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ABSTRACT. Let {X,,n>1} be an arbitrary sequence of dependent absolutely con-
tinuous random viariables, {B,,n > 1} be Borel sets on the real line, and I, (x) be the
indicator function of B,. In this paper, the limit properties of {/p, (X,),n > 1} are
studied, and a kind of strong limit theorem represented by inequalities with random
bounds is obtained.

1. Introduction

Let {X,,n > 1} be a sequences of absolutely continuous random variables
on the probability space (€2, 7, P) with the joint density function g, (x,...,x,),
n=12,.... Let fi(xx), k=1,2,..., be an arbitrary sequence of density

functions, and call [ fi(xx) the reference product density. Let
k7

n

I1 fk(Xk)} /gn(Xl, ..., X,) if the denominator > 0;

() = i (1)

0 otherwise,
where w is a sample point. In statistical terms, r,(w) is called the likelihood

ratio, which is of fundamental importance in the theory of testing the statistical
hypotheses (cf. [1, p. 483]; [3, p. 388]). Let

r(w) = —lim inf% In r,() (2)

with In0 = —co. r(w) is called asymptotic log-likelihood ratio. Obviously,
ra(w) =0 if
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n
g,,(xl,...,xn):Hﬁ((xk), n>1l,
k=1

and it will be shown in (13) that r(w) >0 a.. in any case. Hence r(w)
can be used as a random measure of the deviation between the true joint

n
density g,(x1,...,x,) (n=1,2,...) and the reference product density [] fi(xx).
k=1

Roughly speaking, this deviation may be regarded as the one between
{X,,n > 1} and the independence case. The smaller r(w) is, the smaller the
deviation is. The purpose of this paper is to establish a kind of strong limit
theorem represented by inequalities with random bounds for the dependent
random variables, by using the notion of asymptotic log-likelihood and the
martingale convergence theorem, and to extend the analytic technique proposed
by Liu [4], [5], and Liu and Yang [6] to the case of absolutely continuous
random variables.

2. Main result

THEOREM. Let {X,,n > 1}, ry(w), r(w) be given as above, {B,,n > 1} be a
sequence of Borel sets of the real line, and Ig, be the indicator function of B,.
Let

b = lim sup %zn:J Sie(xx ) dxe (3)
n k=1 Bk
and
D) ={w:rlw) < b}, D, ={w:r(w) = b}.
Then
(a) limsup lzn: [ng (Xx) — J fk(xk)dxk] <2Vbr(w) +r(lw) ae; (4)
no M3 By
(b) liminf %i[lgk()(k) —J ﬁc(xk)dxk] > —2/br(w) a.e. on Dy, (5)
k=1 By
and

1 n
lim inf —Z {IB,( (Xx) — J
"M

ProoF. Let 4> 0 be a constant, and let

ﬁc(xk)dxk} > —b—r(w) a.e. on D,. (6)

By
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Afi(xk) ,
(TG0, filwdy &P

T (xi) = i) (7)
LA Xk ¢ Bk.

1+ (/L - 1) IBk fk(xk)dxk

n
It is easy to see that [] /x(xx) is a product density function of n variables.
Let k=1

I hk(Xk)} /gn(Xl,...,Xn) if the denominator > 0;
(8)

0 otherwise.

Then ¢,(4,w) is a nonnegative supermartingale that converges a.e. Hence
there exists 4(1) € #, P(A(4)) =1, such that

1
lim sup . In#,(4,w) <0, we A(A). 9)
Letting /=1 in (9), we obtain

limsup% In r,(w) <0, we A(1). (10)

This implies that

We have by (7)

n B n llgk(xk)fk(xk)
Lo =1, Rcwas:

N0 T ()
’ =00, acoas (12)

It follows from (1), (8), and (12) that

fk(xk)dxk} + In r,(w).

