 thz) g g y

persurface whose striction curve is
a(t) = (2¢,0,0,7%).

ExaMPLE 3.9. We put o(¢) = (2,£3,0,0), 5(¢) = ( 2 3 0 0)

12 + 1 ) l ) ) b \/m) \/m;j’ ) b

and ¢(1) = (0,07 , ), —1 < t< 1. This gives a non-
VY3241 Vit £ 32+ 1

degenerate 2-ruled hypersurface with the striction curve o(z). In this example,
the striction curve has a (2,3)-cusp singularity at 1 =0 and is not an immer-
sion at ¢ =0.

4. Proof of the main theorem

Let /: (R? 0) — (R* 0) be a smooth map germ and we consider the Thom-
Boardman singularity set X% < J?(3,4) defined in [1]. Morin [4] proved the
following lemma.

Lemma 4.1 ([4], Théoréme). Let f: (R 0) — (R* 0) be a smooth map
germ. Then the following two conditions are equivalent.

(1) j2£(0) e 210 and the map germ j*f : (R?,0) — J?(3,4) is transverse to
>0 ar j2£(0).

(2) [ is right-left equivalent to the cross cap X interval, that is, there exist
local coordinates (x1,x3,x3) of R® around 0 and local coordinates (y1, v, y3, V4)
of R* around 0, such that f = (yyof,y20f,y30f,ysof) is expressed as

f(x1,x2,x3) = (X7, X2, X3, X1.X2).

Furthermore, he rewrites the above condition as follows. We use the
notation f(xi,x2,x3) = (f1(X1, X2, X3), 2 (X1, X2, %3), f3(x1, %2, X3), fa(x1, X2, X3)).

LemMa 4.2 ([4], Lemme). Ler f:(R?0)— (R*0) be a smooth map
germ.  j2f(0) € V0 and the map germ j*f : (R®,0) — J%(3,4) is transverse to
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10 ar 72£(0) if and only if for some local coordinates (xi,xs,x3) of R® and
(z1,22,23,24) of RY satisfying f(x1,%2,X3) = X2, f3(x1,x2,x3) = x3,

o U 00022 0 0.0) -
P (0,0,0) = - (0,0,0) = 3% (0,0,0)=0  and
% (0.0.0)— 7 16.0.0) - 7 0.0.0) —
axl (07070) - ('sz (07070) - aX3 (07070) - 07
0
(i) a—x%(o,o,O);éo, and

(i) rank(ﬁ of o )(0,0,0)22.

axf ’ 6x16x2 ’ 6)(16)(3

PrOOF OF THEOREM 2.5. The statement (1) follows directly from Lemma
3.5. So we prove (2) here.

Let Fg 5. (t,u,v) = a(t) + ud(t) +ve(f) be a non-degenerate 2-ruled hy-
persurface with the striction curve o(z). For any ¢y € I, the point p, denotes
Fis.5,6(10,0,0). We put F = F 5, and suppose that the director curves J and
¢ are constrictively adapted.

First, changing the coordinates (zi,z2,z3,2z4) of R* by an orthogonal
transformation if necessary, we may assume o(7y) = (0,1,0,0) and e&(¢9) =
(0,0,1,0). Let us define the new coordinates (xi,x>,x3) of R® by

X1 =1t—ty,
Xy = (F(l‘, u, U) — F([o70,0)) ~5(l‘0),
x3 = (F(t,u,v) — F(t0,0,0)) - ().

Then, we get
oF oF oF
a—XI(O,O,O) = 0, a—x2(07070) —5([0), a—x3(0,0,0) —8([0).

So, the coordinates (x1,x3,x3) and (z1,22,23,24) are adapted coordinate systems
in the sense of Morin [4].

We use the notation: oy = a(t9), a, = a'(t), do = (t0), oy = ' (t0), &0 =
&(tg) and ) =¢&'(¢9). We have

2

0°F
J//(Zo) = ﬁ(l‘ovovo)

0F 0°F OF °F
= (@ﬂL (o5 '50)27Jr (o ‘60)2?+ 2(ag+00) 5=
1
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0’F O*F

+ 2(0'(; . 8()) m + 2(0'6 . 60)(0’6 . 8())

6)626)(3
+ (0 -00)d0 + (] - 80)60> (0,0,0),

’F
5l(f0) = %(107070)

0’F  0’F 0°F
_ /. - o [ -
- <(0.0 (30) ax% + axlaxz + (O-O 80) axzax?)) (07070)7

0*F
&'(t0) = %(10,0,0)

