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A note on the Hopf homomorphism of
a Toda bracket and its application
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ABSTRACT. The purpose of the present note is to extend a formula between the Toda
bracket and Hopf homomorphism. As an application, we show that the generator of
the 2-primary component of the homotopy group 71,(S?) is taken as a representative
of a specific Toda bracket. And we shall give a short proof of the existence of the
unstable Adams map.

1. Introduction

In this note all spaces, maps and homotopies are based. For a space X,
we denote by 2'X a suspension of X and by X A X a smash product of X and
itself. The Toda bracket [8] has some properties relative to the Hopf homo-
morphism H : [YK,S"!] — [YK,S5**1], where K is a CW-complex and S” is
the n-sphere. We shall extend the n-sphere to a CW-complex with exactly one
vertex, that is, we define a generalized Hopf homomorphism H : [XK,XA] —
[ZK,2(A A A)] for a CW-complex 4 with one vertex and prove the properties
between the Toda bracket and this Hopf homomorphism. Then we can apply
them to spaces of suspensions of the real projective plane and the quasi-
quaternionic projective plane. From this extension, we find out a roundabout
approach to determine the 2-primary component n}, of the homotopy group
714(S7) [8].  And we shall prove a short and intuitive proof of the existence of
the unstable Adams map [6], [3].

The authors wish to thank Professors Kachi, Matsuda and Tamaki for
useful comments and advices.

2. Generalizations of Toda formulas

We shall recall the James construction [1]. Let 4 be a Hausdorff space.
Denote by A, the reduced product space of A4 [1]. Let gy be the base point of
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A, then A, is the free monoid with the unit element @y generated by 4. A
point of A, is a formal product «; ...a, of elements of 4. For a Hausdorff
space Band amap f: 4 — B,amap f : Ay, — B, is given by f,(a;...a,) =
flar)... fla).

Let 4, be a subspace of 4, which consists of formal products of two
elements of 4. Consider a map 4’ : 4y — A A A defined by h'(ajaz) = a) A a.
By the method of James [1], we can construct a map 7 : A,, — (4 AA4), such
that the restriction h|, : A — (4 A A4),, is the constant map to the base point of
(AnA),. This map h is defined directly by the formula

hay...a,) = H(aa(l) ANdg(2))s

a

where o : {1,2} — {l,...,n} is a map such that ¢(1) < ¢(2) and the order of
the product [] in (4 A 4), is lexicographic from the right. The map # satisfies
the following.

o0

LemMA 2.1. Let A and B be Hausdorff spaces and f : A — B be a map.
Then ho f, = (fAf),, oh.

We denote by QX a loop space of a space X. Let 4 be a CW-complex
with exactly one vertex and let j/ : 4 — QXA be a map which is defined by the
formula j'(a)(f) = (a,t). The map j' can be extended to the reduced product
space A, of A such a way that a;...a, is mapped to a loop in XA which
is represented by a suitably weighted sum of the loops j'(a)),...,Jj (as) [1].
Denote by j: A4, — QXA the resulted map. Then j is a week homotopy
equivalence map [1] and hence j.:[K,A,] — [K,QXA] is bijective for an
arbitrary CW-complex K. Let Q: [2K,2A] = [K,QXA] be the adjoint iso-
morphism. Define an isomorphism Q; by

Q= 10Qy: [ZK,ZA) = [K, A,
Define a generalized Hopf homomorphism H by
H=0Q" oh,0Q:[2K,XA] — [ZK,Z(A A A)].
From (1.11) of [8], the following diagram is commutative:

K, A] —>— [ZK,ZA]

where i: A — A, is the inclusion.
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Now we obtain the following propositions.

PrOPOSITION 2.2. Let A and B be CW-complexes with one vertex and let
K and L be CW-complexes. Let o€ [XK,XA), pe[L,K]| and ye[A,B]. Then
H(uoXf)=H(a)oZf and H(Xyoa) =2(yAy)o H(x).

PrROPOSITION 2.3.  Let A be a CW-complex with one vertex and let K, L and
M be CW-complexes. For n>1, let o€ [2"K, XA, fe[L,K] and ye[M,L]
satisfy the conditions that 0.0 X" =0 and foy=0. Then H{o,2"f,2"y}, =
{H (), 2", 277},

Propositions 2.2 and 2.3 are partially generalized versions of Propositions
2.2 and 2.3 of [8]. The proofs are similar to [8§].

