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ABSTRACT. Let T(1) be the Ravenel spectrum whose BP.-homology is BP.[ti](<
BP,.(BP)), and let L, denote the Bousfield localization functor with respect to v5!BP.
In this paper, we show that the E4-term of the Adams-Novikov spectral sequence for
7.(L2T(1)) has horizontal vanishing line and is the E,-term. We also find subgroups
of the homotopy groups 7.(L,T(1)).

1. Introduction

In this paper, everything is localized at the prime two. Let BP denote
the Brown-Peterson ring spectrum at the prime two. Then the homotopy
groups 7,(BP) turn to the polynomial algebra BP, = Zy)[v1,v2,...] over the
Hazewinkel generators v; with |v;] =271 —2. The Ravenel spectrum 7(1)
is characterized by the Brown-Peterson homology as BP.(T(l)) = BP.[t] <
BP.(BP) = BP,[t),15,...]. We consider the spectrum G =uv;'BP. Let L,
denote the Bousfield localization functor on the stable homotopy category of
spectra with respect to G. One of the methods to determine the homotopy
groups 7, (L,T(1)) is the Adams-Novikov spectral sequence E5 = H*vy ! BP,[1)]
= m.(L2T(1)), where H"— = Extg )(Gi,—). We study the Ep-term by the
chromatic spectral sequence Z?:()H *M{t)] = H*v;'BP.[t)] and the mod 2
Bockstein ~ spectral ~ sequences H*M[n]=H*M{}[n] and H*M|[n]=
H*M}[t]. Here, M) =27'BP.,, M{ = v{'BP./(2), M} = v{'BP./(2%), M| =
v;'BP,/(2,0F) and M} =vy'BP,/(2*,v{). The modules H*MJ[t;] and
H*M?[1;] are given by Ravenel in [7]. In [5], Mahowald and the second
author determined H*MJ[t;] as the tensor product of the polynomial algebra
K(2),[vs,h] and the exterior algebra A(hy,hs0,h31,p,), where K(2), =
Z/2[v"]. 1In [8], the second author determined H*M][#] by the v;-Bockstein
spectral sequence H*M?Y[t)] = H*M][1;] to be the tensor product of A(p,) and
the direct sum of modules A;:
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Ag = (UIIK/K@) > xuK/ (0f") [xui1] ®A(gn+l)> ® A(h),

n>1
Ay = 03K /(v])[x2] ® A(h30,h31)  and
A> = 13K (2),[v3, hao] ® A(har, h3o, hay).

Here K = Z/2[v1,v5"], @, denotes the integer 2L+%(2"—28<")) for e(n) =
(1—(=1)")/2, and the elements x,,g,,/n; and hy denote the cohomqlogy
classes represented by the cocycles of the cobar com}:}?x ﬁé@ G.[t1]/(2,v]) for
a suitable j > 0, whose leading terms are v%",v;‘(z el 3t§”("),ti2’
respectively. Consider the submodule

and vl

Ay = v3K2[03] ® A(ha1, 30, 1) = Aa,
and put Ag = Ay/Ay as a module. We see that there is a submodule
As = 303K [03, hag) ® A(har, hso, hay)

of H*M([t1], where K2 = Z/2[v?] and x e 4, is considered to be x/2v; €
H*M}[t]. Then we show that the map ¢: H*M|[] — H*MZ[t;] given by
p(x) = x/2 is restricted to ¢: 49 — A, and then the sequence 0 — (45)"" 5
(49)° A (42)* — 0 for each s > 3 is exact, where (M)® denotes the submodule
of M consisting of elements of cohomology dimension s, and J is the con-
necting homomorphism associated to the short exact sequence 0 — M| [f] —
MZ[t] — M@[t;) — 0. This shows our first result.

TaeoOREM 1.1. HSMZ[t] is isomorphic to (A2 @ A(py))* for s> 4.

Furthermore, we show that the mod 2 Bockstein spectral sequence splits
(see Lemma 3.6). A summand of the spectral sequence is 43 = A,. It seems
very complicated to determine the other parts 41 = (4o @ 41 @ 421) @ A(p,)
= Ay (¢f [6], [2, [9).

