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Abstract. We define the family F of certain type of carpets, and calculate the fractal

dimensions of fibres Fx for all F A F and for almost all x.

1. Introduction and preliminaries

Let F be the family of all carpets obtained by partitioning the unit square

into four subsquares, discarding one of them and repeating this on each of

the remaining squares, with no constraints on the positions of the discarded

subsquares. For F A F and x A ½0; 1�, set vertical fibres Fx ¼ fy A ½0; 1� j
ðx; yÞ A Fg.

H. Furstenberg conjectured that almost all vertical fibres of all F A F have

positive Hausdor¤ dimension [5].

In [2], I. Benjamini and Y. Peres showed for all F A F, the lower bound of

Hausdor¤ dimension of Fx is 1
2 for almost all x A ½0; 1� with respect to Lebesgue

measure.

In this note, we consider the family Fða; bÞ of certain type of carpets

which are constructed as follows:

Partition the unit square into four rectangles, with the ratio of side length,

a : b, where a; b A Rþ (the set of positive real numbers), aþ b ¼ 1, aa b and

discard one of them. Again partition each of the three remaining rectangles

into four subrectangles, with the same ratio of side length, a : b, and discard

one of them. Apply the same operation to each of the remaining rectangles,

with no constraints on the positions of the discarded subrectangles, and repeat

this operations to obtain a limit set, a type of carpet F in Fða; bÞ.
For above F A Fða; bÞ, we find a lower bound and an upper bound of

fractal dimensions for the vertical fibres Fx, which gives us the result of I.

Benjamini and Y. Peres [2] as corollary.

We now review some definitions and the known-results.
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Definition 1.1. Suppose that F is a bounded subset of Rn and s is a

nonnegative real number. The Hausdor¤ measure of F is defined as

HsðF Þ ¼ lim inf
d!0

Xy
i¼1

jUijs : F H6y
i¼1

Ui; jUij < d

( )

where jU j denotes the diameter of a set U .

The Hausdor¤ dimension of the set F is defined as

dimH F ¼ inffs : HsðFÞ ¼ 0g ¼ supfs : HsðFÞ ¼ yg:

Definition 1.2. The upper box dimension of bounded F HRn are

defined as

dimB F ¼ lim sup
d!0

log NdðF Þ
�log d

;

where NdðFÞ denotes the number of d-mesh cubes that intersect F .

Here we note that

dimH F a dimB F :

2. Main results

We are now in a position to prove our main results.

Theorem 2.1. For all F A Fða; bÞ, with a; b A Rþ, aþ b ¼ 1 and aa b

dimH Fx b
2abfbðlog b� log aÞ þ log ag
2ab2ðlog b� log aÞ þ log a

for almost all x A ½0; 1� with respect to Lebesgue measure.

Proof. For all x A ½0; 1Þ, we can define x̂x as follows; Bisect the interval

½0; 1Þ with ratio a : b and we write

x1 ¼
0; if x lies in ½0; aÞ;
1; otherwise

�

and repeat to bisect ½0; aÞ and ½a; 1Þ with the same ratio a : b, and we write

x2 ¼
0; if x lies in the resulting interval ½0; a2Þ or ½a; aþ abÞ;
1; otherwise.

�

Repeating this method, we have a sequence x̂x ¼ ðx1; x2; . . .Þ for x A ½0; 1Þ.
Let F be the family of functions
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j : 6y
n¼0

ðf0; 1gn � f0; 1gnÞ ! f0; 1g2

where f0; 1g0 � f0; 1g0 ¼ fqg.
Then for each j A F, we construct F �ðjÞH f0; 1gy � f0; 1gy by

F �ðjÞ ¼ fðx̂x; ŷyÞ ¼ ððx1; x2; . . .Þ; ðy1; y2; . . .ÞÞ j Enb 1; xn; yn A f0; 1g

and jððx1; x2; . . . ; xn�1Þ; ðy1; y2; . . . ; yn�1ÞÞ0 ðxn; ynÞg

and define a map f on F �ðjÞ by

f ðx̂x; ŷyÞ ¼ 7y
n¼0

ðCnðx̂xÞ � Cnð ŷyÞÞ

where Cnðx̂xÞ and Cnð ŷyÞ are the n-th step intervals containing x̂x and ŷy,

respectively. If we write FðjÞ ¼ f ðF �ðjÞÞ, then we easily see that Fða; bÞ ¼
fF ðjÞ j j A Fg.

Now consider Foða; bÞ ¼ fFðjÞ : j A F and jðx1; . . . ; xn; y1; . . . ; ynÞ0
ð�; 1Þ; Eng, that is, Foða; bÞ is the subfamily of Fða; bÞ whose elements are

constructed by discarding one of the two-top subrectangles for all steps. Note

that for any F A Fða; bÞ, there exists ~FF A Foða; bÞ such that dimH
~FFx a dimH Fx

for all x A ½0; 1� (c.f. [3], [5]). Hence we will compute a lower bound of

dimH
~FFx instead of a the lower bound of dimH Fx.

