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A note on the Hopf homomorphism of

a Toda bracket and its application
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Abstract. The purpose of the present note is to extend a formula between the Toda

bracket and Hopf homomorphism. As an application, we show that the generator of

the 2-primary component of the homotopy group p12ðS5Þ is taken as a representative

of a specific Toda bracket. And we shall give a short proof of the existence of the

unstable Adams map.

1. Introduction

In this note all spaces, maps and homotopies are based. For a space X ,

we denote by SX a suspension of X and by X5X a smash product of X and

itself. The Toda bracket [8] has some properties relative to the Hopf homo-

morphism H : ½SK ;Snþ1� ! ½SK ;S2nþ1�, where K is a CW-complex and Sn is

the n-sphere. We shall extend the n-sphere to a CW-complex with exactly one

vertex, that is, we define a generalized Hopf homomorphism H : ½SK ;SA� !
½SK ;SðA5AÞ� for a CW-complex A with one vertex and prove the properties

between the Toda bracket and this Hopf homomorphism. Then we can apply

them to spaces of suspensions of the real projective plane and the quasi-

quaternionic projective plane. From this extension, we find out a roundabout

approach to determine the 2-primary component p7
14 of the homotopy group

p14ðS7Þ [8]. And we shall prove a short and intuitive proof of the existence of

the unstable Adams map [6], [3].

The authors wish to thank Professors Kachi, Matsuda and Tamaki for

useful comments and advices.

2. Generalizations of Toda formulas

We shall recall the James construction [1]. Let A be a Hausdor¤ space.

Denote by Ay the reduced product space of A [1]. Let a0 be the base point of
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A, then Ay is the free monoid with the unit element a0 generated by A. A

point of Ay is a formal product a1 . . . an of elements of A. For a Hausdor¤

space B and a map f : A! B, a map fy : Ay ! By is given by fyða1 . . . anÞ ¼
f ða1Þ . . . f ðanÞ.

Let A2 be a subspace of Ay which consists of formal products of two

elements of A. Consider a map h 0 : A2 ! A5A defined by h 0ða1a2Þ ¼ a15a2.

By the method of James [1], we can construct a map h : Ay ! ðA5AÞy such

that the restriction hjA : A ! ðA5AÞy is the constant map to the base point of

ðA5AÞy. This map h is defined directly by the formula

hða1 . . . anÞ ¼
Y
s

ðasð1Þ5asð2ÞÞ;

where s : f1; 2g ! f1; . . . ; ng is a map such that sð1Þ < sð2Þ and the order of

the product
Q

in ðA5AÞy is lexicographic from the right. The map h satisfies

the following.

Lemma 2.1. Let A and B be Hausdor¤ spaces and f : A ! B be a map.

Then h � fy ¼ ð f5 f Þy � h.

We denote by WX a loop space of a space X . Let A be a CW-complex

with exactly one vertex and let j 0 : A ! WSA be a map which is defined by the

formula j 0ðaÞðtÞ ¼ ða; tÞ. The map j 0 can be extended to the reduced product

space Ay of A such a way that a1 . . . an is mapped to a loop in SA which

is represented by a suitably weighted sum of the loops j 0ða1Þ; . . . ; j 0ðanÞ [1].

Denote by j : Ay ! WSA the resulted map. Then j is a week homotopy

equivalence map [1] and hence j� : ½K ;Ay� ! ½K ;WSA� is bijective for an

arbitrary CW-complex K . Let W0 : ½SK ;SA�G ½K ;WSA� be the adjoint iso-

morphism. Define an isomorphism W1 by

W1 ¼ j�1
� �W0 : ½SK ;SA�G ½K ;Ay�:

Define a generalized Hopf homomorphism H by

H ¼ W�1
1 � h� �W1 : ½SK ;SA� ! ½SK ;SðA5AÞ�:

From (1.11) of [8], the following diagram is commutative:

½K ;A� ���!S ½SK ;SA�

i�
G

???yW1

½K ;Ay�;

ð1Þ
�������!

where i : A ! Ay is the inclusion.
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Now we obtain the following propositions.