Let W be the spectrum such that BP.(L,W) = MZ. Indeed, W is the
cofiber of the localization map V — LV, where V' is the cofiber of the
localization map S° — SQ. Then H*MZ[t] is isomorphic to the E-term of
the Adams-Novikov spectral sequence for n.(L;W A T(1)). We consider the
submodule

Ay = V3K (03] ® A(hso, h31) = H* M (1],

and see that Ay ® A(p,) < A (see Corollary 4.4). We write A" =
A1 /(A2 ® A(p,)) as a module. We compute the differentials of the Adams-
Novikov spectral sequence on 4, and AAZI, and then show that the differentials
on A" are zero after a modification of A" (see Corollary 4.8).
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Taeorem 1.2. The Adams-Novikov Es-term for the homotopy groups
n.(LyT(1) A W) is isomorphic to the direct sum of A\° and Ay @ A(p,), where

Ay = 003 K2 [V3] ® A(hag, a1, h3o, hat) @ vav3hi K2 [v3] @ A(hs, hy).

Note that we do not determine the structure of 4,° of the theorem, though
we know that the Adams-Novikov differentials are trivial on it.

By the definition of W, we have the composite #: W — XV — S2,
which induces the composite of connecting homomorphisms 7, : H sMOZ[tl] —
H'Wwi'BP,/(2*)[ti] — H*"?v;'BP.[t;] in the long exact sequences

H M 1] — H*M3[n] > H* 637" BP,/(27)[1n] — H*'M![1]  and

H MO (1] — H*vy'BP,/(27)[t] < H*'v3'BP.[1] — H™' M0 [n).
Since we see that both of H*M{[r] and H*M{[1,] are zero for s > 0 (Theorem
2.5), we see that the connecting homomorphisms are isomorphisms for s > 0,

and so is #,. In Proposition 4.7, we show that the Ej-term is the E. -term.
Since 7, is a map of spectral sequences, we have the results on 7,.(L,T(1)).

COROLLARY 1.3. The Adams-Novikov spectral sequence converging to the
homotopy groups m.(L,T (1)) collapses from the Es-term.

COROLLARY 1.4.  The homotopy groups n.(L,T(1)) contain the subgroups
isomorphic to A, ® A(p,), which is the image of Ay ® A(p,) under the map
N (LaT(V) A W) — w (L2 T(1)).

In the next section, we show that H*M[[#] is zero for s> 0 by deter-
mining it. In sections 3 and 4, we give proofs of Theorems 1.1 and 1.2,
respectively. The authors would like to thank Professor Xiangjun Wang who
pointed out mistakes in Lemmas 3.3 and 4.3 in a draft version of this paper.

2. H*M{[4]

Let BP denote the Brown-Peterson spectrum at the prime two. Then
BP, = Z 5 [v1,02,...] and BP.(BP) = BP,[t,1y,...], and (BP.,BP.(BP)) is a
Hopf algebroid. Hereafter, we write

H*M - EXtZP,((BP)(BP*’ M)

for a BP.(BP)-comodule M. Consider the BP.(BP)-comodule M) =
vi'BP,/(2). Then in [7, Th. 6.1.1 and Cor. 6.5.6], it is shown that

H*M}[t] = K(1),[02] @ A(hao).
Here H*M for a BP.(BP)-comodule M denotes Extgp pp)(BP., M), K(1), =

*
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Z /2[0%1] and /pp is the element represented by a cocycle of the cobar com-
plex whose leading term is #,. Consider the Hopf algebroid (4,I") = (BP.,
BP.[t2, t3,...]), whose structure maps are induced from those of BP.(BP) under
the projection BP,(BP) — I'. We then have the change of rings theorem