For any spaces X, Y and an element o € [X, Y], we denote by CX a cone
of X and by C, = YU, CX a mapping cone of «. We use the identification
2C, = Cxy.

Let A be a CW-complex with one vertex and K be a CW-complex. Let
0:[CZK,2K; Ay, Al — [2K, A] be the connecting homomorphism of the exact
sequence of the pair (4,,4). Define a homomorphism I" by

I'=07'oh,00' 1 0[CZK,2K; Ao, A] — [Z3K, Z(A A A)]/H[Z*K, 2 4],

where H[Z3K,XA] = (27" o h.)(Ker d).
We shall prove a partially generalized version of Proposition 2.6 of [§]
which also generalizes Proposition 3.4 of [2].

ProposSITION 2.4, Let A be a CW-complex with one vertex and L, M
and K be CW-complexes. Consider the elements we[L,A|, fe[XK,L] and
y e [M,XK] with the conditions that X(aof) =0 and foy=0. Then H{Zu,
ZB,Ep} = —T(2of)oX?.

Proor. The proof is done by the parallel argument to that of Proposition
2.6 of [8]. Leti: A — A, be the inclusion. By the relation X(x o ) = 0 and
(1), we have i,(x) o f = 0. Then there is an extension 7.(x) € [Cg, L; Ao, A] of
i(a) and let @: (Cg,L) — (Ao, A) be a representative of i,(x). Consider the
exact sequence of the pair (Cg, L) and let i’ : L — Cy be the inclusion. Since
i'(B) =0, there is an element fe[CXK,XK; Cgp, L] such that the restriction
b| sk i 2K — L of a representative b of f represents f. Then there exists a
map a': 22K — (A A A)_ such that the following diagram is commutative:

o0

(CIK,ZK) —2— (CpL) —2s (A, A)

S |

(XK, ko) — ((AnA),,wo),
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where pi, p» are the shrinking maps and ko, wy are the base points of 22K,
(AnA),,, respectively.

Let j € [ M, Cg] be a coextension of y. From the above diagram and the
property of the coextension, we obtain /. (i,(x) o §) = (al o pr.)(F) = aL(Zy).
By Proposition 1.7 of [8], h.(i.(a)op) € h{i.(x),p,y}. Since the restriction
(@ o b)| sy represents oo B, we have that a’ o p; and also a’ represent an element
of (07 (xop)). Then a’'(Xy) € h. (07 (0 p)) o Zy. Hence h,(i(x)o7) is a
common element of /,{i.(«),f,7} and h,(0 '(x0f))o2y. By Propositions
1.2, 1.3 of [8] and (1), we have

H{Xu, 2B, Xy}, = (.Q[1 o h, oj;‘ o0 Q){Zuo, 2B, 2y},
= (@7 o0 7 ) {(Q00 2)(2), 8,7}
> —(@7" o h){(@1 0 2) (), .7}
= -0 (h{in(), ,7}).
And from (1.12) of [8],
—I(xof)oX? =07 (h(07 (2o ) 0 2%
= —Q; (h(07 (20 B) 0 27).

Then it follows that H{Xo, 28,2y}, and —I'(xo ) o X%y have the common
element —Q;'(h.(i.(2) 07)). From Lemma 1.1 of [8] and Proposition 2.2,
H{Xu, X, Xy}, is a coset of the subgroup

H([Z3K,ZA4]0 X% + Xoo X[XM, L)) = HZ3K, X A] o 2%y,

and, by the definition of I', —I'(x o0 f8) 0 X2y is a coset of the same subgroup.
Then we obtain H{Xa, X, Xy}, = —I'(x0 ) o X%y and the proof of the prop-
osition is completed. ]

Let A be an m-connected CW-complex with one vertex and let K be a
CW-complex. By the theorem of Blakers-Massey, the map % induces an iso-
morphism

h.: [CEZK,XK; A, Al = [S*K, (AN A),]

for dim K <3m — 1. Under the condition that dim K < 3m — 1, define a
homomorphism 4 by

A=00h'0Q:[2°K,Z(AAA)] — [ZK, A].

From the definitions of the maps I” and 4, we have
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ae I(A(x)) (2)

for e [Z3K, Z(A A A)].
Finally we obtain a partially generalized version of Proposition 2.5 of [8].
We can prove it by the parallel argument to [8].

PrOPOSITION 2.5. Let A be an m-connected CW-complex with one vertex
and let K, L be CW-complexes with the conditions that dim K <3m —1 and
dim L <3m—1. Letae[X’K,X(AAA)] and fe[XL,XK]. Then A(oo X°p)
= A(a) o f.