’F  0°F 0*F
_ I cr v r I o

O°F d*F

0 auz (l()aoa O) - ﬁxg (07070)7
o? O*F

= t9,0,0 0,0,0

0 oud (07 ) ) aX26X3( s Uy ),
d°F d*F

0= t9,0,0) = 0,0,0
avg(oaa) 5)(732.(77)

Since dim<{d(t),6'(¢),&(),&'(1)> =4 and o'(1) -6'(¢) = o'(¢) - €'(t) = 0 for any 1,
we have

a'(t) = (a'(t) - 6(1))d(1) + (o' (1) - &(1))e(2)
and hence
a"(t) = (a" (1) - 9(1))(t) — (6" (1) - &(1))e(t) = (0" (2) - 6(1))3" (1) + (a” (1) - £(1))&' (1)
So we obtain

azF / i /
(»)xz (05070) = —(0'6 '(30)50 - (GO ! 80)60'
1

Hence

’F 0*F  O*F
5)612 ’ 6x1 6)62 ’ 6)61 6)63

> (0,0,0) = (7(0-/ ’5)6/ - (OJ ’ 8)5l75/78l)([0)'
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This means that the condition (ii) of Lemma 4.2 is always satisfied for F.
Furthermore, the condition (i) is equivalent to

62F ! ! ! !

—2(0’0’0) = _(0-0 '(50)60 - (GO '80)80 # 0,

0xj
that is, either o) -do #0 or oj-& # 0. Since ¢’ € (&), this condition is
equivalent to ¢’ #0 at t=1t,. This completes the proof. O

5. Singularities of generic 2-ruled hypersurfaces

In this section, we will define almost non-degenerate 2-ruled hypersurfaces
which are generic in the usual sense. They have exceptional rulings where the
striction curve cannot be defined and there are no singular points. So, we get
Theorem 5.3 which characterizes the singularities of generic 2-ruled hypersur-
faces. We will also discuss the behavior of the striction curve near the ex-
ceptional rulings.

First, we define an almost non-degenerate 2-ruled hypersurface.

DEerFINITION 5.1. A 2-ruled hypersurface F, s (¢, u,v) = y(t) +ud(t) + ve(t),
tel, is said to be almost non-degenerate on I, if there exists a discrete subset
D < I such that the following four conditions hold.

(1) F,s. is non-degenerate at any ¢ D.

(2) dimd5(1),0'(#:),e(t;), ' (t;)y = 3 for any t; € D.

(3) Let A4, denote det(6(z),0'(7),e(t),&'(¢)). Then dA,/dt|—, # 0 for any
t; e D.

@) (1) ¢ <0(1:),0" (1), e(ti), &' (4;) > for any & € D.

It is easy to check that the condition (4) does not depend on the choice
of the base curve y. For an almost non-degenerate 2-ruled hypersurface the
rulings (u,v) — p(t;) + ud(t;) + ve(t;) for t; € D are called exceptional rulings.
Note that the condition (4) implies that F, s is non-singular at any point in
the exceptional rulings.

The following lemma shows that there are plenty of almost non-degenerate
2-ruled hypersurfaces, that is, the condition is generic in the usual sense.

LemMa 5.2. The set
{(7.0,8) | Fy.5,5) is an almost non-degenerate 2-ruled hypersurface}

is open and dense in C*(I,R* x S x S3) with respect to the Whitney C*-
topology.

Proor. First, we put

01 = {j1(7,0,¢)(¢) | dim{(1),e(1)y = 1,1 e I} = J'(I,R* x S x §?).
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Then Q; is a closed submanifold of codimension 3. Second, we put

0> = {j'(y,0,¢)(t) e J'(I,R* x S* x S\ 0 |
dimd{o(2),0' (1), e(8), &' (1)) = 2,t e I}.

Then Q, is a closed submanifold of J'(I,R* x S3 x S?)\Q; of codimension
4. Note that X = J'(I,R* x §3 x $*)\(Q; U Q,) is an open submanifold of
JU(I,R* x §? x §3). Third, we put

03 = {j'(7,0,¢)(t) € X | dim<d(1),0' (1), &(t),&'(£)> = 3, t e I'}.
We define a C*-map { by
C: X 3jYp,0,8)(1) — det(d(1),0'(1),e(r),€' (1)) e R.

Then Q3 = (~'(0) and we see that 0 € R is a regular value for {. So, Q3 is a
closed submanifold of X of codimension 1. Moreover, the set

S={j'(.9,¢)(r) € 031 7'(1) € <(1),0'(1), 6(0), &' (1), 1 € I}

is a closed submanifold of Q3 of codimension 1.
By Thom’s jet transversality theorem, the set

#={(y,0,6) e C*(I,R* x §7 x §7) |
jl(y,é, ¢) is transverse to Qp, 0, Q3 and S}

is a residual subset of C*(I,R* x S* x S3) with respect to the Whitney C*-
topology. So £ is dense in C*(I,R* x S* x §3).