H*M][t] = Ext}.(4, M),
for a BP.(BP)-comodule M.
LemMA 2.1. In the Hopf algebroid (A,T),
ng(v1) = v,
nr(v2) = 12+ 28 and
nr(v3) =v3 + Ultg + 2t3 — 2v102tr — 21)1t§ - v?tz.
Proor. This is based on the Hazewinkel’s and the Quillen’s formulas:
n—1

v, = 2m, — Zm,-vflii € Q® BP, = Q[my,my,...] and
i=1

n .
nr(ma) =Y _mit;.; € Q ® BP,(BP).
i=0

We consider it in Q® BP.[t2,13,...]. Then ng(vi) = 2ng(my) = 2m; = vy,

and 7g(v2) = 2ng(my) — mpv? = 2(my + o) — myv} = vy + 26, For ng(vs), we

compute
nR(v3) = 2(ms +m63 + t3) — my(v2 + 26)° — (my + 12)v}
=2ms3 + Ullg + 213 — mw% — 20102ty — 2vlt§ — mzvf — vi‘tz
=v3+ ulz§ + 213 — 2v10tr — 21)115 - v‘l‘tz. O
We define x; , € v7'4 = v7' BP. by
X1,0 = V2, X1,1 :)61230—1—21)131)2—1—401’1037 and Xi,n = X,
Let d:v7'4 — v7'4®, I' denote 5z — ;. Then we have

LemMmA 2.2, Let x1,; be the elements defined above. Then we see that
d(x1 ) = 2" X, t, mod(2"2) for n >0, where Xo=1 and X, = X10X1,1---
X1,n—1 for n>0.

Proor. For n =0, it follows from Lemma 2.1. For n = 1, we obtain the
equation from the computations:
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d(v3) = (12 +202)° — 03 = 4oty + 413,
d(dvy'vs) = 41)1’1(1;1@1 + vfrzz) mod(8) and
3 _ 3
d(2vivy) = 4ot

Here, the underlined terms with the same subscript cancel out.
Inductively, suppose that d(x ,) = 2" X,, mod(2"*?). Then

d(x%,n) = (X104 2" X0)? — xlzﬁn mod(2"%)
=2""2x ,X,tp mod(2"),
and obtain the congruence for n+ 1. O

LemMa 2.3. HOM{[1] is the tensor product of Zy)vy,vi'] and the direct
sum of Q/Zy) and Z[(2"™") generated by van/2”+1 for each n >0 and odd
s> 0.

Proor. Let B denote the module of the lemma. Then we have a se-

2 L . .
quence H*M}[1] Y, B S B fitting in the commutative diagram

0 —— H'M'[1] —— H'M{}[1] 2 H'M ) 2 H! M) [1]
0 —— H'M[y] -2~ B 2> B~ H'Mn)

Here ¢(x) =x/2. If the bottom sequence is exact, then the inclusion i is
an isomorphism by [4, Remark 3.11]. To see the exactness, it suffices to
show that Kerd = Im 2, which is seen by o(x] ,/2""!) = vgn(s—l)ﬂn_lhzo for
odd s> 0. | O

COROLLARY 2.4. The image of ¢ : H'MP[t;] — H'M/[1] is zero.

Proor. Note that each integer s> 0 is expressed uniquely as 2"*!¢+
2" —1 for some t,n > 0. Therefore, each generator v/ € HlMlo[tl] fors >0
is the image of xlzf;'/2"+1 under 6. m

THEOREM 2.5. H M} [1] =0 for s> 0.

3. Proof of Theorem 1.1

We will study H*MZ[t] for s >0 by using the exact sequence

(3.0) oo HM 0] S H M2 (0] > HM2[n) > HS M 0] —
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associated to the short exact sequence
(32) 0 — Mi[n] 5 M) = Mi[n] — 0,

where ¢(x) = x/2. Here, H*M = Exty), gp (BP, M) as before. Consider the
submodules

Ay = 03K(2),[v3, hao) ® A(har, h30,h31)  and
Az = v3K2[03]) ® A(ha1, h3o, 1)

of H*M'[t1], where K(2), = Z/2[v}'], K? = Z/2[v}?] and an element x of the
modules is considered to be an element x/v; of H*M[t;]. Put Ag = A/ A
as a module. Then, it is shown in [8, Th. 6.13] that

HM{[1n] = (43 ® A(p,))*

for s > 4 and H4M11 [11] = (Ag ® A(pz))4 @ U3K3[U§]{h21h30h31p2}, where (]\4)Y
denotes the submodule of M consisting of elements of cohomology dimension s.