(13)

By

In 1,(1, ) = zn:IBk(Xk) In /4 — Z ln{l (- 1)J
=1 k=1

We have by (9), and (13)
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llmsup (Zlgk Xi)In A — Z In [1 +(A-1) J fk(xk)dxk] +1In rn(w)> <0,

we (). (14)

(a) Let 2>1. Dividing the two sides of (16) by In A, we obtain

lim sup ! (Z Iy, (X0) Z In[l +(4-1) J;Bk Sie(xx ) dxy ] N In M@) <0,

— In A In A
w € A(A). (15)

By (15) and (2), we have

fim sup ! (ZIBk X - Z In[l + (2 —1) ff;k fk(xk)dxk]> - r(w) we A()

In A Ini’
(16)
By (16), (3), the property of the superior limit
lim sup(a, — b,) < d = limsup(a, — ¢,) < limsup(b, — ¢,) +d,
and the inequality 0 < In(l1+x) <x (x> 0), we have
. 1<
lim sup 72 [ng(Xk) - J fk(xk)dxk}
n n —l By
1< (In[l+ (2 =1) [ filxw)dx] ()
< li - o —
< 1mnsup n;< o JBk SO )dxy | + 7
. 1N ((=1) [ fie(xic)dx ()
< llmnsup —; ( o — JBk Jie(xi)dxy | + ™
A—1 r(w)
Sb(ln;L —1) "‘rm, O)GA()»). (17)
By using the inequality 1 — 47" <1In 2 (A>1), we have by (17),
. 1< , r(w)
lim sup fz Ip, (Xk) — J Se(xi)dx | <b(A—1)+ , we A1)
n n 1 By A—1
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Let O* be the set of rational numbers in the interval (1,+oc0), and let 4* =
(Nieg-A(4), g(A,r) =b(A—1)+Ar/(A—1). Then we have by (20),

. 1<
lim sup EZ {IB,{(X;C) - J
k=1

fk(xk)dxk} < g4, r(w)), weAd*, e Q.
n By

(19)

Let b > 0. It is easy to see that if r > 0, then g(4,r) as a function of A
attains its smallest value g(1 4+ +/r/b,r) = 2vbr+r on the interval (1,+c0),
and ¢(4,0) is increasing on the interval (1,+00) and lim;_49 g(4,0) =0.
For each w e A*NA(1), if r(w) # oo, take 1,(w) € Q*, n=1,2,..., such that
In(@) = 1+ y/r(w)/b. We have by the continuity of g with respect to 4,

lim g4 (). @) = 2v/Br{0) + (). (20
By (19),
. 1<
lim sup ZZ [IB,( (Xx) — J fk(xk)dxk] < g(/n(w), r(w)), n=12....
n T—1 By

By (20) and (21),

. 1
lim sup Ez |:IB/< (X'k) - J
k=1

fk(Xk)ka] < 2y/br(w) + r(w), weA*NA(1).
n By

(22)

If r(w) = o0, (22) holds trivially. Since P(4*N A(1)) =1, (4) holds by (22)
when b > 0.
When b =0, we have by letting A =¢ in (19),

. 1<
lim sup ;Z {IBA,(Xk) - J
k=1

fk(xk)dxk} <r(w), w € A(e). (23)
n By

Since P(A(e)) =1, (4) also holds by (23) when b =0.
(b) Let 0 <A< 1. Dividing the two sides of (14) by In A, we obtain

2 n[l+ (2= 1) [p fie(xe)dxe]  Inr,(w)
Z ]nf + In A ) =0,

lim inf © <Z Ip, (X)) —
mon\i= =
wed(l). (24)

By (24) and (2), we have
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" 1n[1+(/1—1)fgkﬁc(xk)dxk]> ) )

1 n
liminf - Ig, (X1) — > ,
P e

k=1

By (25), (3), the property of the inferior limit

liminf(a, — b,) > d = liminf(a, — ¢,) > liminf(b, — ¢,) + d,

and the inequality In(1+x) <x (-1 < x <0), we have

n

lim inf %; |:IBA,(Xk) - Jkak(xk)dxk}

n ([l + (h—1 d
= timinf 3 ( Ll D A ka;c(xk)m) +1@)
UG [ fie(xi)dx r(w)
> hmnmf ;E( 7 — Jkak(Xk)ka> + 7
Zb(ﬁn; - 1) +%, w e A()). (26)

By using the inequalities 1 — 4 ' <InA<0and InA<i—-1<0 (0<Ai<1),
we have by (26),

|
hmnlnf EZ [ng (Xx) — J

- r(w)
k=1

A=1

fz;(xk)dxk] >b(A—1)+ weAQ)NA(1).