3. The generators of =z, , for 5 < n <7 represent Toda brackets

In this section and the following section, we sometimes identify a map with
its homotopy class. We denote by 1y the homotopy class of the identity map
of a space X and let 1, =i15:. By Proposition 1.9 of [8], we obtain the fol-
lowing.

Lemma 3.1.  For any element o€ (X, Y], leti:Y — Cy and p:C, — ZX
be the inclusion and collapsing maps, respectively. Then the Toda bracket
{Zo, p,i} = [2Y,2Y] is represented by —isy.

Let RP? be the real projective plane and set M" = X" >RP? for n > 2.
We denote by i, : S"' — M" and p, : M" — S” the inclusion and collapsing
maps, respectively. Let #, € 73(S?) be the Hopf map. Set 7, = X" %5, and
n2=n,0n, for n>2. Since ;0214 =0 and 2;307; =0, there are an
extension 7j; € [M>, 5% and a coextension 7j; € ns(M*) of 5;. We set 77, =
X"=35, and 7, = X" *f, for n > 3. Note that there exists a lift 7, € 7y (M?) of
ns such that X7, =75 [5]. We note the following.

[M"2, 8" = Za{7,}  and 27, =nypwa for n=3. (3)
Tua(M"™Y = Z4{7,}  and 24, = ip1n? for n > 2. (4)

Let v/ be a generator of n} =~ Z4 [8] and let 0, = S3U, e’. We denote by
ig:S*— 0y and pg: O, — S the inclusion and collapsing maps, respectively.
We recall [8] that

{200, 1,, 20p11} = 77,% for n>3 (5)
and
Msfla € {3, 214,ma} 2V mod 20 = 3. (6)

A Toda bracket {15, 2V', po} = [£0,,S?] is well-defined because 732V = 0
and (Zv')pp =0. By Lemma 3.1, we obtain —u € {ZV/, pp,ip}. Then the
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Toda bracket {15, 2V, po} is represented by an extension 75 of #;. We set
i, = X" 37, for n > 3. The first relation of the following lemma is pointed
out by Oda.

Lemma 3.2. {213,%3,2V'} =0 and 7], is of order 2 for n = 3.
Proor. By [8], 7s5(S?) =Zo{n3}, ms(S?) =Zo{v'n?} and X' = 2vs.
Then the indeterminacy of a Toda bracket {2i3,75, Xv'} = ng(S?) is
75(S?) 0 22 4 213 0 13(S?) = 0.

So {23,715, Xv'} consists of a single element 0 or v'nZ. By the fact that
76(S*) = Zo{n3}, nsve = 0 [8] and by Propositions 1.2, 1.3 of [8] and (5), we
have

—2{213,13, 2"} = {214,14,2v5},
> {214,14,215}, 0 v
= 774%"'6
=0  mod 75(S*) 0 2v6 + 214 0 Z7g(S?) = 0.

Hence X{213,75,2v'} = 0. From the fact that X : ng(S3) — 79(S*) is a mono-
morphism, the first half of the lemma is proved.
By Proposition 1.4 of [8] and by the first half, we see that

2713 = 213 073 € 213 0 {13, 2V, po} = {213,113, 2V} 0 Zpp = 0.

So the order of 7/, is 2 for n > 3. This leads to the second half, completing the
proof. ]

By Lemma 3.2, we can define a Toda bracket {;,2u,7;} = [2°0,,S7].
By (6), {n3,214,7,} is represented by ' or —v/, where v’ is an extension of V'
Let v, be a generator of 7, ; = Zg for n>5 [8]. By Lemma 3.1, we obtain
that a Toda bracket {vs, 2%/, Z%po} = [£°0,, S°] is represented by an exten-
sion vt of vs. We set ¥ = X"V, for n > 5. By (5), 213 0 {3, 21,71, } = n37t.
Then we obtain

2V = k. (7)

Let ¢” be the generator of n7}, =~ Z, [8]. By making use of the cofibration
starting with v/, we obtain

27, = X% mod ¢"X%pg and 4v% = i), (8)

and so V) is of order 8 for n > 5.
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We consider the homotopy exact sequence of a pair (Q,,S?):
ig. a
17(S%) = 77(Q2) = 11(02,8%) = 76(S7).