The exact sequence (3.1) defines the Bockstein spectral sequence H* M, [t;]
= H*M}[t;]. The differential &, is defined to be d, =dp: H*M]![t] —
H**'M|'[1)] for the maps 6 and ¢ in (3.1). Then we have the following lemma.

LemMma 3.3.  The differential d, of the Bockstein spectral sequence acts on
AY as follows:
di (031 x) = v3"xhyg

for an integer u and x € Ag with vy ¥ x.
Proor. Each cohomology class is represented as follows:
h20 = [Zz], h21 = [lg], h30 = [13] and h31 = [l‘32]

For the diagonal map 4, Quillen’s formula 4(z,) = Y(n) + >_;_; mi(¥i(n) —
A(ty—i)’ k) together with Hazewinkel’s formula shows that 4(#;) = %% (2) =6 ®
1+1®1% and A(lg,) = 5”0(3) —Hh@®HL=6R1+1QR11 mOd(4,l)1), where
() = Z,-l:o tf ‘ ® t,"_k; "and 7o = 1. Thus this together with Lemma 2.1 shows

that
(34) d(vz) = 2[2, d(Ug,) = 21‘3, d(l%) =26L®¢t and d([%) =2QR 1

mod(4,v) in Q*v5'BP.. By the definition of the differential of the cobar
complex, the element d(v3*"'x/4) of Q*MZ[t;] is computed

d(v3""x/4) = d(v3")x/4 + 03" d(x/4)

= v3"tx/2 4 03" d(x) /4

v3“xha0 /2 + v3 1y )2,
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where y is an element of Q*v;!'BP./(4,v{)[t1] such that d(x) =2y. We see
that y # +v, 'xhy mod(4,v1) by (3.4). Note here that 73 ® 73 represents the
cohomology class h3i(v5 oo + v5%ha1) + vy 303 haohar (see [5, p. 243, (1)])). O

The lemma indicates that /,; is redefined as
hy = [l% + Uzlz]

and gives rise to the differential pattern on A49:

0 1 2 3 4
vv3hyy — v3h? V033 — v3h
2U3H20 310 2U30M50 RUSN)
2 3 4
U3 U3h20 1)21)3//120 = U3h20 l)zl)3h20 =
3 3
v3hy — v3hyha vvhyhy = v3h50h01
2 3
v3hhy —  v3shyh 020305021 =
2 3
v3hyhs —  v3hyhs; v203M50h3; —
2 3
v3hy = v3hyhs; vshyhs v3hyphs;
v3hothsy; —  v3haohaihs; vavshdghnhy  —

2
vav3hoohohyi —  vshyhaihs;

vavshaohsohsr —  vsh3yhsohs
v3hzohsr —  v3haohszohan vavshighsohs
vav3hphzohsr v v3hyoharhzohs
vav3hohathzohs

in which x +— y denotes the dj(x/vi) = y/v; for x/v1,y/vi € A9.

Observe the long exact sequence (3.1), and note that the module A, given
in the introduction is Im ¢. Then the above differential pattern shows that &
is a monomorphism on A~2, since A, is generated by the elements at the tails of
the arrows.

LEMMA 3.5. The module A, given in the introduction fits in the short exact
sequence
0— ()5 () L (4)" =0
for s> 3.

ProOF OF THEOREM 1.1. Since H M|[1)] = (49 ® A(p,))* for s >4, we
have the commutative diagram

(A2 ® A(py) ™ 5 (M@ A(py)* L (A2 ® A(p2)* =2 (A2 ® A(py))” = (49 ® A(py)) ™

J | l l |

H'Mn - HMn) S BHM2n] 2 HMEn] - HS M4
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of exact sequences by Lemma 3.5. If we show that the images of the left
J’s agree, then the map ¢ is an isomorphism by [4, Remark 3.11]. We denote
the maps § and ¢ in the top sequence by ¢’ and ¢’. Then Im ¢’ < ImJ. For
any x ¢ Imd’, ¢'(x) = x/2 # 0 and 6'(x/2) # 0, which shows g(x/2) # 0 since
0" =0dg. Therefore, p(x) = g(¢'(x)) =g(x/2) #0, and x ¢ Im . O