Proposition 2.2. Let A and B be CW-complexes with one vertex and let

K and L be CW-complexes. Let a A ½SK ;SA�, b A ½L;K� and g A ½A;B�. Then

Hða � SbÞ ¼ HðaÞ � Sb and HðSg � aÞ ¼ Sðg5gÞ �HðaÞ.

Proposition 2.3. Let A be a CW-complex with one vertex and let K ;L and

M be CW-complexes. For nb 1, let a A ½SnK ;SA�, b A ½L;K � and g A ½M;L�
satisfy the conditions that a � Snb ¼ 0 and b � g ¼ 0. Then Hfa;Snb;Snggn H
fHðaÞ;Snb;Snggn.

Propositions 2.2 and 2.3 are partially generalized versions of Propositions

2.2 and 2.3 of [8]. The proofs are similar to [8].

For any spaces X ;Y and an element a A ½X ;Y �, we denote by CX a cone

of X and by Ca ¼ Y UaCX a mapping cone of a. We use the identification

SCa ¼ CSa.

Let A be a CW-complex with one vertex and K be a CW-complex. Let

q : ½CSK ;SK;Ay;A� ! ½SK;A� be the connecting homomorphism of the exact

sequence of the pair ðAy;AÞ. Define a homomorphism G by

G ¼ W�1
1 � h� � q�1 : q½CSK ;SK ;Ay;A� ! ½S3K ;SðA5AÞ�=H½S3K;SA�;

where H½S3K ;SA� ¼ ðW�1
1 � h�ÞðKer qÞ.

We shall prove a partially generalized version of Proposition 2.6 of [8]

which also generalizes Proposition 3.4 of [2].

Proposition 2.4. Let A be a CW-complex with one vertex and L;M

and K be CW-complexes. Consider the elements a A ½L;A�, b A ½SK ;L� and

g A ½M;SK � with the conditions that Sða � bÞ ¼ 0 and b � g ¼ 0. Then HfSa;
Sb;Sgg1 ¼ �Gða � bÞ � S2g.

Proof. The proof is done by the parallel argument to that of Proposition

2.6 of [8]. Let i : A ! Ay be the inclusion. By the relation Sða � bÞ ¼ 0 and

(1), we have i�ðaÞ � b ¼ 0. Then there is an extension i�ðaÞ A ½Cb;L;Ay;A� of
i�ðaÞ and let a : ðCb;LÞ ! ðAy;AÞ be a representative of i�ðaÞ. Consider the

exact sequence of the pair ðCb;LÞ and let i 0 : L ! Cb be the inclusion. Since

i 0�ðbÞ ¼ 0, there is an element b A ½CSK ;SK ;Cb;L� such that the restriction

bjSK : SK ! L of a representative b of b represents b. Then there exists a

map a 0 : S2K ! ðA5AÞy such that the following diagram is commutative:

ðCSK ;SKÞ ���!b ðCb;LÞ ���!a ðAy;AÞ

p1
p2

???y
???yh

ðS2K ; k0Þ ���!
a 0

ððA5AÞy;w0Þ;

�������!
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where p1; p2 are the shrinking maps and k0;w0 are the base points of S2K;

ðA5AÞy, respectively.

Let ~gg A ½SM;Cb� be a coextension of g. From the above diagram and the

property of the coextension, we obtain h�ði�ðaÞ � ~ggÞ ¼ ða 0
� � p2�Þð~ggÞ ¼ a 0

�ðSgÞ.
By Proposition 1.7 of [8], h�ði�ðaÞ � ~ggÞ A h�fi�ðaÞ; b; gg. Since the restriction