By the Blakers-Massey theorem, we obtain 77(Q,,S*) = 77(S”7) = Z and Im 0 =
Z4{v'}. Since n7(S?) = Zo{v'n¢} [8] and ig.(v') = 0, ig.(n7(S?)) =0. So we
get that 77(0,) = Z{thvﬁ}, where 4176 is a coextension of 415. We set Zl;, =
X "’6176 for n > 6. By the similar argument, we obtain the following.

LEMMA 3.3. 7,.7(2"03) = Z{ 41,6} ® Zo{(Z"ip)Vusatlp s} Jor n=1,2

and 7,17(Z" Q) = Z{41y16} for n=0 and n > 3.

We recall that 71'10(S5) = Zz{V57’]§}, 7'[11(56) = Z{A(113)}, 7T,1+5(Sn) =0 for
n>7 and 7,.6(S") = Zo{v?} for n>5 [8]. As is easily seen, we obtain the
following.

Lemva 34, (MU S% = Zo{vsngio} ® Zo{vipn} and [M"6 S"] =
Zz{vﬁpn%} for n>6.

By the fact that 2v/ =73, 4(19) = £(2v4 — 2v') [8] and by (3), we obtain
nii6(Ztio)iiy = 2(2v')it; = (2V')nipy = A(19) © 17 po. 9)

By the fact that X2v' = 2vs, A(111) = vsyg [8] and by (3), we obtain
IW(%ig)ity = 2vsifs = vsig pro = A1) © fgpio- (10)

By the fact that 4(113) € {vs, 79,2110} mod 24(13) [8] and that 7, represents a
Toda bracket {#g, 2119, p1o}, We obtain

Vé(26iQ);79 = V6779 € Vg O {779,2110,[)10} 3 A(l]j,) o p1 mod 0. (11)

Let ¢” and o’ be generators of n¥; =~ Z4 and n], = Zg, respectively [8].
We recall that the elements ¢”,¢” and ¢’ have the properties H (o) = 4vo,
H(c") =nj, and H(c') = 5,3, respectively [8]. Now we show the following.

THEOREM 3.5. (i) 0" = {n2ih, (X3ig)ifg, fio}y-
(i) o” ={2%, (%), 710}, mod Zg”.
(i) o' =o mod Xa' for o€ {v, (271'Q)ﬁ10,ﬁ11}1.

Proor. Each Toda bracket is well-defined by use of (9), (10), (11) and (6).
The indeterminacy of {n2#}, (Z%ig)7is, 7o}, i

(M, S o 4y + 37t 0 Zm11 (24 Q0n).
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By the fact that ngvo =vsy;; =0 [8] and by (6), we obtain vsygijefo =
+2vsngv9 = 0 and vZp117j;9 = vy, = 0. Then, by Lemma 3.4, [M!'! S o7y
=0. From the fact that 75(S7) = 0, we have 71 En11(24Q2) = 0 and hence
n2ih o Xmy(24Q,) = 0. By Propositions 2.4, 2.5, (2) and (9), we have

H{niiy, (Zig)iis, figky = —I (n37i6(E*ig)i1y) © iy

= ’731’117710

= 4V9.

Since H : 7}, — n}, is a monomorphism, we have (i).
Next the indeterminacy of {3V, (X%p)ifo, 710} 1S

[M'2,8% 0y + 2%V 0 Zr1p(2°0s).

By the relation voz;, = 0 and Lemma 3.4, [M'?,S% 07,, =0. From the fact
that 73, =0 [8] and by Lemma 3.3 and (7),

2V o Zmp(2°0r) = 23 (v o mpo(23 Q1)) = X373, = 0.
By Propositions 2.4, 2.5, (2) and (10), we have
H{ZSE (EGiQ)ﬁgaﬁlo}l = *F(ZZW(ZSI'Q)’?S) ofy =NMPln = ’7121-

By the fact that n}, = Z,{¢""} and by the EHP-sequence ((2.11) of [8]), we
have (ii).
The indeterminacy of {¥, (Z7ig)i0, 711}, i

(M, 87 0, + V50 Zmi3(X°02).

From the fact that vion;; =0 and by Lemma 3.4, [M!* S"]o#,, =0. By
Lemma 3.3 and (8),

70 Xm3(200)) = Z(7 0 mi3(2°01)) < 27,
By Propositions 2.4, 2.5, (2) and (11), we have
H{vy, (Zig)ig, i}y = — T (V6(Zig)ils) 0 fiiy 3 prafiy =3 mod 0.

By the fact that %, = Z4{c"”} and by the EHP-sequence, we have (iii). This
completes the proof. O

Finally we show the following.