LEMMA 3.6. The Bockstein spectral sequence H*M][t|] = H*MZ[t,] splits
into two spectral sequences Ay = (Ag@® A1 @ A2)) @ A(p,) = Ay and AY® A(p,)
> 4Q A(p,). Here, the module Ay denotes a module fitting in the long exact
sequence

0— ()2 (A)° 2 ()" S () L
0 K NS ~.s O K
L () () S () S ()

Proor. By Lemma 3.5, we have the subspectral sequence Ag ® A(p,y) =
A, ® A(p,). Furthermore, Lemma 3.5 implies that all elements of 49 ® 4(p,)
do not survive to the E)-term of the Bockstein spectral sequence. It follows
that the differential d. acts on 4;. Now A~1 is generated by elements X, such
that 2"7'X, = ¥ = ¢(x) and §(X,)’s are linearly independent. ]

REMARK. A, is not determined here. Even the 0-dimensional part (4;)°
of it is very complicated (see. [6], [9]), though (41)* =0 for s > 4.

4. Proof of Theorem 1.2

Recall [8] the spectrum C such that BP.(C) = BP,/(2,v{)[t]. Then C
fits in the cofiber sequence

CLWAT() 2 WAT() — 2C,
which induces the short exact sequence
0— M|[0] % Mi[0] = Mg[n] — 0

by applying BP.(L»—). Let E®'(X) denote the E,-term of the vy!BP
based Adams spectral sequence converging to 7, (L,X). Then the E,-term
is EXt:;BP*(u;‘BP)(”EIBP*’ v3'BP.(X)), which is isomorphic to H*v;'BP.(X) by
the change of rings theorem of Hovey and Sadofsky [1, Th. 3.1]. Indeed, we
use the modified one [3, Th. 3.3]. In our case, we consider the spectral
sequences E;(C) = H*M][t;] = n.(L,C) and E;(WAT(1)) = H*MZ[t] =
(Lo W AT(1)).

For the sake of simplicity, we compute differentials by setting v% =1. In
[8, Lemma 7.4], it is shown that for any vy x/v| € Ey"(C)N 4,
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3,u+2
(4.1) ds (03 x/v1) = 03 xh3, o1 € EyTVUTA(C).

The other differentials on E*(C) are trivial except for the differentials

(4.2) d3(x3 o /1) =

21(5—1)+4(2"2=1)/3+1 :
p2 =D )3+ hathso/v1  nis even
3 20 and

Uzvgn(s—l)%(zn—s,l)/3+1h§0h21h31/Ul nis odd

U%ns_3h%0h21h3oh31/l)1 n is even

ds(X3gusrhag /0™) = . i
3( ndntl 20/ ! ) {1221)32 s_3h§0h21h3()h31/1)1 n is odd

for n > 2 and odd s > 0, and a vy-multiple of them ([8, Lemmas 7.6 and 7.8]).
Here hy is defined as the class represented by the cocycle #, in the congruence
d(v}) = 207, mod(4), whose leading term is v3vits.

Lemma 4.3. In the Adams-Novikov Ej-term for m.(LoW AT(1)),

ds(03x/201) = vav3xh1 13, /201 and d3 (0203 /2v1) = vav3vh3) /201
for X € K*z[l)gw ® A(h30,h31) and S KE[U?,hzo} ® A(h21,h30,h31), and
2"(s71)+4(2"*271)/3+1h§0h30/2v1

i 1A%
d3(x;hoo /207") = 3 -
U2U§ (s—1)+8(2 "71)/3+1h%0h21h31/201 n s 0dd7

n is even

203 3 h3h3ohsy /20 n is even

ds(x3gns1h0/20(") = .
3(xngn+1 20/ %1 ) {vw% S_3h§0h21h30/’l31/201 nis Odd,

203 /1§0h21h31/2v1 n is even

dg(vzx;l;;)/2vf”) =

; 21(s—1)+8(2"3-1)/3+1
{ and

Uzvgn(;-1)+4(2nfz_1)/3+1h§0h30/201 s odd

020353 h3gho1hohs1 /201 n s even

d $ n }/lv 2 i = n
3(02X, g 1hao/207") {v2v§ =313, haohs1 /201 n is odd

for positive integers s and n with n > 1. Here the equations are all up to sign.