ða � bÞjSK represents a � b, we have that a 0 � p1 and also a 0 represent an element

of h�ðq�1ða � bÞÞ. Then a 0
�ðSgÞ A h�ðq�1ða � bÞÞ � Sg. Hence h�ði�ðaÞ � ~ggÞ is a

common element of h�fi�ðaÞ; b; gg and h�ðq�1ða � bÞÞ � Sg. By Propositions

1.2, 1.3 of [8] and (1), we have

HfSa;Sb;Sgg1 ¼ ðW�1
1 � h� � j�1

� �W0ÞfSa;Sb;Sgg1

¼ �ðW�1
1 � h� � j�1

� ÞfðW0 � SÞðaÞ; b; gg

I�ðW�1
1 � h�ÞfðW1 � SÞðaÞ; b; gg

¼ �W�1
1 ðh�fi�ðaÞ; b; ggÞ:

And from (1.12) of [8],

�Gða � bÞ � S2g ¼ �W�1
1 ðh�ðq�1ða � bÞÞÞ � S2g

¼ �W�1
1 ðh�ðq�1ða � bÞÞ � SgÞ:

Then it follows that HfSa;Sb;Sgg1 and �Gða � bÞ � S2g have the common

element �W�1
1 ðh�ði�ðaÞ � ~ggÞÞ. From Lemma 1.1 of [8] and Proposition 2.2,

HfSa;Sb;Sgg1 is a coset of the subgroup

Hð½S3K ;SA� � S2gþ Sa � S½SM;L�Þ ¼ H½S3K ;SA� � S2g;

and, by the definition of G , �Gða � bÞ � S2g is a coset of the same subgroup.

Then we obtain HfSa;Sb;Sgg1 ¼ �Gða � bÞ � S2g and the proof of the prop-

osition is completed. r

Let A be an m-connected CW-complex with one vertex and let K be a

CW-complex. By the theorem of Blakers-Massey, the map h induces an iso-

morphism

h� : ½CSK ;SK ;Ay;A�G ½S2K ; ðA5AÞy�

for dim Ka 3m� 1. Under the condition that dim Ka 3m� 1, define a

homomorphism D by

D ¼ q � h�1
� �W1 : ½S3K ;SðA5AÞ� ! ½SK ;A�:

From the definitions of the maps G and D, we have
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a A GðDðaÞÞ ð2Þ

for a A ½S3K ;SðA5AÞ�.
Finally we obtain a partially generalized version of Proposition 2.5 of [8].

We can prove it by the parallel argument to [8].

Proposition 2.5. Let A be an m-connected CW-complex with one vertex

and let K ;L be CW-complexes with the conditions that dim Ka 3m� 1 and

dim La 3m� 1. Let a A ½S3K ;SðA5AÞ� and b A ½SL;SK �. Then Dða � S2bÞ
¼ DðaÞ � b.

3. The generators of pn
nB7 for 5aaaaaaaaaaaaaaaaaaaaaaaa naaaaaaaaaaaaaaaaaaaaaaaa 7 represent Toda brackets

In this section and the following section, we sometimes identify a map with

its homotopy class. We denote by iX the homotopy class of the identity map

of a space X and let in ¼ iS n . By Proposition 1.9 of [8], we obtain the fol-

lowing.

Lemma 3.1. For any element a A ½X ;Y �, let i : Y ! Ca and p : Ca ! SX

be the inclusion and collapsing maps, respectively. Then the Toda bracket

fSa; p; igH ½SY ;SY � is represented by �iSY .

Let RP2 be the real projective plane and set Mn ¼ Sn�2RP2 for nb 2.

We denote by in : S
n�1 ! Mn and pn : M

n ! Sn the inclusion and collapsing

maps, respectively. Let h2 A p3ðS2Þ be the Hopf map. Set hn ¼ Sn�2h2 and

h2n ¼ hn � hnþ1 for nb 2. Since h3 � 2i4 ¼ 0 and 2i3 � h3 ¼ 0, there are an

extension h3 A ½M 5;S3� and a coextension ~hh3 A p5ðM 4Þ of h3. We set hn ¼
Sn�3h3 and ~hhn ¼ Sn�3~hh3 for nb 3. Note that there exists a lift ~hh2 A p4ðM 3Þ of
h3 such that S~hh2 ¼ ~hh3 [5]. We note the following.