COROLLARY 3.6. 20" =2Xd¢" and 2¢' = +2c".
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Proor. First we note that 200" =20" + [16,16] o7, [9]. Since
2:n8 — =], is an isomorphism, we obtain [i,1]0%;;, =0 and hence
2ig00” =2¢". By Theorem 3.5 and (7), we see that

26" =2igoa”
e {223V, (Z%ig)Tg, o}
= {mattg, (£%i0)io, o}
> = X{n3i, (Zio)iis, 1o}
S 5 mod [M'2, 5% o, + ’7%’7{; 0 Xm2(2°0,) = 0.

Thus the first half of the corollary is proved.
By Theorem 3.5, we have o' + ki Za" € {}, (X7ip)#,0, 711 }; for some k€
{0,1,2,3}. Then

20" +2k1Za" = 2170 (6’ + k1 Za") € {2V, (Z7ig)ig, 111 }-

By (8), we obtain 2V, = X%/ + kya" X°p for some ky € {0,1}. So, by the first
relation and Proposition 1.6 of [8], we see that

{29, (Zig)io, i} = {Z + 2ka(26") 2 po, (Xig)i10, 7111 }
< {2, (Z7ip)g, i} + {2ka(20") 2P0, (2 Ti0) 10, 7111 }-

By Theorem 3.5, +X¢" € {Z*/,(X7ip)io,7;;} and by Corollary 3.4 of
(7], 2kaXc" € {2k2(26") X pg, (Z7ig)7110, 711 }- Furthermore, by Lemmas 3.3
and 3.4, both indeterminacies of these Toda brackets are 0. Hence we obtain
26" = +26" 4+ 2(—k) + k2)Zc”. This leads to the second assertion, completing
the proof. O

4. Existence of the unstable Adams map
First we recall the following [3].
ne(M*) = Z4{0} ® Zr{il;ns} and 25 =iy (12)
We show the following.

LEmMA 4.1. ﬁ3n§ﬁ7 =13Vshgpo and ﬁwéﬁg =0.

PrOOF. By the fact that 3 = 2v', vt = n3v4 (8], 75 € {is, 213,73} and by
(3), we have
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71313717 € {is, 213,13} 0 1377
< {ig, 213, 2v'7j6 }
= {ia, 213, 113v4177 ps }
> {ia, 213,113} 0 vshg po
s#yvsigpe mod mg(M*) 0 2(Zv)ij; + iy o [M?, S7].

Since my(M*) = Zo{isn;}, ma(M*) 02(Zv))ij; =0. Obviously we obtain
[M°,S3] = Z{v'neii,}. By (12), igv'ngii; =25 0n¢ij; =0 and hence iy o
[M°,S3] = 0. This leads to the first assertion. By the fact that vgry = 0 [8]
and by the first half, we obtain 74n2ijs = fl4venopio = 0. This leads to the
second half, completing the proof. O

Now we show the existence of the unstable Adams map. By Lemma 4.1,
we can define a Toda bracket

{ﬁ477677/§a (ZSiQ)ﬁéiv ﬁ9}1 < an(MS)'
By Theorem 3.5,
s o {fiangits, (2i)is, i by = {n3iiy, (Zig)is, fio}y = o™

///]

So the Toda bracket {7475, (X°ig)is, 7o}, is represented by a lift [¢"] of ¢
To show that [¢"] is extendable to the unstable Adams map from M!* to M3,
it suffices to show the following.

LemMa 4.2. The order of [d"] is two.

Proor. By the fact that ’73 = 4vs, Vet =0 and 47, =0, we see that
2[0") € {faneity, (27ig)ils, fig} © 2112
< {7i4n6i7, (ESiQ)ﬁSa iloﬂg}
< {74, 4ve. 13}
> {0, ve, 75}
50 mod 71g(M?) o 5}y + 7y 0 m12(S®).

By [5], mio(M?) = Za{isv;} ® Zo{[fla; i5] 0 19}.  So mio(M>) oy =0. By [4],
fiave = isvans. Then 7j,v2 = isvan2ve = 0 and hence 74 0 712(S) = 0. Then we
obtain 2[¢”] = 0. This completes the proof. O

Finally we shall show that H(u;) = ¢”, which is a part of Lemma 6.5
of [8]. Since X(75|c"]) € {n4, 215,06}, we have #j;[c"”] = 3 mod nye4. Then
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ws € {V'nith, (X°ig)iis, 7o}, Hence, by Proposition 2.3 of [8] and Theorem 3.5,

H(u) = o,
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