We can easily check that j!'(y,6,¢) is transverse to Q;, @, Q3 and S if
and only if F, s is an almost non-degenerate 2-ruled hypersurface. So, %
coincides with the set {(y,6,¢) | F{, 5, is an almost non-degenerate 2-ruled hy-
persurface}.

Now we prove that # is an open set. Since X is open in
JUIL,R* x §* x §3), C*(I,X) is open in C*(I,J'(I,R* x §? x §%)). On the
other hand, since Q3 and S are closed submanifolds of X, the set

{ge C*(I,X)|g is transverse to Q3 and S}
is open in C*(I,X). Hence the set
R ={ge CP(I,J'(I,R* x S* x §%))|g is transverse to Q;, 0>, Q3 and S}
={ge C*(I,X)|g is transverse to Q3 and S}
is open in C*(I,J'(I,R* x §* x $%)). Since the map
Gl CP(IL,R* x 8% x 83) — C*(I,J'(I,R* x §3 x §?))
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is continuous (see [2, p. 46], for example), # = (j')"'(%#') is an open subset of
C*(I,R* x §3 x S%).

Therefore # = {(y,6,¢) | F{;,5,) is an almost non-degenerate 2-ruled hyper-
surface} is an open and dense subset of C*(I,R* x §3 x S). ]

Now, we prove the following theorem which shows that the generic sin-
gularities of 2-ruled hypersurfaces are the cross cap x interval. Since any sin-
gularity of a generic smooth map germ of a 3-manifold into R* is the cross
cap x interval, the following theorem asserts that the generic singularities of 2-
ruled hypersurfaces are the same as those of generic C*-maps of 3-manifolds
into R*, although the set of 2-ruled hypersurfaces is a thin subset in the space
of all C*-maps.

THEOREM  5.3. There exists an open and dense subset (O c
C*(I,R* x 83 x S%) such that for any (y,0,¢) € O the 2-ruled hypersurface map
germ K, 5, is an immersion germ or is right-left equivalent to the cross cap x
interval at any point (t,u,v).

Proor. First, by Lemma 5.2 the set Z = {(y,0,¢) € C*(I,R* x S% x §%) |
(y,0,¢) gives an almost non-degenerate 2-ruled hypersurface} is an open and
dense subset. By the condition (4) in Definition 5.1, F, s, for (y,d,¢) € Z is
non-singular at any point in the exceptional rulings.

We take (y,d,¢) € C*(I,R* x 3 x S?) such that

72(,0.6)(10) € (LR x §7 x SH\(Q; U0, U 03),

where 77 : J2(I,R* x 83 x §3) — J'(I,R* x §3 x §3) is the natural projection,
0, = (n)"'(0Q) (i=1,2,3), and Q; are the submanifolds defined in the proof
of Lemma 5.2. Then, since F, ;) is non-degenerate at 7o, there exists a stric-
tion curve o(¢) near to. Now we rewrite the condition ¢’(#y) = 0 by using the
formula in Remark 3.7. By replacing ¢ with

R (0-¢)0
' e 09l
so that d-& =0, we get
Gl(lo) =0< O’l(t()) ~5(lo) =0 and 0'/([0) . Sl(t()) =0
& G=0 and H =0,

where

G = (y'(t0) - 6(29)) +% (1(4?8)

t=tgy
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and

H = (y'(to) - &1(t0)) + (’égg;) (' (t0) - e1(t0)) +% (%)

=ty

Here, A(¢), B(t) and C(t) are obtained by replacing ¢ with ¢; in the formulas in
Remark 3.7. Note that G and H are C*-functions of the partial derivatives at
t =ty of the components of y, § and ¢ of order at most two. Then we define a
C*-map @ by:

@ JX(I,R* x S x S*)\(Q,UQ,U 03) 3%(7,6,¢)(t0) — (G, H) € R*.