½Mnþ2;Sn� ¼ Z4fhng and 2hn ¼ h2n pnþ2 for nb 3: ð3Þ

pnþ2ðMnþ1Þ ¼ Z4f~hhng and 2~hhn ¼ inþ1h
2
n for nb 2: ð4Þ

Let n 0 be a generator of p3
6 GZ4 [8] and let Q2 ¼ S3 Un 0 e

7. We denote by

iQ : S3 ! Q2 and pQ : Q2 ! S7 the inclusion and collapsing maps, respectively.

We recall [8] that

f2in; hn; 2inþ1g ¼ h2n for nb 3 ð5Þ

and

h3~hh4 A fh3; 2i4; h4g C n 0 mod 2n 0 ¼ h33 : ð6Þ

A Toda bracket fh3;Sn 0; pQgH ½SQ2;S
3� is well-defined because h3Sn

0 ¼ 0

and ðSn 0ÞpQ ¼ 0. By Lemma 3.1, we obtain �i4 A fSn 0; pQ; iQg. Then the
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Toda bracket fh3;Sn 0; pQg is represented by an extension h 0
3 of h3. We set

h 0
n ¼ Sn�3h 0

3 for nb 3. The first relation of the following lemma is pointed

out by Oda.

Lemma 3.2. f2i3; h3;Sn 0g ¼ 0 and h 0
n is of order 2 for nb 3.

Proof. By [8], p5ðS3Þ ¼ Z2fh23g, p8ðS3Þ ¼ Z2fn 0h26g and S2n 0 ¼ 2n5.

Then the indeterminacy of a Toda bracket f2i3; h3;Sn 0gH p8ðS3Þ is

p5ðS3Þ � S2n 0 þ 2i3 � p8ðS3Þ ¼ 0:

So f2i3; h3;Sn 0g consists of a single element 0 or n 0h26 . By the fact that

p6ðS4Þ ¼ Z2fh24g, h5n6 ¼ 0 [8] and by Propositions 1.2, 1.3 of [8] and (5), we

have

�Sf2i3; h3;Sn 0gH f2i4; h4; 2n5g1
I f2i4; h4; 2i5g1 � n6

¼ h24n6

¼ 0 mod p6ðS4Þ � 2n6 þ 2i4 � Sp8ðS3Þ ¼ 0:

Hence Sf2i3; h3;Sn 0g ¼ 0. From the fact that S : p8ðS3Þ ! p9ðS4Þ is a mono-

morphism, the first half of the lemma is proved.

By Proposition 1.4 of [8] and by the first half, we see that

2h 0
3 ¼ 2i3 � h 0

3 A 2i3 � fh3;Sn 0; pQg ¼ �f2i3; h3;Sn 0g � SpQ ¼ 0:

So the order of h 0
n is 2 for nb 3. This leads to the second half, completing the

proof. r

By Lemma 3.2, we can define a Toda bracket fh3; 2i4; h 0
4gH ½S3Q2;S

3�.
By (6), fh3; 2i4; h 0

4g is represented by n 0 or �n 0, where n 0 is an extension of n 0.

Let nn be a generator of pn
nþ3 GZ8 for nb 5 [8]. By Lemma 3.1, we obtain

that a Toda bracket fn5;S5n 0;S4pQgH ½S5Q2;S
5� is represented by an exten-

sion n 05 of n5. We set n 0n ¼ Sn�5n 05 for nb 5. By (5), 2i3 � fh3; 2i4; h 0
4g ¼ h23h

0
5.

Then we obtain

2n 0 ¼ h23h
0
5: ð7Þ

Let s 000 be the generator of p5
12 GZ2 [8]. By making use of the cofibration

starting with n 0, we obtain

2n 05 1S2n 0 mod s 000S5pQ and 4n 05 ¼ h25h
0
7; ð8Þ

and so n 0n is of order 8 for nb 5.
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We consider the homotopy exact sequence of a pair ðQ2;S
3Þ:

p7ðS3Þ !
iQ�

p7ðQ2Þ ! p7ðQ2;S
3Þ !q p6ðS3Þ:

By the Blakers-Massey theorem, we obtain p7ðQ2;S
3ÞGp7ðS7ÞGZ and Im q ¼

Z4fn 0g. Since p7ðS3Þ ¼ Z2fn 0h6g [8] and iQ�ðn 0Þ ¼ 0, iQ�ðp7ðS3ÞÞ ¼ 0. So we

get that p7ðQ2Þ ¼ Zff4i64i6g, where f4i64i6 is a coextension of 4i6. We set f4in4in ¼
Sn�6f4i64i6 for nb 6. By the similar argument, we obtain the following.