Let F ¼ F ðjÞ A Fo and x; z A ½0; 1Þ, and write x̂x ¼ ðx1; x2; . . . ; Þ, ẑz ¼
ðz1; z2; . . . ; Þ corresponding to x and z, respectively. We define

~PPx : f0; 1gy ! f0; 1gy by ~PPxðẑzÞ ¼ ŷy;

where ŷy ¼ ðy1; y2; . . . ; yn; . . .Þ are defined inductively; s1 is defined by jðqÞ ¼
ðs1; 1Þ and then

y1 ¼
0; s1 ¼ x1;

z1; s1 0 x1

�

If y1; y2; . . . ; yn are defined, then sn ¼ snðx1; x2; . . . ; xn�1; z1; z2; . . . ; zn�1Þ is

defined by

jðx1; . . . ; xn�1; y1; . . . ; yn�1Þ ¼ ðsn; 1Þ

and

yn ¼
0; sn ¼ xn;

zn; sn 0 xn:

�

Therefore for given x; z A ½0; 1Þ, we can define

PxðzÞ ¼ y; where y ¼ 7
y

n¼1

Cnð ŷyÞ

and
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Fx ¼ 6
z A ½0;1Þ

PxðzÞ

where Cnð ŷyÞ is the n-th step interval containing ŷy with length

jCnð ŷyÞj ¼ aðn�T
n

k¼1ykÞ � bT
n

k¼1yk .

And if m denotes Lebesgue measure on ½0; 1�, then mP�1
x is a measure on the

fibre Fx.

Therefore choose ðx; zÞ A ½0; 1Þ2 randomly according to Lebesgue measure

m�m and then we have

mP�1
x ðCnð ŷyÞÞ ¼ bT

n

k¼1yk � aðT
n

k¼1ðsklxkÞ�T
n

k¼1ykÞ

where l denotes the sum mod 2.

Since sk is a function of ðx1; . . . ; xk�1; z1; . . . ; zk�1Þ and yk is a function

of ðx1; . . . ; xk; z1; . . . ; zk; s1; . . . ; skÞ, fsk l xkgyk¼1 and fykgyk¼1 are independent,

thus for a. a. ðx; zÞ A ½0; 1�2,

1

n

Xn

k¼1

ðsk l xkÞ ! 2ab and

1

n

Xn

k¼1

yk ! 2ab2; as n ! y:

Therefore for a. a. ðx; zÞ A ½0; 1�2,

log mP�1
x ðCnð ŷyÞÞ

logjCnð ŷyÞj
¼ ð

Pn
k¼1 ykÞ log bþ ð

Pn
k¼1ðsk l xkÞ �

Pn
k¼1 ykÞ log a

ðn� ð
Pn

k¼1 ykÞÞ log aþ ð
Pn

k¼1 ykÞ log b

! 2abfbðlog b� log aÞ þ log ag
2ab2ðlog b� log aÞ þ log a

1 y; as n ! y:

If we write

LðxÞ ¼ y A Fx j lim
n!y

log mP�1
x ðCnð ŷyÞÞ

logjCnð ŷyÞj
¼ y

� �
;

then we obtain that for a. a. x with respect to m, mP�1
x ðLðxÞÞ ¼ 1 by Fubini’s

theorem. Hence

dimH Fx b y

for a. a. x with respect to m (see [3]). r
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Corollary 2.2 [1]. Let F be as in our introduction. Then for all F A F,

dimH Fx b
1
2 , for a. a. x with respect to m.

Proof. Put a ¼ b ¼ 1 and M ¼ 2 in Theorem 2.1. r

On the other hand, an upper bound of Hausdor¤ dimension for fibres Fx

of F A Fða; bÞ goes as follows.

Theorem 2.3. For all F A Fða; bÞ with a; b A Qþ, a ¼ c
M
, b ¼ d

M

dimB Fx a
logðM 2 � d 2Þ

log M
� 1

for a. a. x A ½0; 1� with respect to Lebesgue measure m.

Proof. We easily see that F is covered at most ðM 2 � d 2Þn squares of

side length M�n, for every nb 1.

Put

b ¼ logðM 2 � d 2Þ
log M

:

Suppose that there exists F A F and e > 0 such that

mfx j dimBðFxÞb b � 1þ 2eg1 d > 0:

Then by Egorov’s theorem there exists no A N such that

m x j sup
kbn

log N1=Mk ðFxÞ
�n log M

b b � 1þ e

� �
b

1

M
d; Enb no:

Therefore we have at least 1
M

� �
dMn intervals of length M�n on the x-

axis above which F intersects more than Mnðb�1þeÞ squares for infinitely many

nb no.

Then it leads to contradiction since

1

M
dMnðbþeÞ > ðM 2 � d 2Þn; for some n >

log M � log d

e log M
: r

Remark. We don’t know yet whether Theorem 2.3 is true or not for the

case of irrational number.

Corollary 2.4 [1]. Let F be as in the introduction. Then for all F A F,

dimB Fx a
log 3

log 2
� 1, for a. a. x with respect to m.

Proof. Put a ¼ b ¼ 1 and M ¼ 2, in Theorem 2.3. r
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