To determine the rank of the Jacobian matrix of @ at j(7,6,¢)(t),
we calculate the derivative of & with respect to the coordinates of
J2(I,R* x S* x §3) corresponding to the second order derivatives of the four
components of y. Then the derivatives of G coincide with the four compo-
nents of

(0"(t0) - &1(10))(8"(0) - €1 (20))d(t0)
+ ((6"(t0) - &1(10)) (¢ (10) - &1 (£0)) — (&' (10) - e1(t0)) e (10)
+ (=(21(t0) - ] (10)) + (&' (10) - &1 (10))*)0"(10) + (&' (10) - & (£0) 21 (to),
and the derivatives of H coincide with those of
(=(0"(10) - &' (10))(" (10) - &1 (10)) + (& (10) - & (£0))*)8(10)
— (6"(t0) - &1(10))(0" (0) - &1 (t0))21(t0)
+ (8" (10) - &1 (£0))8" (10) + (= (0" (t0) - 8'(10)) + (8" (10) - &1(10)) )& (1)

Now we calculate the determinant of the matrix formed by the coefficients of
6'(t9) and ¢ (z9) of the above two formulas:

(—(&{(t0) - £ (t0)) + (9" (t0) - €1(10))*) (— (' (t0) - ' (t0))

+ (8" (t0) - 21(t0))%) — (9" (t0) - €] (10)) (9" (to) - €] (10))
= C([g) # 0.

So the rank of the Jacobian matrix is always equal to 2. Hence (0,0) € R?
is a regular value of @ and T = & !((0,0)) is a closed submanifold of
J2(I,R* x S? x S*)\(Q,UQ,U Q) of codimension 2.

Therefore, the set ¢ = {(7,5,¢) € C*(I,R* x S3 x S3)| F, 5., is an almost
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non-degenerate 2-ruled hypersurface and the striction curve is an immersion}
coincides with the set

0" ={(y,0,6) e C*(I,R* x $* x §%)|
j2(7,0,¢) is transverse to Q~1,Q2,Q~3,S’ and T},

where S is defined in the proof of Lemma 5.2 and S = (nf)fl(S). By Thom’s
jet transversality theorem, the set (' is dense in C*(I,R* x §? x S3). Hence
O is dense in C*(I,R* x §3 x S?).

On the other hand, we define a map F;: C*(I,R* xS x S%) —
C*(I x Jy x J2,R*) by Fy(y,0,¢) = F; 5.5 Then, Fy is continuous. Further-
more, it is easy to check that the set & = {f e C*(I x J; x J,,R*)|f is an
immersion or is the right-left equivalent to the cross cap x interval at any point
of I xJ; xJy} is an open set.

Hence the set F,'(#)N# is an open subset of C*(I,R*x §3 x §%).
By Theorem 2.5, it is clear that 0:Fﬁ*1(y)ﬂ%. So, @ is an open set
of C*(I,R*x S*x §3). Therefore, ¢ is an open and dense subset of
C*(I,R* x §% x S%). This completes the proof. O

Before closing this section, we discuss the behavior of the striction curve
near the exceptional rulings. Let F{, ;. be an almost non-degenerate 2-ruled
hypersurface. Then F, ;. has the striction curve except for t; € D (see Defi-
nition 5.1). Moreover, recall that F, s is non-singular at any point in the
exceptional rulings. So, the singular points of F, s are located only on the
striction curve. To study the behavior of the striction curve near a given point
t; € D, we take constrictively adapted director curves J and ¢. By interchang-
ing 6 and ¢ if necessary, we may assume that &'(#;) = ké'(t;) for some k e R.
Since d, 0/, ¢ and y’ span R* near r=1t;, we can write &'(1) = a(1)y'(t) —
a(t)(y' (1) - 6(1))6(2) + b(2)6'(t) — a(t)(y'(¢) - &(t))e(t) for t near ;. The coeffi-
cients for the striction curve o(7) = y(¢) + (A(¢)/C(1))o(t) + (B(t)/C(1))e(t) are
given by

A(t) = a(t)b(t)z(1), B(t) = —a(6)z(¢) and C(t) = a(l)zz(t),

where z = (6" -6')((y'-y') — (3 -6)* = (' - &)>) — (y' - 8")*. Since &'(1) — ko' (1)
as t — t;, we have a(¢) — 0, b(f) — k as t — t; and z(z) # 0, a(r) # 0 for 1 # ;.
So, we have

B(1) -

e T

—t;

a()]
Furthermore, since a(f) = y(¢) + (B(¢)/C(¢))((A(2)/B(1))o(t) + &(r)) and (A(¢t)/

11—t
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Fig. 1. The striction curve near an exceptional ruling

B(1))o(t) + &(t) — —ko(t;) + &(¢;) as t — t;, the striction curve near #; has an
asymptotic direction

—ko(t;) + &(t;)

in the exceptional ruling, that is, the two branches of the striction curve ap-
proaching to the exceptional ruling from the both sides have the same asymp-
totic direction.

Moreover, by the condition (3) of almost non-degeneracy (see Definition
5.1) we see that a’(¢;) # 0, so they diverge to opposite directions (see Figure 1).
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