Lemma 3.3. pnþ7ðSnQ2Þ ¼ Zf g4inþ64inþ6glZ2fðSniQÞnnþ3hnþ6g for n ¼ 1; 2

and pnþ7ðSnQ2Þ ¼ Zf g4inþ64inþ6g for n ¼ 0 and nb 3.

We recall that p10ðS5Þ ¼ Z2fn5h28g, p11ðS6Þ ¼ ZfDði13Þg, pnþ5ðSnÞ ¼ 0 for

nb 7 and pnþ6ðSnÞ ¼ Z2fn2ng for nb 5 [8]. As is easily seen, we obtain the

following.

Lemma 3.4. ½M 11;S5� ¼ Z2fn5h8h9glZ2fn25 p11g and ½Mnþ6;Sn� ¼
Z2fn2n pnþ6g for nb 6.

By the fact that 2n 0 ¼ h33 , Dði9Þ ¼Gð2n4 � Sn 0Þ [8] and by (3), we obtain

h24h
0
6ðS4iQÞh7 ¼ 2ðSn 0Þh7 ¼ ðSn 0Þh27 p9 ¼ Dði9Þ � h27 p9: ð9Þ

By the fact that S2n 0 ¼ 2n5, Dði11Þ ¼ n5h8 [8] and by (3), we obtain

S2n 0ðS5iQÞh8 ¼ 2n5h8 ¼ n5h
2
8 p10 ¼ Dði11Þ � h9 p10: ð10Þ

By the fact that Dði13Þ A fn6; h9; 2i10g mod 2Dði13Þ [8] and that h9 represents a

Toda bracket fh9; 2i10; p10g, we obtain

n 06ðS6iQÞh9 ¼ n6h9 A n6 � fh9; 2i10; p10g C Dði13Þ � p11 mod 0: ð11Þ

Let s 00 and s 0 be generators of p6
13 GZ4 and p7

14 GZ8, respectively [8].

We recall that the elements s 000; s 00 and s 0 have the properties Hðs 000Þ ¼ 4n9,

Hðs 00Þ ¼ h211 and Hðs 0Þ ¼ h13, respectively [8]. Now we show the following.

Theorem 3.5. (i) s 000 ¼ fh25h 0
7; ðS5iQÞh8; ~hh9g1:

(ii) s 00 1 fS3n 0; ðS6iQÞh9; ~hh10g1 mod Ss 000.

(iii) s 0 1 a mod Ss 0 for a A fn 07; ðS7iQÞh10; ~hh11g1.

Proof. Each Toda bracket is well-defined by use of (9), (10), (11) and (6).

The indeterminacy of fh25h 0
7; ðS5iQÞh8; ~hh9g1 is

½M 11;S5� � ~hh10 þ h25h
0
7 � Sp11ðS4Q2Þ:
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By the fact that h8n9 ¼ n8h11 ¼ 0 [8] and by (6), we obtain n5h8h9~hh10 ¼
G2n5h8n9 ¼ 0 and n25 p11~hh10 ¼ n25h11 ¼ 0. Then, by Lemma 3.4, ½M 11;S5� � ~hh10
¼ 0. From the fact that p12ðS7Þ ¼ 0, we have h 0

7 � Sp11ðS4Q2Þ ¼ 0 and hence

h25h
0
7 � Sp11ðS4Q2Þ ¼ 0. By Propositions 2.4, 2.5, (2) and (9), we have

Hfh25h 0
7; ðS5iQÞh8; ~hh9g1 ¼ �Gðh24h 0

6ðS4iQÞh7Þ � ~hh10

¼ h29 p11~hh10

¼ 4n9:

Since H : p5
12 ! p9

12 is a monomorphism, we have (i).