By

(27)

Let Q. be the set of rational numbers in the interval (0,1), and let 4, =
Nieg. A(4), h(Z,r) =b(A—1)+r/(Z—1). Then we have by (27),

limninf %Zn: {IB,{(X;{) - J fk(xk)dxk} > h(A, r(w)), weA,NA(1), A€ Q..
k=1

By

(28)

Let b > 0. It is easy to see that if 0 < r < b, then /i(4,r) as a function of
J attains its largest value A(1 — +/r/b,r) = —2v/br on the interval (0, 1), and
h(2,0) is increasing on the interval (0, 1) and lim;_;_o 2(4,0) = 0, and A(4,b) =
b[A—1+1/(4—1)] is decreasing on the interval (0,1) and lim,; o+ A(4,b) =
—2b. For each we A, NA(1)N Dy, take 7,(w) € Q., n=1,2,..., such that
(w) = 1 —/r(w)/b. We have
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lim /(t,(w), r(w)) = —=2+/br(w). (29)

n—-+o0

By (28), we have

1 n
liminf ~) {IBA,(Xk) - J
"M

By

fk(xk)dxk} > h(t,(w), r(w)), n=12,....

(30)
By (29) and (30),

lim inf 12 {IBk (Xi) — J
"M

By

fk(xk)dxk} > —2+/br(w), we A.NA(1)NDy.

(31)

Since P(4.NA(1)) =1, (5) holds by (31) when b > 0.
When b =0, r(w) =0 for we DN A(1). Hence we have by (28),

—

1 n
lim inf ZZ[IBA'(X")_ fk(xk)dxk} >0, weA)NAN)ND,0< A< 1.
! =1

By

(32)

Since P(A(A)NA(1)) =1, (5) also holds by (32) when b = 0.

It is easy to see that when r>b >0, h(4,7) as a function of A is
decreasing on the interval (0,1) and lim; o+ 4#(4,7r) = —(r+b). For each
we A.NA(1)N Dy, when r(w) # oo, take A,(w) € Q., n=1,2,..., such that
Jn(@) — 0. We have

lim /i(4,(w),r(w)) = —r(w) — b. (33)

n—oo

By (28), we have

limninf %i [ng (Xx) — J fk(xk)dxk} > h(Jn(w), r(w)), n=12....
k=1 k

B

It follows from (33) and (34) that,

lim inf %Z []Bk(Xk) — J ﬁ{(xk)dxk} > —r(w) — b, weA.NA1)ND,.
n =1 .

By

(35)

Obviously, (35) also holds when r(w) = co. Since P(4.NA(1)) =1, (6) fol-
lows from (35) directly.
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3. Some corollaries

COROLLARY 1. Let B be a Borel set of the real line, S,(B,w) be the
number of occurrence of Xi(1 <k <n) in B, that is,

Su(B.w) = 5 In(X).
k=1

Then under the conditions of the theorem, we have

lim sup %z": {Sn(B, W) — Lfk(xk)dxk} < 2+/br(w) + r(w) ae.,
n k=1

lim inf %Xn:{Sn(B, ) —J fk(xk)dxk} > —2+/br(w) a.e. on Dy,
" =1 B

1 n
lim inf ZZ {Sn(B, ) —J f;}(xk)dxk} > —b—r(w) ae. on D,.
n ] B

Proor. Letting B, =B (k=1,2,...), the corollary follows from the
above theorem directly.

The strong law of large numbers for I (X,), n > 1, is a corollary of the
above theorem.

COROLLARY 2. If {Xi,k > 1} is independent random variables with density
Sfunction fi(xi), then

n

lim %Z [IBA, (Xi) — J

fk(xk)dxk} =0 a.e. (36)
k=1 By

Si(xk), and r(w) = 0. Hence (38)
I

ProOOE. In this case, g,(x1,...,X,) =
follows from (4) and (5) directly. k

n
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