Proor. Note that vsxh3y/20; = vav3xhaih3y/2vy in Ej(W AT(1)), since
5(vzv3xh§0/2m) = vgxhgo/vl —|—vzv3xh21h§0/vl by Lemma 3.3. In the same
manner as this, we have the relations ugn(“1>+4(2"7272’:(”))/ 3+1h§0h21h38<n)/2m
= 02U§/7(S71)+4(2n7 728(H)>/3+1h§0h35(n)/21)1 and U%ns_3h§0h21h30h31/21)1 =
va03 S 3 h3ghaohs1 /201, since h3, = h3,. Then the differentials in (4.1) and (4.2)
of the form d3(x) =y (resp. ds(x) = wvpy) yield differentials d3(x/2) = vyz/2
and ds3(v2x/2) = voy/2 (resp. ds(x/2) =vpy/2 and d3(vax/2) = vpz/2) of
E;(W AT(1)), where z is an element such that (w) =y —ze H*M|[1] for
an element w of H*Mg[1]. m
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COROLLARY 4.4. The module A; given in Introduction is_a submodule
of H*MZ[t)). In other words, the map sending an element x € Ay to x/2v; €
H*MZ[t] is a monomorphism.

Proor. It suffices to show that x/2v; # 0 eH*Mg[zl] for xeA;. The
first equation of Lemma 4.3 shows ds(x/2v;) # 0. O

COROLLARY 4.5.  After a suitable_modification of A1°, the v ' BP based
Adams differentials d originating in A\° are all zero.

Proor. The only non-trivial differentials originating in A1 are given
in Lemma 4.3, and their targets are all in the image of d; originating in
(42 @ A21) ® A(py). O

ReMARK. This modification of 4;° does not change the additive struc-
ture of 4;° nor the E-term H *MZ[t]. In fact, each generator x € A" is just
replaced by x+ y for some ye (4, @A;) ® A(p,).

THEOREM 4.6. The Es-term of the vy'BP based Adams spectral sequence
contains Ay @ A(p,), which is obtained from the subgroup As ® A(p,) of the
E>-term. Here, AAZ is the module given in Theorem 1.2.

Proor. The v; IBP based Adams differential ¢; makes (A;,d3) a dif-
ferential module by Lemma 4.3, whose homology is

Ay = 0303 K2 [0}, o]/ (13y) ® Ao, hsg, sy ).
We decompose AAz’ into the direct sum of the two modules
Ay’ = 0203 K2 [13] ® A(hao, hat, 30, h31) @ vav3hiy K2 (03] @ A(h3o, h31) and
A/z\zl = 1)21)3/’1%0/’121]{*2[1);‘] @ /l(h30,/’l31).

The first differential in Lemma 4.3 gives the isomorphism ds :A; ~ /Iz\z’ , and
we obtain the theorem by setting

Ay = 4y ]

PROPOSITION 4.7. The vy!BP based Adams spectral sequence converging
to m.(LyW AT(1)) collapses from the Ey-term. That is, Ef = E .

o0

PROOF. Since (A4;)° =0 for s>4 and (4> ® A(p,))* =0 for 5> 5, we
see that E{ =0 for s> 5. Therefore, the differentials d, are all trivial for
r>5. Suppose that ds(x/2') = y/2 for x/2! € A;. Then y/2 e Ay’, and so
3(y/2) #0€ ES(C). Send the relation ds(x/2') = y/2 by 6, and we see that
ds(5(x/2")) =5(y/2) e ES(C). Since E¢(C) =0 by [8, Corollary 7.9], there is
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an element z # 0 € E; such that d5(z) =6(y/2). Then, ¢,(z) must be hit by
x/2*1 under d;. By Lemma 4.3, there is no such differential. O

From the proof of this together with Corollary 4.5, we obtain the fol-

lowing:

CorOLLARY 4.8.  The differentials d, of the vy 'BP based Adams spectral

sequence for m.(LyW AT(1)) are trivial on A,° c E;.
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