Next the indeterminacy of fS3n 0; ðS6iQÞh9; ~hh10g1 is

½M 12;S6� � ~hh11 þ S3n 0 � Sp12ðS5Q2Þ:

By the relation n9h12 ¼ 0 and Lemma 3.4, ½M 12;S6� � ~hh11 ¼ 0. From the fact

that p3
10 ¼ 0 [8] and by Lemma 3.3 and (7),

S3n 0 � Sp12ðS5Q2Þ ¼ S3ðn 0 � p10ðS3Q2ÞÞHS3p3
10 ¼ 0:

By Propositions 2.4, 2.5, (2) and (10), we have

HfS3n 0; ðS6iQÞh9; ~hh10g1 ¼ �GðS2n 0ðS5iQÞh8Þ � ~hh11 ¼ h11p12~hh11 ¼ h211:

By the fact that p5
12 ¼ Z2fs 000g and by the EHP-sequence ((2.11) of [8]), we

have (ii).

The indeterminacy of fn 07; ðS7iQÞh10; ~hh11g1 is

½M 13;S7� � ~hh12 þ n 07 � Sp13ðS6Q2Þ:

From the fact that n10h13 ¼ 0 and by Lemma 3.4, ½M 13;S7� � ~hh12 ¼ 0. By

Lemma 3.3 and (8),

n 07 � Sp13ðS6Q2Þ ¼ Sðn 06 � p13ðS6Q2ÞÞHSp6
13:

By Propositions 2.4, 2.5, (2) and (11), we have

Hfn 07; ðS7iQÞh10; ~hh11g1 ¼ �Gðn 06ðS6iQÞh9Þ � ~hh12 C p13~hh12 ¼ h13 mod 0:

By the fact that p6
13 ¼ Z4fs 00g and by the EHP-sequence, we have (iii). This

completes the proof. r

Finally we show the following.

Corollary 3.6. 2s 00 ¼ Ss 000 and 2s 0 ¼GSs 00.
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Proof. First we note that 2i6 � s 00 ¼ 2s 00 þ ½i6; i6� � h211 [9]. Since

S : p6
12 ! p7

13 is an isomorphism, we obtain ½i6; i6� � h11 ¼ 0 and hence

2i6 � s 00 ¼ 2s 00. By Theorem 3.5 and (7), we see that

2s 00 ¼ 2i6 � s 00

A f2S3n 0; ðS6iQÞh9; ~hh10g1

¼ fh26h 0
8; ðS6iQÞh9; ~hh10g1

I�Sfh25h 0
7; ðS5iQÞh8; ~hh9g

C Ss 000 mod ½M 12;S6� � ~hh11 þ h26h
0
8 � Sp12ðS5Q2Þ ¼ 0:

Thus the first half of the corollary is proved.

By Theorem 3.5, we have s 0 þ k1Ss
00 A fn 07; ðS7iQÞh10; ~hh11g1 for some k1 A

f0; 1; 2; 3g. Then

2s 0 þ 2k1Ss
00 ¼ 2i7 � ðs 0 þ k1Ss

00Þ A f2n 07; ðS7iQÞh10; ~hh11g:

By (8), we obtain 2n 05 ¼ S2n 0 þ k2s
000S5pQ for some k2 A f0; 1g. So, by the first

relation and Proposition 1.6 of [8], we see that

f2n 07; ðS7iQÞh10; ~hh11g ¼ fS4n 0 þ 2k2ðSs 00ÞS7pQ; ðS7iQÞh10; ~hh11g

H fS4n 0; ðS7iQÞh10; ~hh11g þ f2k2ðSs 00ÞS7pQ; ðS7iQÞh10; ~hh11g:

By Theorem 3.5, GSs 00 A fS4n 0; ðS7iQÞh10; ~hh11g and by Corollary 3.4 of

[7], 2k2Ss
00 A f2k2ðSs 00ÞS7pQ; ðS7iQÞh10; ~hh11g. Furthermore, by Lemmas 3.3

and 3.4, both indeterminacies of these Toda brackets are 0. Hence we obtain

2s 0 ¼GSs 00 þ 2ð�k1 þ k2ÞSs 00. This leads to the second assertion, completing

the proof. r

4. Existence of the unstable Adams map

First we recall the following [3].

p6ðM 4Þ ¼ Z4fdglZ2f~hh3h5g and 2d ¼ i4n
0: ð12Þ

We show the following.

Lemma 4.1. ~hh3h
2
5h7 ¼ ~hh3n5h8 p9 and ~hh4h

2
6h8 ¼ 0.

Proof. By the fact that h33 ¼ 2n 0, n 0h6 ¼ h3n4 [8], ~hh3 A fi4; 2i3; h3g and by

(3), we have
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~hh3h
2
5h7 A fi4; 2i3; h3g � h25h7

H fi4; 2i3; 2n 0h6g

¼ fi4; 2i3; h3n4h7 p8g

I fi4; 2i3; h3g � n5h8 p9

C ~hh3n5h8 p9 mod p4ðM 4Þ � 2ðSn 0Þh7 þ i4 � ½M 9;S3�:

Since p4ðM 4Þ ¼ Z2fi4h3g, p4ðM 4Þ � 2ðSn 0Þh7 ¼ 0. Obviously we obtain

½M 9;S3� ¼ Z2fn 0h6h7g. By (12), i4n
0h6h7 ¼ 2d � h6h7 ¼ 0 and hence i4 �

½M 9;S3� ¼ 0. This leads to the first assertion. By the fact that n6h9 ¼ 0 [8]

and by the first half, we obtain ~hh4h
2
6h8 ¼ ~hh4n6h9 p10 ¼ 0. This leads to the

second half, completing the proof. r

Now we show the existence of the unstable Adams map. By Lemma 4.1,

we can define a Toda bracket

f~hh4h6h 0
7; ðS5iQÞh8; ~hh9g1 H p12ðM 5Þ:

By Theorem 3.5,

p5 � f~hh4h6h 0
7; ðS5iQÞh8; ~hh9g1 H fh25h 0

7; ðS5iQÞh8; ~hh9g1 ¼ s 000:

So the Toda bracket f~hh4h6h 0
7; ðS5iQÞh8; ~hh9g1 is represented by a lift ½s 000� of s 000.

To show that ½s 000� is extendable to the unstable Adams map from M 13 to M 5,

it su‰ces to show the following.

Lemma 4.2. The order of ½s 000� is two.

Proof. By the fact that h36 ¼ 4n6, n6h9 ¼ 0 and 4~hh4 ¼ 0, we see that

2½s 000� A f~hh4h6h 0
7; ðS5iQÞh8; ~hh9g � 2i12

H f~hh4h6h 0
7; ðS5iQÞh8; i10h29g

H f~hh4; 4n6; h29g

I f0; n6; h29g

C 0 mod p10ðM 5Þ � h210 þ ~hh4 � p12ðS6Þ:

By [5], p10ðM 5Þ ¼ Z4fi5n24glZ2f½~hh4; i5� � h9g. So p10ðM 5Þ � h210 ¼ 0. By [4],

~hh4n6 ¼ i5n4h
2
7 . Then ~hh4n

2
6 ¼ i5n4h

2
7n9 ¼ 0 and hence ~hh4 � p12ðS6Þ ¼ 0. Then we

obtain 2½s 000� ¼ 0. This completes the proof. r

Finally we shall show that Hðm3Þ ¼ s 000, which is a part of Lemma 6.5

of [8]. Since Sðh3½s 000�Þ A fh4; 2i5; s 000g, we have h3½s 000�1 m3 mod h3e4. Then
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m3 A fn 0h6h 0
7; ðS5iQÞh8; ~hh9g1. Hence, by Proposition 2.3 of [8] and Theorem 3.5,

Hðm3Þ ¼ s 000.
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